Difference between revisions of "Aufgaben:Exercise 3.2Z: Sinc-Squared Spectrum with Diracs"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Signaldarstellung" to "Category:Exercises for Signal Representation")
 
(13 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Fouriertransformation und -rücktransformation
+
{{quiz-Header|Buchseite=Signal_Representation/Fourier_Transform_and_Its_Inverse
 
}}
 
}}
  
[[File:P_ID496__Sig_Z_3_2_neu.png|right|frame|$\rm si$-Quadrat-Spektrum mit Diracs]]
+
[[File:P_ID496__Sig_Z_3_2_neu.png|right|frame|$\rm sinc^2$– spectrum with Diracs]]
Das skizzierte Spektrum  ${X(f)}$  eines Zeitsignals  ${x(t)}$  setzt sich zusammen aus
+
The sketched spectrum  ${X(f)}$  of a time signal  ${x(t)}$  is composed of
  
* einem kontinuierlichen Anteil  $X_1(f)$,
+
* a continuous component  $X_1(f)$,
  
* dazu drei diracförmigen Spektrallinien.
+
* plus three discrete spectral lines   ⇒    "Dirac functions".
  
  
Der kontinuierliche Anteil lautet mit  $f_0 = 200\, \text{kHz}$  und  $X_0 = 10^{–5} \text{ V/Hz}$:
+
The continuous component with  $f_0 = 200\, \text{kHz}$  and  $X_0 = 10^{–5} \text{ V/Hz}$ is as follows:
:$$X_1( f ) = X_0  \cdot {\mathop{\rm si}\nolimits} ^2 ( {\pi {f}/{f_0}} ),\quad {\rm wobei}\quad {\mathop{\rm si}\nolimits} (x) = {\sin (x)}/{x}.$$
+
:$$X_1( f ) = X_0  \cdot {\mathop{\rm sinc}\nolimits} ^2 ( {{f}/{f_0}} ),\quad {\rm where is}\quad {\mathop{\rm sinc}\nolimits} (x) = {\sin (\pi x)}/(\pi x).$$
Die Spektrallinie bei  $f = 0$  hat das Gewicht  $–\hspace{-0.08cm}1\,\text{V}$. Daneben gibt es noch zwei Linien bei den Frequenzen  $\pm f_0$, beide mit dem Gewicht  $0.5\,\text{V}$.
+
*The spectral line at  $f = 0$  has the weight  $–\hspace{-0.08cm}1\,\text{V}$.  
 +
*In addition, there are two lines at frequencies  $\pm f_0$,  both with weight  $0.5\,\text{V}$.
  
  
Line 21: Line 22:
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum Kapitel  [[Signal_Representation/Fouriertransformation_und_-rücktransformation|Fouriertransformation und –rücktransformation]].
+
*This exercise belongs to the chapter  [[Signal_Representation/Fourier_Transform_and_Its_Inverse|Fourier Transform and its Inverse]].
*Weitere Informationen zu dieser Thematik liefert das Lernvideo  [[Kontinuierliche_und_diskrete_Spektren_(Lernvideo)|Kontinuierliche und diskrete Spektren]].
+
*Further information on this topic can be found in the (German language) learning video  [[Kontinuierliche_und_diskrete_Spektren_(Lernvideo)|Kontinuierliche und diskrete Spektren]]   ⇒   "Continuous and discrete spectra".
 
   
 
   
*Als bekannt vorausgesetzt werden kann, dass ein um  $t = 0$  symmetrischer Dreieckimpuls  $y(t)$  mit der Amplitude  ${A}$  und der absoluten Dauer  $2T$  $($das heißt:  die Signalwerte sind nur zwischen  $–T$  und  $+T$  ungleich $0)$  folgende Spektralfunktion besitzt:
+
*It can be assumed as known:  A triangular pulse  $y(t)$  with amplitude  ${A}$,  the absolute duration  $2T$  and symmetrical about  $t = 0$  $($i.e.:  the signal values are  $\ne 0 $  only between  $–T$  and  $+T$ )  has the following spectral function:
:$$Y( f ) = A  \cdot T \cdot {\rm si}^2 ( \pi f T ).$$
+
:$$Y( f ) = A  \cdot T \cdot {\rm sinc}^2 ( f T ).$$
  
  
===Fragebogen===
+
===Question===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Werte besitzen die Parameter&nbsp; ${A}$&nbsp; (Amplitude) und&nbsp; ${T}$&nbsp; (einseitige Dauer) des dreieckförmigen Signalanteils&nbsp; $x_1(t)$?
+
{What are the values of the parameters&nbsp; ${A}$&nbsp; (maximum) and&nbsp; ${T}$&nbsp; (one-sided duration) of the triangular signal component&nbsp; $x_1(t)$?
 
|type="{}"}
 
|type="{}"}
 
$A\ = \ $ { 2 3% } &nbsp;$\text{V}$
 
$A\ = \ $ { 2 3% } &nbsp;$\text{V}$
Line 38: Line 39:
  
  
{Wie groß ist der Gleichsignalanteil&nbsp; ${B}$&nbsp; des Signals?
+
{What is the DC component&nbsp; ${B}$&nbsp; of the signal?
 
|type="{}"}
 
|type="{}"}
 
$B\ = \ $  { -1.03--0.97 } &nbsp;$\text{V}$
 
$B\ = \ $  { -1.03--0.97 } &nbsp;$\text{V}$
  
  
{Wie groß ist die Amplitude&nbsp; $C$&nbsp; des periodischen Anteils von&nbsp; $x(t)$?
+
{What is the amplitude&nbsp; $C$&nbsp; of the periodic component of&nbsp; $x(t)$?
 
|type="{}"}
 
|type="{}"}
 
$C\ = \ $ { 1 3% } &nbsp;$\text{V}$
 
$C\ = \ $ { 1 3% } &nbsp;$\text{V}$
  
  
{Wie groß sind der Maximalwert und der Minimalwert des Signals&nbsp; $x(t)$?
+
{What are the maximum and minimum values of the signal&nbsp; $x(t)$?
 
|type="{}"}
 
|type="{}"}
 
$x_\text{max}\ = \ $ { 2 3% } &nbsp;$\text{V}$
 
$x_\text{max}\ = \ $ { 2 3% } &nbsp;$\text{V}$
Line 57: Line 58:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[File:P_ID498__Sig_Z_3_2_a_neu.png|right|frame|Fläche des Dreieckimpulses]]
+
[[File:P_ID498__Sig_Z_3_2_a_neu.png|right|frame|Area of the triangular pulse]]
'''(1)'''&nbsp;  Die einseitige Dauer des symmetrischen Dreieckimpulses beträgt&nbsp; $T = 1/f_0\hspace{0.15 cm}\underline{ = 5 \,{\rm &micro; s}}$.  
+
'''(1)'''&nbsp;  The one-sided duration of the symmetrical triangular pulse is&nbsp; $T = 1/f_0\hspace{0.15 cm}\underline{ = 5 \,{\rm &micro; s}}$.  
  
*Der Spektralwert&nbsp; $X_0 = X_1(f = 0)$&nbsp; gibt die Impulsfläche von&nbsp; $x_1(t)$&nbsp; an.  
+
*The spectral value&nbsp; $X_0 = X_1(f = 0)$&nbsp; indicates the pulse area of&nbsp; $x_1(t)$.  
*Diese ist gleich&nbsp; ${A} \cdot {T}$.&nbsp; Daraus folgt:
+
*This is equal to&nbsp; ${A} \cdot {T}$.&nbsp; From this follows:
 
:$$A = \frac{X_0 }{T}  = \frac{ 10^{-5}\rm V/Hz }{5 \cdot 10^{-6}{\rm s}}\hspace{0.15 cm}\underline{= 2\;{\rm V}}.$$
 
:$$A = \frac{X_0 }{T}  = \frac{ 10^{-5}\rm V/Hz }{5 \cdot 10^{-6}{\rm s}}\hspace{0.15 cm}\underline{= 2\;{\rm V}}.$$
  
  
'''(2)'''&nbsp;  Der Gleichsignalanteil ist durch das Diracgewicht bei&nbsp; $f = 0$&nbsp; gegeben. Man erhält&nbsp; ${B} \hspace{0.15 cm}\underline{= -1 \,\text{V}}$.
+
'''(2)'''&nbsp;  The DC component is given by the Dirac weight at&nbsp; $f = 0$.&nbsp; One obtains&nbsp; ${B} \hspace{0.15 cm}\underline{= -1 \,\text{V}}$.
  
  
'''(3)'''&nbsp;  Die beiden Spektrallinien bei&nbsp; $\pm f_0$&nbsp; ergeben zusammen ein Cosinussignal mit der Amplitude&nbsp; ${C} \hspace{0.15 cm}\underline{= 1 \text{V}}$.
+
'''(3)'''&nbsp;  The two spectral lines at&nbsp; $\pm f_0$&nbsp; together give a cosine signal with amplitude&nbsp; ${C} \hspace{0.15 cm}\underline{= 1 \text{V}}$.
  
  
'''(4)'''&nbsp;  Der Maximalwert tritt zum Zeitpunkt&nbsp; ${t} = 0$&nbsp; auf&nbsp; (hier sind Dreieckimpuls und Cosinussignal maximal):  
+
'''(4)'''&nbsp;  The maximum value occurs at time&nbsp; ${t} = 0$&nbsp; &nbsp; (here the triangular pulse and cosine signal are maximum):  
 
:$$x_{\text{max}} = A + B + C \hspace{0.15 cm}\underline{= +2 \text{V}}.$$  
 
:$$x_{\text{max}} = A + B + C \hspace{0.15 cm}\underline{= +2 \text{V}}.$$  
  
*Die minimalen Werte von&nbsp; ${x(t)}$&nbsp; ergeben sich dann, wenn der Dreieckimpuls abgeklungen ist und die Cosinusfunktion den Wert&nbsp; $–\hspace{-0.08 cm}1 \,\text{V}$&nbsp; liefert:  
+
*The minimum values of&nbsp; ${x(t)}$&nbsp; result when the triangular pulse has decayed and the cosine function delivers the value&nbsp; $–\hspace{-0.08 cm}1 \,\text{V}$&nbsp;:  
 
:$$x_\text{min} = {B} - {C}\hspace{0.15 cm}\underline{ = -2\, \text{V}}.$$
 
:$$x_\text{min} = {B} - {C}\hspace{0.15 cm}\underline{ = -2\, \text{V}}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 82: Line 83:
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^3. Aperiodische Signale - Impulse^]]
+
[[Category:Signal Representation: Exercises|^3.1 Fourier Transform and Its Inverse^]]

Latest revision as of 14:11, 24 May 2021

$\rm sinc^2$– spectrum with Diracs

The sketched spectrum  ${X(f)}$  of a time signal  ${x(t)}$  is composed of

  • a continuous component  $X_1(f)$,
  • plus three discrete spectral lines   ⇒   "Dirac functions".


The continuous component with  $f_0 = 200\, \text{kHz}$  and  $X_0 = 10^{–5} \text{ V/Hz}$ is as follows:

$$X_1( f ) = X_0 \cdot {\mathop{\rm sinc}\nolimits} ^2 ( {{f}/{f_0}} ),\quad {\rm where is}\quad {\mathop{\rm sinc}\nolimits} (x) = {\sin (\pi x)}/(\pi x).$$
  • The spectral line at  $f = 0$  has the weight  $–\hspace{-0.08cm}1\,\text{V}$.
  • In addition, there are two lines at frequencies  $\pm f_0$,  both with weight  $0.5\,\text{V}$.




Hints:

  • It can be assumed as known:  A triangular pulse  $y(t)$  with amplitude  ${A}$,  the absolute duration  $2T$  and symmetrical about  $t = 0$  $($i.e.:  the signal values are  $\ne 0 $  only between  $–T$  and  $+T$ )  has the following spectral function:
$$Y( f ) = A \cdot T \cdot {\rm sinc}^2 ( f T ).$$


Question

1

What are the values of the parameters  ${A}$  (maximum) and  ${T}$  (one-sided duration) of the triangular signal component  $x_1(t)$?

$A\ = \ $

 $\text{V}$
$T\ = \ $

 $\text{$µ$s}$

2

What is the DC component  ${B}$  of the signal?

$B\ = \ $

 $\text{V}$

3

What is the amplitude  $C$  of the periodic component of  $x(t)$?

$C\ = \ $

 $\text{V}$

4

What are the maximum and minimum values of the signal  $x(t)$?

$x_\text{max}\ = \ $

 $\text{V}$
$x_\text{min}\hspace{0.2cm} = \ $

 $\text{V}$


Solution

Area of the triangular pulse

(1)  The one-sided duration of the symmetrical triangular pulse is  $T = 1/f_0\hspace{0.15 cm}\underline{ = 5 \,{\rm µ s}}$.

  • The spectral value  $X_0 = X_1(f = 0)$  indicates the pulse area of  $x_1(t)$.
  • This is equal to  ${A} \cdot {T}$.  From this follows:
$$A = \frac{X_0 }{T} = \frac{ 10^{-5}\rm V/Hz }{5 \cdot 10^{-6}{\rm s}}\hspace{0.15 cm}\underline{= 2\;{\rm V}}.$$


(2)  The DC component is given by the Dirac weight at  $f = 0$.  One obtains  ${B} \hspace{0.15 cm}\underline{= -1 \,\text{V}}$.


(3)  The two spectral lines at  $\pm f_0$  together give a cosine signal with amplitude  ${C} \hspace{0.15 cm}\underline{= 1 \text{V}}$.


(4)  The maximum value occurs at time  ${t} = 0$    (here the triangular pulse and cosine signal are maximum):

$$x_{\text{max}} = A + B + C \hspace{0.15 cm}\underline{= +2 \text{V}}.$$
  • The minimum values of  ${x(t)}$  result when the triangular pulse has decayed and the cosine function delivers the value  $–\hspace{-0.08 cm}1 \,\text{V}$ :
$$x_\text{min} = {B} - {C}\hspace{0.15 cm}\underline{ = -2\, \text{V}}.$$