Difference between revisions of "Aufgaben:Exercise 3.4: Trapezoidal Spectrum and Pulse"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=*Buch*/*Kapitel* }} ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |type="[]"} - Falsch + Richtig {Input-Box Frage |…“)
 
 
(42 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=*Buch*/*Kapitel*
+
{{quiz-Header|Buchseite=Signal_Representation/Fourier_Transform_Laws
 
}}
 
}}
===Fragebogen===
+
 
 +
[[File:P_ID508__Sig_A_3_4.png|250px|right|frame|Trapezoidal spectrum & trapezoidal pulse]]
 +
 
 +
We consider here a trapezoidal spectral function&nbsp; $X(f)$&nbsp; according to the upper graph, which is completely described by the three parameters&nbsp; $X_0$,&nbsp; $f_1$&nbsp; and&nbsp; $f_2$.&nbsp; For the two corner frequencies,&nbsp;  $f_2 > 0$&nbsp; and&nbsp; $0 \leq f_1 \leq f_2$ always apply.
 +
 
 +
Instead of the corner frequencies&nbsp; $f_1$&nbsp; and&nbsp; $f_2$&nbsp;, the following two descriptive variables can also be used:
 +
*the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Reciprocity_Theorem_of_time_duration_and_bandwidth|equivalent bandwidth]]:
 +
:$$\Delta f = f_1  + f_2,$$
 +
*the so-called&nbsp; [[Linear_and_Time_Invariant_Systems/Einige_systemtheoretische_Tiefpassfunktionen#Trapez.E2.80.93Tiefpass|rolloff factor]]&nbsp; (in the frequency domain):
 +
:$$r_{\hspace{-0.05cm}f} = \frac{ {f_2  - f_1 }}{ {f_2  + f_1 }}.$$
 +
 
 +
With these quantities, the associated time function (see middle graph) is:
 +
 +
:$$x( t ) = X_0  \cdot \Delta f \cdot {\mathop{\rm si}\nolimits} ( { {\rm \pi}  \cdot \Delta f \cdot t} ) \cdot {\mathop{\rm si}\nolimits} ( { {\rm \pi}  \cdot  r_{\hspace{-0.05cm}f} \cdot \Delta f\cdot t} ).$$
 +
 
 +
Here&nbsp; $\text{si}(x) = \text{sin}(x)/x$&nbsp; is the so-called&nbsp; "splitting function".
 +
 
 +
In this example, the numerical values&nbsp; $X_0 = 10^{–3}\,\text{V/Hz}$,&nbsp; $f_1 = 1\,\text{kHz}$&nbsp; and&nbsp; $f_2 = 3\,\text{kHz}$&nbsp; are to be used.&nbsp; The time&nbsp; $T = 1/\Delta f$&nbsp; is only used for normative purpose.
 +
 
 +
In the  subtask&nbsp; '''(3)'''&nbsp;  a trapezoidal signal&nbsp; $y(t)$&nbsp; is considered, which is identical in shape to the spectrum&nbsp; $X(f)$.
 +
 
 +
The following can be used here as descriptive variables:
 +
*the pulse amplitude&nbsp; $y_0 = y(t = 0)$,
 +
*the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Reciprocity_Theorem_of_time_duration_and_bandwidth|equivalent pulse duration]]&nbsp; (defined via the rectangle&ndash;in&ndash;time with the same area):
 +
 +
:$$\Delta t = t_1  + t_2,$$
 +
 
 +
*the rolloff factor (in the time domain) with comparable definition as&nbsp; $r_f$:
 +
 +
:$$r_{\hspace{-0.05cm}t} = \frac{ {t_2  - t_1 }}{ {t_2  + t_1 }}.$$
 +
 
 +
Let be&nbsp; $y_0 = 4\,\text{V}$,&nbsp; $\Delta t = 1\,\text{ms}$&nbsp; and&nbsp; $r_t = 0.5$.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter&nbsp; [[Signal_Representation/Fourier_Transform_Theorems|Fourier Transform Theorems]].
 +
*Use the&nbsp;  [[Signal_Representation/Fourier_Transform_Theorems#Duality_Theorem|Duality Theorem]]&nbsp; and the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Similarity_Theorem|Similarity Theorem]].
 +
 +
*You can check your results using the two interactive applets &nbsp;
 +
:[[Applets:Pulses_and_Spectra|Pulses and Spectra]], 
 +
:[[Applets:Frequency_%26_Impulse_Responses|Frequency & Impulse Responses]].
 +
 
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
 
|type="[]"}
 
- Falsch
 
+ Richtig
 
  
 +
{What are the equivalent bandwidth and the rolloff factor of the spectrum&nbsp; $X(f)$&nbsp; for the given parameters?
 +
|type="{}"}
 +
$\Delta f \ = \ $ { 4 3% } &nbsp;$\text{kHz}$
 +
$r_{\hspace{-0.05cm}f} \hspace{0.35cm} = \ $ { 0.5 3% }
  
{Input-Box Frage
+
{What are the signal values of&nbsp; $x(t)$&nbsp; at&nbsp; $t = 0$,&nbsp; $t = T$&nbsp; and&nbsp; $t = T/2$?
 
|type="{}"}
 
|type="{}"}
<math> \alpha = </math> { 0.3 _5 }
+
$x(t=0)\hspace{0.2cm} = \ $ { 4 3% } &nbsp;$\text{V}$
 +
$x(t=T)\ = \ $ { 0. } &nbsp;$\text{V}$
 +
$x(t=T/2)\ = \ $ { 2.293 3% } &nbsp;$\text{V}$
  
 +
{What is the spectrum&nbsp; $Y(f)$&nbsp; of the trapezoidal pulse with&nbsp; $y_0 = 4\,\text{V}$,&nbsp; $\Delta t = 1\,\text{ms}$&nbsp;  and&nbsp; $r_t = 0.5$? <br>What are the spectral values at the given frequencies?
 +
|type="{}"}
 +
$Y(f = 0)\hspace{0.2cm} = \ $ { 4 3% }  &nbsp;$\text{mV/Hz}$
 +
$Y(f = 0.5 \,\text{kHz})\ = \ $ { 2.293 3% } &nbsp;$\text{mV/Hz}$
 +
$Y(f = 1.0 \,\text{kHz})\ = \ $ { 0. } &nbsp;$\text{mV/Hz}$
  
 +
{Which spectral values result with&nbsp; $y_0 = 8\,\text{V}$,&nbsp; $\Delta t = 0.5\,\text{ms }$&nbsp; and&nbsp; $r_t = 0.5$?
 +
|type="{}"}
 +
$Y(f=0)\hspace{0.2cm}= \ $ { 4 3% } &nbsp;$\text{mV/Hz}$
 +
$Y(f=1.0 \,\text{kHz})\ = \ $ { 2.293 3% } &nbsp;$\text{mV/Hz}$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 +
 
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Antwort 1
+
'''(1)'''&nbsp; The equivalent bandwidth is (by definition) equal to the width of the equal-area rectangle:
 +
 +
:$$\Delta f = f_1  + f_2  \hspace{0.15 cm}\underline{= 4\;{\rm{kHz}}}{\rm{.}}$$
 +
*For the rolloff factor holds:
 +
 +
:$${ {r_{\hspace{-0.05cm}f} = }}\frac{ {f_2  - f_1 }}{ {f_2  + f_1 }}\hspace{0.15 cm}\underline{ = 0.5}.$$
 +
 
 +
 
 +
'''(2)'''&nbsp; The maximum value of the pulse&nbsp; $x(t)$&nbsp; occurs at time&nbsp; $t = 0$&nbsp;:
 +
 
 +
:$$x_0 = x(t = 0) = X_0 \cdot \Delta f \hspace{0.15 cm}\underline{= 4\, \text{V}}.$$
 +
 
 +
*At time&nbsp; $t = T = 1/\Delta f$&nbsp; applies due to&nbsp; $\text{si}(\pi) = 0$:
 +
   
 +
:$$x( {t = T} ) = x_0  \cdot {\mathop{\rm si}\nolimits} ( {\rm{\pi }} ) \cdot {\mathop{\rm si}\nolimits} ( { { {\rm{\pi }}}/{2}} )\hspace{0.15 cm}\underline{ = 0}.$$
 +
 
 +
*Also at all multiples of&nbsp; $T$:&nbsp; &nbsp; $x(t)$&nbsp; exhibits zero crossings.&nbsp; At time&nbsp; $t = T/2$&nbsp; holds:
 +
 +
:$$x( {t = T/2} ) = x_0  \cdot {\mathop{\rm si}\nolimits} ( { { {\rm{\pi }}}/{2}} ) \cdot {\mathop{\rm si}\nolimits}( { { {\rm{\pi }}}/{4}} ) = x_0  \cdot \frac{ { 1 \cdot \sqrt 2 /2}}{ { {\rm{\pi /}}2 \cdot {\rm{\pi /4}}}} = x_0  \cdot \frac{ {4 \cdot \sqrt 2 }}{ { {\rm{\pi }}^{\rm{2}} }} \hspace{0.15 cm}\underline{= 2.293\;{\rm{V}}}{\rm{.}}$$
 +
 
 +
 
 +
'''(3)'''&nbsp; The time function associated with the trapezoidal spectrum&nbsp; $X(f)$&nbsp; is according to the specification:
 +
 +
:$$x( t ) = X_0  \cdot \Delta f \cdot {\mathop{\rm si}\nolimits} ( { {\rm{\pi }} \cdot \Delta f \cdot t} ) \cdot {\mathop{\rm si}\nolimits} ( { {\rm{\pi }} \cdot r_f \cdot \Delta f \cdot t} ).$$
 +
 
 +
*Since both&nbsp; $X(f)$&nbsp; and&nbsp; $x(t)$&nbsp; are real and, moreover,&nbsp; $y(t)$&nbsp; is of the same form as&nbsp; $X(f),$&nbsp; we obtain, taking into account all equivalences for the spectral function of the trapezoidal pulse:
 +
 +
:$$Y( f ) = y_0  \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ( { {\rm{\pi }} \cdot \Delta t \cdot f} ) \cdot {\mathop{\rm si}\nolimits} ( { {\rm{\pi }} \cdot r_t \cdot \Delta t \cdot f} ).$$
 +
 
 +
*In particular, holds:
 +
 +
:$$Y( {f = 0} ) = y_0  \cdot \Delta t \hspace{0.15 cm}\underline{= 4 \;{\rm{mV/Hz}}}{\rm{,}}$$
 +
 
 +
:$$Y( {f = 0.5\;{\rm{kHz}}} ) = y_0  \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{2}} ) \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{4}} ) \hspace{0.15 cm}\underline{= 2.293  \;{\rm{mV/Hz}}}{\rm{,}}$$
 +
 
 +
:$$Y( {f = 1\;{\rm{kHz}}} ) = y_0  \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ( {\rm{\pi }} ) \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{2}} )\hspace{0.15 cm}\underline{ = 0}\;{\rm{.}}$$
 +
 
 +
 
 +
'''(4)'''&nbsp; The spectral value at frequency&nbsp; $f = 0$&nbsp; is not changed: &nbsp;
 +
:$$Y_0 = y_0 \cdot \Delta t \hspace{0.15 cm}\underline{= 4 \,\rm{mV/Hz}}.$$
 +
 
 +
*But since the time function is now only half as wide, the spectrum widens by a factor of&nbsp; $2$:
 +
 
 +
:$$Y( {f = 1\;{\rm{kHz}}} ) = Y_0  \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{2}} ) \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{4}} ) \hspace{0.15 cm}\underline{= 2.293\,{\rm{mV/Hz}}}{\rm{.}}$$
 +
 +
*In subtask&nbsp; '''(3)'''&nbsp; this spectral value occurred at the frequency&nbsp; $f = 0.5\,\rm{kHz}$&nbsp;.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^3. Aperiodische Signale - Impulse^]]
+
[[Category:Signal Representation: Exercises|^3.3 Fourier Transform Theorems^]]

Latest revision as of 14:17, 24 May 2021

Trapezoidal spectrum & trapezoidal pulse

We consider here a trapezoidal spectral function  $X(f)$  according to the upper graph, which is completely described by the three parameters  $X_0$,  $f_1$  and  $f_2$.  For the two corner frequencies,  $f_2 > 0$  and  $0 \leq f_1 \leq f_2$ always apply.

Instead of the corner frequencies  $f_1$  and  $f_2$ , the following two descriptive variables can also be used:

$$\Delta f = f_1 + f_2,$$
$$r_{\hspace{-0.05cm}f} = \frac{ {f_2 - f_1 }}{ {f_2 + f_1 }}.$$

With these quantities, the associated time function (see middle graph) is:

$$x( t ) = X_0 \cdot \Delta f \cdot {\mathop{\rm si}\nolimits} ( { {\rm \pi} \cdot \Delta f \cdot t} ) \cdot {\mathop{\rm si}\nolimits} ( { {\rm \pi} \cdot r_{\hspace{-0.05cm}f} \cdot \Delta f\cdot t} ).$$

Here  $\text{si}(x) = \text{sin}(x)/x$  is the so-called  "splitting function".

In this example, the numerical values  $X_0 = 10^{–3}\,\text{V/Hz}$,  $f_1 = 1\,\text{kHz}$  and  $f_2 = 3\,\text{kHz}$  are to be used.  The time  $T = 1/\Delta f$  is only used for normative purpose.

In the subtask  (3)  a trapezoidal signal  $y(t)$  is considered, which is identical in shape to the spectrum  $X(f)$.

The following can be used here as descriptive variables:

  • the pulse amplitude  $y_0 = y(t = 0)$,
  • the  equivalent pulse duration  (defined via the rectangle–in–time with the same area):
$$\Delta t = t_1 + t_2,$$
  • the rolloff factor (in the time domain) with comparable definition as  $r_f$:
$$r_{\hspace{-0.05cm}t} = \frac{ {t_2 - t_1 }}{ {t_2 + t_1 }}.$$

Let be  $y_0 = 4\,\text{V}$,  $\Delta t = 1\,\text{ms}$  and  $r_t = 0.5$.




Hints:

  • You can check your results using the two interactive applets  
Pulses and Spectra,
Frequency & Impulse Responses.



Questions

1

What are the equivalent bandwidth and the rolloff factor of the spectrum  $X(f)$  for the given parameters?

$\Delta f \ = \ $

 $\text{kHz}$
$r_{\hspace{-0.05cm}f} \hspace{0.35cm} = \ $

2

What are the signal values of  $x(t)$  at  $t = 0$,  $t = T$  and  $t = T/2$?

$x(t=0)\hspace{0.2cm} = \ $

 $\text{V}$
$x(t=T)\ = \ $

 $\text{V}$
$x(t=T/2)\ = \ $

 $\text{V}$

3

What is the spectrum  $Y(f)$  of the trapezoidal pulse with  $y_0 = 4\,\text{V}$,  $\Delta t = 1\,\text{ms}$  and  $r_t = 0.5$?
What are the spectral values at the given frequencies?

$Y(f = 0)\hspace{0.2cm} = \ $

 $\text{mV/Hz}$
$Y(f = 0.5 \,\text{kHz})\ = \ $

 $\text{mV/Hz}$
$Y(f = 1.0 \,\text{kHz})\ = \ $

 $\text{mV/Hz}$

4

Which spectral values result with  $y_0 = 8\,\text{V}$,  $\Delta t = 0.5\,\text{ms }$  and  $r_t = 0.5$?

$Y(f=0)\hspace{0.2cm}= \ $

 $\text{mV/Hz}$
$Y(f=1.0 \,\text{kHz})\ = \ $

 $\text{mV/Hz}$


Solution

(1)  The equivalent bandwidth is (by definition) equal to the width of the equal-area rectangle:

$$\Delta f = f_1 + f_2 \hspace{0.15 cm}\underline{= 4\;{\rm{kHz}}}{\rm{.}}$$
  • For the rolloff factor holds:
$${ {r_{\hspace{-0.05cm}f} = }}\frac{ {f_2 - f_1 }}{ {f_2 + f_1 }}\hspace{0.15 cm}\underline{ = 0.5}.$$


(2)  The maximum value of the pulse  $x(t)$  occurs at time  $t = 0$ :

$$x_0 = x(t = 0) = X_0 \cdot \Delta f \hspace{0.15 cm}\underline{= 4\, \text{V}}.$$
  • At time  $t = T = 1/\Delta f$  applies due to  $\text{si}(\pi) = 0$:
$$x( {t = T} ) = x_0 \cdot {\mathop{\rm si}\nolimits} ( {\rm{\pi }} ) \cdot {\mathop{\rm si}\nolimits} ( { { {\rm{\pi }}}/{2}} )\hspace{0.15 cm}\underline{ = 0}.$$
  • Also at all multiples of  $T$:    $x(t)$  exhibits zero crossings.  At time  $t = T/2$  holds:
$$x( {t = T/2} ) = x_0 \cdot {\mathop{\rm si}\nolimits} ( { { {\rm{\pi }}}/{2}} ) \cdot {\mathop{\rm si}\nolimits}( { { {\rm{\pi }}}/{4}} ) = x_0 \cdot \frac{ { 1 \cdot \sqrt 2 /2}}{ { {\rm{\pi /}}2 \cdot {\rm{\pi /4}}}} = x_0 \cdot \frac{ {4 \cdot \sqrt 2 }}{ { {\rm{\pi }}^{\rm{2}} }} \hspace{0.15 cm}\underline{= 2.293\;{\rm{V}}}{\rm{.}}$$


(3)  The time function associated with the trapezoidal spectrum  $X(f)$  is according to the specification:

$$x( t ) = X_0 \cdot \Delta f \cdot {\mathop{\rm si}\nolimits} ( { {\rm{\pi }} \cdot \Delta f \cdot t} ) \cdot {\mathop{\rm si}\nolimits} ( { {\rm{\pi }} \cdot r_f \cdot \Delta f \cdot t} ).$$
  • Since both  $X(f)$  and  $x(t)$  are real and, moreover,  $y(t)$  is of the same form as  $X(f),$  we obtain, taking into account all equivalences for the spectral function of the trapezoidal pulse:
$$Y( f ) = y_0 \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ( { {\rm{\pi }} \cdot \Delta t \cdot f} ) \cdot {\mathop{\rm si}\nolimits} ( { {\rm{\pi }} \cdot r_t \cdot \Delta t \cdot f} ).$$
  • In particular, holds:
$$Y( {f = 0} ) = y_0 \cdot \Delta t \hspace{0.15 cm}\underline{= 4 \;{\rm{mV/Hz}}}{\rm{,}}$$
$$Y( {f = 0.5\;{\rm{kHz}}} ) = y_0 \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{2}} ) \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{4}} ) \hspace{0.15 cm}\underline{= 2.293 \;{\rm{mV/Hz}}}{\rm{,}}$$
$$Y( {f = 1\;{\rm{kHz}}} ) = y_0 \cdot \Delta t \cdot {\mathop{\rm si}\nolimits} ( {\rm{\pi }} ) \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{2}} )\hspace{0.15 cm}\underline{ = 0}\;{\rm{.}}$$


(4)  The spectral value at frequency  $f = 0$  is not changed:  

$$Y_0 = y_0 \cdot \Delta t \hspace{0.15 cm}\underline{= 4 \,\rm{mV/Hz}}.$$
  • But since the time function is now only half as wide, the spectrum widens by a factor of  $2$:
$$Y( {f = 1\;{\rm{kHz}}} ) = Y_0 \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{2}} ) \cdot {\mathop{\rm si}\nolimits} ( {{ {\rm{\pi }}}/{4}} ) \hspace{0.15 cm}\underline{= 2.293\,{\rm{mV/Hz}}}{\rm{.}}$$
  • In subtask  (3)  this spectral value occurred at the frequency  $f = 0.5\,\rm{kHz}$ .