Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.2: Spectrum with Angle Modulation"

From LNTwww
m (Text replacement - "[[Modulationsverfahren" to "[[Modulation_Methods")
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Phasenmodulation (PM)
+
{{quiz-Header|Buchseite=Modulation_Methods/Phase_Modulation_(PM)
 
}}
 
}}
  
[[File:P_ID1081__Mod_A_3_2.png|right|frame|Tabelle der Besselfunktionen]]
+
[[File:P_ID1081__Mod_A_3_2.png|right|frame|Table of Bessel functions]]
Es wird hier von folgenden Gleichungen ausgegangen:
+
The following equations are assumed here:
* Quellensignal:
+
* Source signal:
 
:q(t)=2Vsin(2π3kHzt),
 
:q(t)=2Vsin(2π3kHzt),
* Sendesignal:
+
* Transmitted signal:
 
:s(t)=1Vcos[2π100kHzt+KMq(t)],
 
:s(t)=1Vcos[2π100kHzt+KMq(t)],
* Empfangssignal (idealer Kanal:
+
* Received signal (ideal channel):
 
:r(t)=s(t)=1Vcos[2π100kHzt+ϕ(t)],
 
:r(t)=s(t)=1Vcos[2π100kHzt+ϕ(t)],
* idealer Demodulator:
+
* ideal demodulator:
 
:v(t)=1KMϕ(t).
 
:v(t)=1KMϕ(t).
Die Grafik zeigt die Besselfunktionen  Jn(η)  erster Art und  n–ter Ordnung in tabellarischer Form.
+
The graphs shows the   n–th order Bessel functions of the first kind   Jn(η)  in table form.
  
  
Line 23: Line 23:
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum  Kapitel  [[Modulation_Methods/Phasenmodulation_(PM)|Phasenmodulation]].
+
*This exercise belongs to the chapter  [[Modulation_Methods/Phase_Modulation_(PM)|Phase Modulation]].
*Bezug genommen wird insbesondere auf die Seiten   [[Modulation_Methods/Phasenmodulation_(PM)#Spektralfunktion_eines_phasenmodulierten_Sinussignals|Spektralfunktion eines phasenmodulierten Sinussignals]]  sowie  [[Modulation_Methods/Phasenmodulation_(PM)#Interpretation_des_Besselspektrums|Interpretation des Besselspektrums]].
+
*Particular reference is made to the pages   [[Modulation_Methods/Phasenmodulation_(PM)#Spectral_function_of_a_phase-modulated_sine_signal|Spectral function of a phase-modulated sine signal]]  and  [[Modulation_Methods/Phase_Modulation_(PM)#Interpretation_of_the_Bessel_spectrum|Interpretation of the Bessel spectrum]].
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welches Modulationsverfahren liegt hier vor?
+
{Which modulation method is used here?
 
|type="()"}
 
|type="()"}
- Amplitudenmodulation.
+
- Amplitude modulation.
+ Phasenmodulation.
+
+ Phase modulation.
- Frequenzmodulation.
+
- Frequency modulation.
  
{Welches Modulationsverfahren würden Sie wählen, wenn die Kanalbandbreite nur &nbsp;BK=10 kHz&nbsp; betragen würde?
+
{Which modulation method would you choose if the channel bandwidth was only &nbsp;BK=10 kHz&nbsp;?
 
|type="()"}
 
|type="()"}
+ Amplitudenmodulation.
+
+ Amplitude modulation.
- Phasenmodulation.
+
- Phase modulation.
- Frequenzmodulation.
+
- Frequency modulation.
  
{Wie ist die Modulatorkonstante &nbsp;KM&nbsp; zu wählen, damit der Phasenhub &nbsp;η = 1&nbsp; beträgt?
+
{How should one choose the modulator constant&nbsp;K_{\rm M}&nbsp; for a phase deviation of &nbsp;η = 1&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
K_{\rm M} \ = \ { 0.5 3% } \ \rm 1/V  
 
K_{\rm M} \ = \ { 0.5 3% } \ \rm 1/V  
  
{Berechnen Sie das Spektrum &nbsp;S_{\rm TP}(f)&nbsp; des äquivalenten Tiefpass–Signals &nbsp;s_{\rm TP}(t).&nbsp;  
+
{Calculate the spectrum &nbsp;S_{\rm TP}(f)&nbsp; of the equivalent low-pass signal &nbsp;s_{\rm TP}(t).&nbsp;  
Wie groß sind die Gewichte der Spektrallinien bei &nbsp;f = 0&nbsp; und &nbsp;f = -3 \ \rm kHz?
+
What are the weights of the spectral lines at &nbsp;f = 0&nbsp; and &nbsp;f = -3 \ \rm kHz?
 
|type="{}"}
 
|type="{}"}
 
S_{\rm TP}(f = 0)\ = \ { 0.765 3% } \ \rm V  
 
S_{\rm TP}(f = 0)\ = \ { 0.765 3% } \ \rm V  
 
S_{\rm TP}(f = -3\ \rm kHz) \ = \ { -0.453--0.427 } \ \rm V  
 
S_{\rm TP}(f = -3\ \rm kHz) \ = \ { -0.453--0.427 } \ \rm V  
  
{Berechnen Sie die Spektren des analytischen Signals &nbsp;s_{\rm +}(t)&nbsp; sowie des physikalischen Signals &nbsp;s(t).&nbsp; Wie groß sind die Gewichte der Spektrallinien bei &nbsp;f = 97 \ \rm kHz?
+
{Calculate the spectra of the analytical signal&nbsp;s_{\rm +}(t)&nbsp; and the physical signal &nbsp;s(t).&nbsp; What are the weights of the spectral lines at &nbsp;f = 97 \ \rm kHz?
 
|type="{}"}
 
|type="{}"}
 
S_+(f = 97  \ \rm kHz)\ = \ { -0.453--0.427 } \ \rm V  
 
S_+(f = 97  \ \rm kHz)\ = \ { -0.453--0.427 } \ \rm V  
Line 60: Line 60:
  
  
{Wie groß ist die erforderliche Kanalbandbreite &nbsp;B_{\rm K}&nbsp; für &nbsp; η = 1, wenn man (betragsmäßige) Impulsgewichte kleiner als &nbsp;0.01&nbsp; vernachlässigt?
+
{What is the required channel bandwidth &nbsp;B_{\rm K}&nbsp; for &nbsp; η = 1, if one ignores pulse weights smaller (in magnitude) than&nbsp;0.01&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
η = 1\text{:} \ \  \ B_{\rm K}\ = \ { 18 3% } \ \rm kHz  
 
η = 1\text{:} \ \  \ B_{\rm K}\ = \ { 18 3% } \ \rm kHz  
  
{Welche Kanalbandbreiten würden sich für &nbsp;η = 2&nbsp; und &nbsp;η = 3&nbsp; ergeben?
+
{What would be the channel bandwidths for &nbsp;η = 2&nbsp; and &nbsp;η = 3&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
η = 2\text{:} \ \ \  B_{\rm K}\ = \ { 24 3% } \ \rm kHz  
 
η = 2\text{:} \ \ \  B_{\rm K}\ = \ { 24 3% } \ \rm kHz  
Line 71: Line 71:
 
</quiz>
 
</quiz>
  
 
+
===Solution===
===Musterlösung===
 
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Phase&nbsp; ϕ(t)&nbsp; ist proportional zum Quellensignal&nbsp; q(t) &nbsp; ⇒ &nbsp; es handelt sich um eine Phasenmodulation &nbsp; ⇒ &nbsp; <u>Antwort 2</u>.
+
'''(1)'''&nbsp; The phase&nbsp; ϕ(t)&nbsp; is proportional to the source signal&nbsp; q(t) &nbsp; ⇒ &nbsp; this is a phase modulation &nbsp; ⇒ &nbsp; <u>Answer 2</u>.
  
  
  
'''(2)'''&nbsp; Eine Winkelmodulation&nbsp; (PM, FM)&nbsp; führt bei bandbegrenztem Kanal stets zu nichtlinearen Verzerrungen.  
+
'''(2)'''&nbsp; An angle modulation&nbsp; (PM, FM)&nbsp; always results in nonlinear distortion when the channel is bandlimited.  
*Bei Zweiseitenband-Amplitudenmodulation&nbsp; (ZSB-AM)&nbsp; ist hier dagegen bereits mit&nbsp; B_{\rm K} = 6 \ \rm kHz&nbsp; eine verzerrungsfreie Übertragung möglich  &nbsp; ⇒ &nbsp; <u>Antwort 1</u>.
+
*In contrast, double-sideband amplitude modulation&nbsp; (DSB-AM)&nbsp; here enables distortion-free transmission with&nbsp; B_{\rm K} = 6 \ \rm kHz&nbsp;; ⇒ &nbsp; <u>Answer 1</u>.
  
  
  
'''(3)'''&nbsp; Der Modulationsindex (oder Phasenhub) ist bei Phasenmodulation gleich&nbsp; η = K_{\rm M} · A_{\rm N}.  
+
'''(3)'''&nbsp; The modulation index (or phase deviation) is equal to&nbsp; η = K_{\rm M} · A_{\rm N} for phase modulation.  
*Somit ist die Modulatorkonstante&nbsp; K_{\rm M} = 1/A_{\rm N}\hspace{0.15cm}\underline { = 0.5 \rm \cdot {1}/{V}}&nbsp; zu wählen, damit sich&nbsp; η = 1&nbsp; ergibt.
+
*Thus, the modulator constant must be set to&nbsp; K_{\rm M} = 1/A_{\rm N}\hspace{0.15cm}\underline { = 0.5 \rm \cdot {1}/{V}}&nbsp; to give &nbsp; η = 1&nbsp;.
  
  
  
'''(4)'''&nbsp; Es liegt ein sogenanntes Besselspektrum vor:
+
'''(4)'''&nbsp; A so-called Bessel spectrum is present:
 
: S_{\rm TP}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}.
 
: S_{\rm TP}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}.
*Dieses ist ein diskretes Spektrum mit Anteilen bei&nbsp; f = n · f_{\rm N}, wobei&nbsp; n&nbsp; ganzzahlig ist.  
+
*This is a discrete spectrum with components at &nbsp; f = n · f_{\rm N}, where&nbsp; n&nbsp; is an integer.  
*Die Gewichte der Diracfunktionen sind durch die Besselfunktionen gegeben.&nbsp; Mit&nbsp; A_{\rm T} = 1\ \rm  V&nbsp; erhält man:
+
*The weights of the Dirac functions are given by the Bessel functions.&nbsp; When&nbsp; A_{\rm T} = 1\ \rm  V&nbsp;, one obtains:
[[File:P_ID1082__Mod_A_3_2_d.png|right|frame|PM–Spektrum im äquivalenten Tiefpass–Bereich]]
+
[[File:P_ID1082__Mod_A_3_2_d.png|right|frame|PM spectrum in the equivalent low-pass range]]
 
: S_{\rm TP}(f = 0)  =  A_{\rm T} \cdot {\rm J}_0 (\eta = 1) \hspace{0.15cm}\underline {= 0.765\,{\rm V}},
 
: S_{\rm TP}(f = 0)  =  A_{\rm T} \cdot {\rm J}_0 (\eta = 1) \hspace{0.15cm}\underline {= 0.765\,{\rm V}},
 
: S_{\rm TP}(f = f_{\rm N})  =  A_{\rm T} \cdot {\rm J}_1 (\eta = 1)\hspace{0.15cm} = 0.440\,{\rm V},
 
: S_{\rm TP}(f = f_{\rm N})  =  A_{\rm T} \cdot {\rm J}_1 (\eta = 1)\hspace{0.15cm} = 0.440\,{\rm V},
 
: S_{\rm TP}(f = 2 \cdot f_{\rm N})  =  A_{\rm T} \cdot {\rm J}_2 (\eta = 1) = 0.115\,{\rm V} \hspace{0.05cm}.
 
: S_{\rm TP}(f = 2 \cdot f_{\rm N})  =  A_{\rm T} \cdot {\rm J}_2 (\eta = 1) = 0.115\,{\rm V} \hspace{0.05cm}.
*Aufgrund der Symmetrie&nbsp; {\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta)&nbsp; erhält man für die Spektrallinie bei&nbsp; f = -3 \ \rm kHz:
+
*Due to the symmetry &nbsp; {\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta)&nbsp;, the spectral line at &nbsp; f = -3 \ \rm kHz is obtained as:
 
:S_{\rm TP}(f = -f_{\rm N}) = -S_{\rm TP}(f = +f_{\rm N}) =\hspace{-0.01cm}\underline { -0.440\,{\rm V} \hspace{0.05cm}}.
 
:S_{\rm TP}(f = -f_{\rm N}) = -S_{\rm TP}(f = +f_{\rm N}) =\hspace{-0.01cm}\underline { -0.440\,{\rm V} \hspace{0.05cm}}.
''Anmerkung'':&nbsp; Eigentlich müsste man für den Spektralwert bei&nbsp; f = 0&nbsp; schreiben:
+
''Note'':&nbsp; For the spectral value at&nbsp; f = 0&nbsp; we should actually write:
 
:S_{\rm TP}(f = 0) = 0.765\,{\rm V} \cdot \delta (f) \hspace{0.05cm}.
 
:S_{\rm TP}(f = 0) = 0.765\,{\rm V} \cdot \delta (f) \hspace{0.05cm}.
*Dieser ist somit aufgrund der Diracfunktion unendlich groß, lediglich das Gewicht der Diracfunktion ist endlich.  
+
*This is therefore infinite due to the Dirac function, and only the weight of the Dirac function is finite.
*Gleiches gilt für alle diskreten Spektrallinien.
+
*The same applies for all discrete spectral lines.
  
  
  
'''(5)'''&nbsp; S_+(f)&nbsp; ergibt sich aus&nbsp; S_{\rm TP}(f)&nbsp; durch Verschiebung um&nbsp; f_{\rm T}&nbsp; nach rechts.&nbsp; Deshalb ist
+
'''(5)'''&nbsp; S_+(f)&nbsp; is obtained from &nbsp; S_{\rm TP}(f)&nbsp; by shifting &nbsp; f_{\rm T}&nbsp;to the right.&nbsp; Therefore
 
:S_{\rm +}(f = 97\,{\rm kHz}) = S_{\rm TP}(f = -3\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.440\,{\rm V}} \hspace{0.05cm}.
 
:S_{\rm +}(f = 97\,{\rm kHz}) = S_{\rm TP}(f = -3\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.440\,{\rm V}} \hspace{0.05cm}.
*Das tatsächliche Spektrum unterscheidet sich von&nbsp; S_+(f)&nbsp; bei positiven Frequenzen um den Faktor&nbsp; 1/2:
+
*The actual spectrum differs from&nbsp; S_+(f)&nbsp; by a factor of &nbsp; 1/2 at positive frequencies:
 
:S(f = 97\,{\rm kHz}) = {1}/{2} \cdot S_{\rm +}(f = 97\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.220\,{\rm V}} \hspace{0.05cm}.
 
:S(f = 97\,{\rm kHz}) = {1}/{2} \cdot S_{\rm +}(f = 97\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.220\,{\rm V}} \hspace{0.05cm}.
*Allgemein kann geschrieben werden:
+
*In general, we can write:
 
: S(f) = \frac{A_{\rm T}}{2} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f \pm (f_{\rm T}+ n \cdot f_{\rm N}))\hspace{0.05cm}.
 
: S(f) = \frac{A_{\rm T}}{2} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f \pm (f_{\rm T}+ n \cdot f_{\rm N}))\hspace{0.05cm}.
  
  
  
'''(6)'''&nbsp; Unter der vorgeschlagenen Vernachlässigung können alle Bessellinien&nbsp; {\rm J}_{|n|>3}&nbsp; außer Acht gelassen werden.
+
'''(6)'''&nbsp; Under the suggested conditions, all the Bessel lines&nbsp; {\rm J}_{|n|>3}&nbsp; can be disregarded.
* Damit erhält man&nbsp; B_{\rm K} = 2 · 3 · f_{\rm N}\hspace{0.15cm}\underline { = 18 \ \rm kHz}.
+
* This gives&nbsp; B_{\rm K} = 2 · 3 · f_{\rm N}\hspace{0.15cm}\underline { = 18 \ \rm kHz}.
  
  
  
'''(7)'''&nbsp; Die Zahlenwerte in der Tabelle auf der Angabenseite zeigen, dass nun folgende Kanalbandbreiten erforderlich wären:
+
'''(7)'''&nbsp; The numerical values in the table given on the exercise page show that the following channel bandwidths would now be required:  
 
*für η = 2: &nbsp; &nbsp;  B_{\rm K} \hspace{0.15cm}\underline { = 24 \ \rm kHz},
 
*für η = 2: &nbsp; &nbsp;  B_{\rm K} \hspace{0.15cm}\underline { = 24 \ \rm kHz},
 
*für η = 3: &nbsp; &nbsp;  B_{\rm K} \hspace{0.15cm}\underline { = 36 \ \rm kHz}.
 
*für η = 3: &nbsp; &nbsp;  B_{\rm K} \hspace{0.15cm}\underline { = 36 \ \rm kHz}.
Line 127: Line 126:
  
  
[[Category:Aufgaben zu Modulationsverfahren|^3.1 Phasenmodulation (PM)^]]
+
[[Category:Modulation Methods: Exercises|^3.1 Phase Modulation^]]

Latest revision as of 17:21, 23 January 2023

Table of Bessel functions

The following equations are assumed here:

  • Source signal:
q(t) = 2\,{\rm V} \cdot \sin(2 \pi \cdot 3\,{\rm kHz} \cdot t)\hspace{0.05cm},
  • Transmitted signal:
s(t) = 1\,{\rm V} \cdot \cos\hspace{-0.1cm}\big[2 \pi \cdot 100\,{\rm kHz} \cdot t + K_{\rm M} \cdot q(t)\big ]\hspace{0.05cm},
  • Received signal (ideal channel):
r(t) = s(t) = 1\,{\rm V} \cdot \cos\hspace{-0.1cm}\big[2 \pi \cdot 100\,{\rm kHz} \cdot t + \phi(t)\big ]\hspace{0.05cm},
  • ideal demodulator:
v(t) = \frac{1}{ K_{\rm M}} \cdot \phi(t)\hspace{0.05cm}.

The graphs shows the   n–th order Bessel functions of the first kind   {\rm J}_n (\eta)  in table form.





Hints:


Questions

1

Which modulation method is used here?

Amplitude modulation.
Phase modulation.
Frequency modulation.

2

Which modulation method would you choose if the channel bandwidth was only  B_{\rm K} = 10 \ \rm kHz ?

Amplitude modulation.
Phase modulation.
Frequency modulation.

3

How should one choose the modulator constant K_{\rm M}  for a phase deviation of  η = 1 ?

K_{\rm M} \ = \

\ \rm 1/V

4

Calculate the spectrum  S_{\rm TP}(f)  of the equivalent low-pass signal  s_{\rm TP}(t).  What are the weights of the spectral lines at  f = 0  and  f = -3 \ \rm kHz?

S_{\rm TP}(f = 0)\ = \

\ \rm V
S_{\rm TP}(f = -3\ \rm kHz) \ = \

\ \rm V

5

Calculate the spectra of the analytical signal s_{\rm +}(t)  and the physical signal  s(t).  What are the weights of the spectral lines at  f = 97 \ \rm kHz?

S_+(f = 97 \ \rm kHz)\ = \

\ \rm V
S(f = 97 \ \rm kHz)\hspace{0.32cm} = \

\ \rm V

6

What is the required channel bandwidth  B_{\rm K}  for   η = 1, if one ignores pulse weights smaller (in magnitude) than 0.01 ?

η = 1\text{:} \ \ \ B_{\rm K}\ = \

\ \rm kHz

7

What would be the channel bandwidths for  η = 2  and  η = 3 ?

η = 2\text{:} \ \ \ B_{\rm K}\ = \

\ \rm kHz
η = 3\text{:} \ \ \ B_{\rm K}\ = \

\ \rm kHz


Solution

(1)  The phase  ϕ(t)  is proportional to the source signal  q(t)   ⇒   this is a phase modulation   ⇒   Answer 2.


(2)  An angle modulation  (PM, FM)  always results in nonlinear distortion when the channel is bandlimited.

  • In contrast, double-sideband amplitude modulation  (DSB-AM)  here enables distortion-free transmission with  B_{\rm K} = 6 \ \rm kHz ; ⇒   Answer 1.


(3)  The modulation index (or phase deviation) is equal to  η = K_{\rm M} · A_{\rm N} for phase modulation.

  • Thus, the modulator constant must be set to  K_{\rm M} = 1/A_{\rm N}\hspace{0.15cm}\underline { = 0.5 \rm \cdot {1}/{V}}  to give   η = 1 .


(4)  A so-called Bessel spectrum is present:

S_{\rm TP}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}.
  • This is a discrete spectrum with components at   f = n · f_{\rm N}, where  n  is an integer.
  • The weights of the Dirac functions are given by the Bessel functions.  When  A_{\rm T} = 1\ \rm V , one obtains:
PM spectrum in the equivalent low-pass range
S_{\rm TP}(f = 0) = A_{\rm T} \cdot {\rm J}_0 (\eta = 1) \hspace{0.15cm}\underline {= 0.765\,{\rm V}},
S_{\rm TP}(f = f_{\rm N}) = A_{\rm T} \cdot {\rm J}_1 (\eta = 1)\hspace{0.15cm} = 0.440\,{\rm V},
S_{\rm TP}(f = 2 \cdot f_{\rm N}) = A_{\rm T} \cdot {\rm J}_2 (\eta = 1) = 0.115\,{\rm V} \hspace{0.05cm}.
  • Due to the symmetry   {\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta) , the spectral line at   f = -3 \ \rm kHz is obtained as:
S_{\rm TP}(f = -f_{\rm N}) = -S_{\rm TP}(f = +f_{\rm N}) =\hspace{-0.01cm}\underline { -0.440\,{\rm V} \hspace{0.05cm}}.

Note:  For the spectral value at  f = 0  we should actually write:

S_{\rm TP}(f = 0) = 0.765\,{\rm V} \cdot \delta (f) \hspace{0.05cm}.
  • This is therefore infinite due to the Dirac function, and only the weight of the Dirac function is finite.
  • The same applies for all discrete spectral lines.


(5)  S_+(f)  is obtained from   S_{\rm TP}(f)  by shifting   f_{\rm T} to the right.  Therefore

S_{\rm +}(f = 97\,{\rm kHz}) = S_{\rm TP}(f = -3\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.440\,{\rm V}} \hspace{0.05cm}.
  • The actual spectrum differs from  S_+(f)  by a factor of   1/2 at positive frequencies:
S(f = 97\,{\rm kHz}) = {1}/{2} \cdot S_{\rm +}(f = 97\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.220\,{\rm V}} \hspace{0.05cm}.
  • In general, we can write:
S(f) = \frac{A_{\rm T}}{2} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f \pm (f_{\rm T}+ n \cdot f_{\rm N}))\hspace{0.05cm}.


(6)  Under the suggested conditions, all the Bessel lines  {\rm J}_{|n|>3}  can be disregarded.

  • This gives  B_{\rm K} = 2 · 3 · f_{\rm N}\hspace{0.15cm}\underline { = 18 \ \rm kHz}.


(7)  The numerical values in the table given on the exercise page show that the following channel bandwidths would now be required:

  • für η = 2:     B_{\rm K} \hspace{0.15cm}\underline { = 24 \ \rm kHz},
  • für η = 3:     B_{\rm K} \hspace{0.15cm}\underline { = 36 \ \rm kHz}.