Difference between revisions of "Aufgaben:Exercise 3.2: Spectrum with Angle Modulation"
m (Text replacement - "[[Modulationsverfahren" to "[[Modulation_Methods") |
|||
(11 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Modulation_Methods/Phase_Modulation_(PM) |
}} | }} | ||
− | [[File:P_ID1081__Mod_A_3_2.png|right|frame| | + | [[File:P_ID1081__Mod_A_3_2.png|right|frame|Table of Bessel functions]] |
− | + | The following equations are assumed here: | |
− | * | + | * Source signal: |
:q(t)=2V⋅sin(2π⋅3kHz⋅t), | :q(t)=2V⋅sin(2π⋅3kHz⋅t), | ||
− | * | + | * Transmitted signal: |
:s(t)=1V⋅cos[2π⋅100kHz⋅t+KM⋅q(t)], | :s(t)=1V⋅cos[2π⋅100kHz⋅t+KM⋅q(t)], | ||
− | * | + | * Received signal (ideal channel): |
:r(t)=s(t)=1V⋅cos[2π⋅100kHz⋅t+ϕ(t)], | :r(t)=s(t)=1V⋅cos[2π⋅100kHz⋅t+ϕ(t)], | ||
− | * | + | * ideal demodulator: |
:v(t)=1KM⋅ϕ(t). | :v(t)=1KM⋅ϕ(t). | ||
− | + | The graphs shows the n–th order Bessel functions of the first kind Jn(η) in table form. | |
Line 23: | Line 23: | ||
− | '' | + | ''Hints:'' |
− | * | + | *This exercise belongs to the chapter [[Modulation_Methods/Phase_Modulation_(PM)|Phase Modulation]]. |
− | * | + | *Particular reference is made to the pages [[Modulation_Methods/Phasenmodulation_(PM)#Spectral_function_of_a_phase-modulated_sine_signal|Spectral function of a phase-modulated sine signal]] and [[Modulation_Methods/Phase_Modulation_(PM)#Interpretation_of_the_Bessel_spectrum|Interpretation of the Bessel spectrum]]. |
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Which modulation method is used here? |
|type="()"} | |type="()"} | ||
− | - | + | - Amplitude modulation. |
− | + | + | + Phase modulation. |
− | - | + | - Frequency modulation. |
− | { | + | {Which modulation method would you choose if the channel bandwidth was only BK=10 kHz ? |
|type="()"} | |type="()"} | ||
− | + | + | + Amplitude modulation. |
− | - | + | - Phase modulation. |
− | - | + | - Frequency modulation. |
− | { | + | {How should one choose the modulator constant K_{\rm M} for a phase deviation of η = 1 ? |
|type="{}"} | |type="{}"} | ||
K_{\rm M} \ = \ { 0.5 3% } \ \rm 1/V | K_{\rm M} \ = \ { 0.5 3% } \ \rm 1/V | ||
− | { | + | {Calculate the spectrum S_{\rm TP}(f) of the equivalent low-pass signal s_{\rm TP}(t). |
− | + | What are the weights of the spectral lines at f = 0 and f = -3 \ \rm kHz? | |
|type="{}"} | |type="{}"} | ||
S_{\rm TP}(f = 0)\ = \ { 0.765 3% } \ \rm V | S_{\rm TP}(f = 0)\ = \ { 0.765 3% } \ \rm V | ||
S_{\rm TP}(f = -3\ \rm kHz) \ = \ { -0.453--0.427 } \ \rm V | S_{\rm TP}(f = -3\ \rm kHz) \ = \ { -0.453--0.427 } \ \rm V | ||
− | { | + | {Calculate the spectra of the analytical signal s_{\rm +}(t) and the physical signal s(t). What are the weights of the spectral lines at f = 97 \ \rm kHz? |
|type="{}"} | |type="{}"} | ||
S_+(f = 97 \ \rm kHz)\ = \ { -0.453--0.427 } \ \rm V | S_+(f = 97 \ \rm kHz)\ = \ { -0.453--0.427 } \ \rm V | ||
Line 60: | Line 60: | ||
− | { | + | {What is the required channel bandwidth B_{\rm K} for η = 1, if one ignores pulse weights smaller (in magnitude) than 0.01 ? |
|type="{}"} | |type="{}"} | ||
η = 1\text{:} \ \ \ B_{\rm K}\ = \ { 18 3% } \ \rm kHz | η = 1\text{:} \ \ \ B_{\rm K}\ = \ { 18 3% } \ \rm kHz | ||
− | { | + | {What would be the channel bandwidths for η = 2 and η = 3 ? |
|type="{}"} | |type="{}"} | ||
η = 2\text{:} \ \ \ B_{\rm K}\ = \ { 24 3% } \ \rm kHz | η = 2\text{:} \ \ \ B_{\rm K}\ = \ { 24 3% } \ \rm kHz | ||
Line 71: | Line 71: | ||
</quiz> | </quiz> | ||
− | + | ===Solution=== | |
− | === | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' The phase ϕ(t) is proportional to the source signal q(t) ⇒ this is a phase modulation ⇒ <u>Answer 2</u>. |
− | '''(2)''' | + | '''(2)''' An angle modulation (PM, FM) always results in nonlinear distortion when the channel is bandlimited. |
− | * | + | *In contrast, double-sideband amplitude modulation (DSB-AM) here enables distortion-free transmission with B_{\rm K} = 6 \ \rm kHz ; ⇒ <u>Answer 1</u>. |
− | '''(3)''' | + | '''(3)''' The modulation index (or phase deviation) is equal to η = K_{\rm M} · A_{\rm N} for phase modulation. |
− | * | + | *Thus, the modulator constant must be set to K_{\rm M} = 1/A_{\rm N}\hspace{0.15cm}\underline { = 0.5 \rm \cdot {1}/{V}} to give η = 1 . |
− | '''(4)''' | + | '''(4)''' A so-called Bessel spectrum is present: |
: S_{\rm TP}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}. | : S_{\rm TP}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}. | ||
− | * | + | *This is a discrete spectrum with components at f = n · f_{\rm N}, where n is an integer. |
− | * | + | *The weights of the Dirac functions are given by the Bessel functions. When A_{\rm T} = 1\ \rm V , one obtains: |
− | [[File:P_ID1082__Mod_A_3_2_d.png|right|frame| | + | [[File:P_ID1082__Mod_A_3_2_d.png|right|frame|PM spectrum in the equivalent low-pass range]] |
: S_{\rm TP}(f = 0) = A_{\rm T} \cdot {\rm J}_0 (\eta = 1) \hspace{0.15cm}\underline {= 0.765\,{\rm V}}, | : S_{\rm TP}(f = 0) = A_{\rm T} \cdot {\rm J}_0 (\eta = 1) \hspace{0.15cm}\underline {= 0.765\,{\rm V}}, | ||
: S_{\rm TP}(f = f_{\rm N}) = A_{\rm T} \cdot {\rm J}_1 (\eta = 1)\hspace{0.15cm} = 0.440\,{\rm V}, | : S_{\rm TP}(f = f_{\rm N}) = A_{\rm T} \cdot {\rm J}_1 (\eta = 1)\hspace{0.15cm} = 0.440\,{\rm V}, | ||
: S_{\rm TP}(f = 2 \cdot f_{\rm N}) = A_{\rm T} \cdot {\rm J}_2 (\eta = 1) = 0.115\,{\rm V} \hspace{0.05cm}. | : S_{\rm TP}(f = 2 \cdot f_{\rm N}) = A_{\rm T} \cdot {\rm J}_2 (\eta = 1) = 0.115\,{\rm V} \hspace{0.05cm}. | ||
− | * | + | *Due to the symmetry {\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta) , the spectral line at f = -3 \ \rm kHz is obtained as: |
:S_{\rm TP}(f = -f_{\rm N}) = -S_{\rm TP}(f = +f_{\rm N}) =\hspace{-0.01cm}\underline { -0.440\,{\rm V} \hspace{0.05cm}}. | :S_{\rm TP}(f = -f_{\rm N}) = -S_{\rm TP}(f = +f_{\rm N}) =\hspace{-0.01cm}\underline { -0.440\,{\rm V} \hspace{0.05cm}}. | ||
− | '' | + | ''Note'': For the spectral value at f = 0 we should actually write: |
:S_{\rm TP}(f = 0) = 0.765\,{\rm V} \cdot \delta (f) \hspace{0.05cm}. | :S_{\rm TP}(f = 0) = 0.765\,{\rm V} \cdot \delta (f) \hspace{0.05cm}. | ||
− | * | + | *This is therefore infinite due to the Dirac function, and only the weight of the Dirac function is finite. |
− | * | + | *The same applies for all discrete spectral lines. |
− | '''(5)''' S_+(f) | + | '''(5)''' S_+(f) is obtained from S_{\rm TP}(f) by shifting f_{\rm T} to the right. Therefore |
:S_{\rm +}(f = 97\,{\rm kHz}) = S_{\rm TP}(f = -3\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.440\,{\rm V}} \hspace{0.05cm}. | :S_{\rm +}(f = 97\,{\rm kHz}) = S_{\rm TP}(f = -3\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.440\,{\rm V}} \hspace{0.05cm}. | ||
− | * | + | *The actual spectrum differs from S_+(f) by a factor of 1/2 at positive frequencies: |
:S(f = 97\,{\rm kHz}) = {1}/{2} \cdot S_{\rm +}(f = 97\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.220\,{\rm V}} \hspace{0.05cm}. | :S(f = 97\,{\rm kHz}) = {1}/{2} \cdot S_{\rm +}(f = 97\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.220\,{\rm V}} \hspace{0.05cm}. | ||
− | * | + | *In general, we can write: |
: S(f) = \frac{A_{\rm T}}{2} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f \pm (f_{\rm T}+ n \cdot f_{\rm N}))\hspace{0.05cm}. | : S(f) = \frac{A_{\rm T}}{2} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f \pm (f_{\rm T}+ n \cdot f_{\rm N}))\hspace{0.05cm}. | ||
− | '''(6)''' | + | '''(6)''' Under the suggested conditions, all the Bessel lines {\rm J}_{|n|>3} can be disregarded. |
− | * | + | * This gives B_{\rm K} = 2 · 3 · f_{\rm N}\hspace{0.15cm}\underline { = 18 \ \rm kHz}. |
− | '''(7)''' | + | '''(7)''' The numerical values in the table given on the exercise page show that the following channel bandwidths would now be required: |
*für η = 2: B_{\rm K} \hspace{0.15cm}\underline { = 24 \ \rm kHz}, | *für η = 2: B_{\rm K} \hspace{0.15cm}\underline { = 24 \ \rm kHz}, | ||
*für η = 3: B_{\rm K} \hspace{0.15cm}\underline { = 36 \ \rm kHz}. | *für η = 3: B_{\rm K} \hspace{0.15cm}\underline { = 36 \ \rm kHz}. | ||
Line 127: | Line 126: | ||
− | [[Category: | + | [[Category:Modulation Methods: Exercises|^3.1 Phase Modulation^]] |
Latest revision as of 17:21, 23 January 2023
The following equations are assumed here:
- Source signal:
- q(t) = 2\,{\rm V} \cdot \sin(2 \pi \cdot 3\,{\rm kHz} \cdot t)\hspace{0.05cm},
- Transmitted signal:
- s(t) = 1\,{\rm V} \cdot \cos\hspace{-0.1cm}\big[2 \pi \cdot 100\,{\rm kHz} \cdot t + K_{\rm M} \cdot q(t)\big ]\hspace{0.05cm},
- Received signal (ideal channel):
- r(t) = s(t) = 1\,{\rm V} \cdot \cos\hspace{-0.1cm}\big[2 \pi \cdot 100\,{\rm kHz} \cdot t + \phi(t)\big ]\hspace{0.05cm},
- ideal demodulator:
- v(t) = \frac{1}{ K_{\rm M}} \cdot \phi(t)\hspace{0.05cm}.
The graphs shows the n–th order Bessel functions of the first kind {\rm J}_n (\eta) in table form.
Hints:
- This exercise belongs to the chapter Phase Modulation.
- Particular reference is made to the pages Spectral function of a phase-modulated sine signal and Interpretation of the Bessel spectrum.
Questions
Solution
(2) An angle modulation (PM, FM) always results in nonlinear distortion when the channel is bandlimited.
- In contrast, double-sideband amplitude modulation (DSB-AM) here enables distortion-free transmission with B_{\rm K} = 6 \ \rm kHz ; ⇒ Answer 1.
(3) The modulation index (or phase deviation) is equal to η = K_{\rm M} · A_{\rm N} for phase modulation.
- Thus, the modulator constant must be set to K_{\rm M} = 1/A_{\rm N}\hspace{0.15cm}\underline { = 0.5 \rm \cdot {1}/{V}} to give η = 1 .
(4) A so-called Bessel spectrum is present:
- S_{\rm TP}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}.
- This is a discrete spectrum with components at f = n · f_{\rm N}, where n is an integer.
- The weights of the Dirac functions are given by the Bessel functions. When A_{\rm T} = 1\ \rm V , one obtains:
- S_{\rm TP}(f = 0) = A_{\rm T} \cdot {\rm J}_0 (\eta = 1) \hspace{0.15cm}\underline {= 0.765\,{\rm V}},
- S_{\rm TP}(f = f_{\rm N}) = A_{\rm T} \cdot {\rm J}_1 (\eta = 1)\hspace{0.15cm} = 0.440\,{\rm V},
- S_{\rm TP}(f = 2 \cdot f_{\rm N}) = A_{\rm T} \cdot {\rm J}_2 (\eta = 1) = 0.115\,{\rm V} \hspace{0.05cm}.
- Due to the symmetry {\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta) , the spectral line at f = -3 \ \rm kHz is obtained as:
- S_{\rm TP}(f = -f_{\rm N}) = -S_{\rm TP}(f = +f_{\rm N}) =\hspace{-0.01cm}\underline { -0.440\,{\rm V} \hspace{0.05cm}}.
Note: For the spectral value at f = 0 we should actually write:
- S_{\rm TP}(f = 0) = 0.765\,{\rm V} \cdot \delta (f) \hspace{0.05cm}.
- This is therefore infinite due to the Dirac function, and only the weight of the Dirac function is finite.
- The same applies for all discrete spectral lines.
(5) S_+(f) is obtained from S_{\rm TP}(f) by shifting f_{\rm T} to the right. Therefore
- S_{\rm +}(f = 97\,{\rm kHz}) = S_{\rm TP}(f = -3\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.440\,{\rm V}} \hspace{0.05cm}.
- The actual spectrum differs from S_+(f) by a factor of 1/2 at positive frequencies:
- S(f = 97\,{\rm kHz}) = {1}/{2} \cdot S_{\rm +}(f = 97\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.220\,{\rm V}} \hspace{0.05cm}.
- In general, we can write:
- S(f) = \frac{A_{\rm T}}{2} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f \pm (f_{\rm T}+ n \cdot f_{\rm N}))\hspace{0.05cm}.
(6) Under the suggested conditions, all the Bessel lines {\rm J}_{|n|>3} can be disregarded.
- This gives B_{\rm K} = 2 · 3 · f_{\rm N}\hspace{0.15cm}\underline { = 18 \ \rm kHz}.
(7) The numerical values in the table given on the exercise page show that the following channel bandwidths would now be required:
- für η = 2: B_{\rm K} \hspace{0.15cm}\underline { = 24 \ \rm kHz},
- für η = 3: B_{\rm K} \hspace{0.15cm}\underline { = 36 \ \rm kHz}.