Difference between revisions of "Aufgaben:Exercise 2.3: Cosine and Sine Components"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Signaldarstellung" to "Category:Exercises for Signal Representation")
 
(12 intermediate revisions by 4 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File: P_ID278_Sig_A_2_3neu.png|right|frame|Spektrum von Cosinus- und Sinusanteilen]]
+
[[File: P_ID278_Sig_A_2_3neu.png|right|frame|Spectra of DC, cosine and sine components]]
  
Gegeben ist das Amplitudenspektrum  $X(f)$  eines Signals  $x(t)$  entsprechend der Grafik.
+
Given is the amplitude spectrum  $X(f)$  of a signal  $x(t)$  according to the graph.
*Die Normierungsfrequenz sei  $f_1 = 4\,\text{kHz}$.  
+
*Let  $f_1 = 4\,\text{kHz}$ be the normalisation frequency.  
*Damit liegen die tatsächlichen Frequenzen der Signalanteile bei  $0\,\text{kHz}$,  $4\,\text{kHz}$  und  $10\,\text{kHz}$.
+
*Thus the frequencies of the signal components are  $0\,\text{kHz}$,  $4\,\text{kHz}$  and  $10\,\text{kHz}$.
  
  
Dieses Signal  $x(t)$  liegt am Eingang eines linearen Differenzierers, dessen Ausgang mit  $\omega_1 = 2\pi f_1$  wie folgt dargestellt werden kann:
+
This signal  $x(t)$  is at the input of a linear differentiator whose output can be represented with  $\omega_1 = 2\pi f_1$  as follows:
  
 
:$$y(t)=\frac{1}{\omega_1}\cdot\frac{ {\rm d}  x(t)}{{\rm d}  t}.$$
 
:$$y(t)=\frac{1}{\omega_1}\cdot\frac{ {\rm d}  x(t)}{{\rm d}  t}.$$
Line 20: Line 20:
  
  
''Hinweis:''  
+
''Hint:''  
*Die Aufgabe gehört zum Kapitel  [[Signal_Representation/Harmonische_Schwingung|Harmonische Schwingung]].
+
*This exercise belongs to the chapter  [[ Signal_Representation/Harmonic_Oscillation|Harmonic Oscillation]].
 
   
 
   
  
Line 29: Line 29:
 
   
 
   
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Geben Sie&nbsp; $x(t)$&nbsp; analytisch an.&nbsp; Wie groß ist der Signalwert bei&nbsp; $t = 0$?
+
{Give&nbsp; $x(t)$&nbsp; analytically.&nbsp; What is the signal value at&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
 
$x(t=0)\ = \ $ { 1 3% } &nbsp; ${\rm V}$
 
$x(t=0)\ = \ $ { 1 3% } &nbsp; ${\rm V}$
  
{Wie groß ist die Periodendauer des Signals&nbsp; $x(t)$?
+
{What is the period duration of the signal&nbsp; $x(t)$?
 
|type="{}"}
 
|type="{}"}
 
$T_0\ = \ $ { 0.5 3% } &nbsp; ${\rm ms}$
 
$T_0\ = \ $ { 0.5 3% } &nbsp; ${\rm ms}$
  
{Berechnen Sie das Ausgangssignal&nbsp; $y(t)$&nbsp; des Differenzierers.&nbsp; Wie groß ist der Signalwert zum Zeitpunkt&nbsp; $t = 0$?
+
{Calculate the output signal&nbsp; $y(t)$&nbsp; of the differentiator.&nbsp; What is the signal value at time&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
 
$y(t=0)\ = \ $ { 10 3% } &nbsp; ${\rm V}$
 
$y(t=0)\ = \ $ { 10 3% } &nbsp; ${\rm V}$
  
{Welche der folgenden Aussagen sind bezüglich des Signals&nbsp; $y(t)$&nbsp; bzw. seines Spektrums&nbsp; $Y(f)$&nbsp; zutreffend?
+
{Which of the following statements are true regarding the signal&nbsp; $y(t)$&nbsp; or its spectrum&nbsp; $Y(f)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ $y(t)$&nbsp; hat die gleiche Periodendauer wie das Signal&nbsp; $x(t)$.
+
+ $y(t)$&nbsp; has the same period duration as the signal&nbsp; $x(t)$.
- $Y(f)$&nbsp; beinhaltet eine Diracfunktion bei der Frequenz&nbsp; $f = 0$.
+
- $Y(f)$&nbsp; contains a Dirac function at the frequency&nbsp; $f = 0$.
- $Y(f)$&nbsp; beinhaltet eine Diracfunktion bei&nbsp; $+f_1$&nbsp; mit dem Gewicht&nbsp; $\rm{j} · 1\,{\rm V}$.
+
- $Y(f)$&nbsp; contains a Dirac function at&nbsp; $+f_1$&nbsp; with weight&nbsp; $\rm{j} · 1\,{\rm V}$.
+ $Y(f)$&nbsp; beinhaltet eine Diracfunktion bei&nbsp; $–\hspace{-0.1cm}2.5 \cdot f_1$&nbsp; mit dem Gewicht&nbsp; $5\,{\rm V}$.
+
+ $Y(f)$&nbsp; contains a Dirac function at&nbsp; $–\hspace{-0.1cm}2.5 \cdot f_1$&nbsp; with weight&nbsp; $5\,{\rm V}$.
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[File:P_ID293__Sig_A_2_3_a.png|right|frame|Summensignal aus Cosinus- und Sinusanteilen]]
+
'''(1)'''&nbsp; The time signal has the following form:
'''(1)'''&nbsp; Das Zeitsignal hat die folgende Form:
 
 
   
 
   
 
:$$x(t)={\rm 3V}-{\rm 2V}\cdot \cos(\omega_{\rm 1} \cdot t)+{\rm 4V} \cdot \sin(2.5 \cdot \omega_{\rm 1} \cdot t).$$
 
:$$x(t)={\rm 3V}-{\rm 2V}\cdot \cos(\omega_{\rm 1} \cdot t)+{\rm 4V} \cdot \sin(2.5 \cdot \omega_{\rm 1} \cdot t).$$
  
*Hierbei bezeichnet&nbsp; $\omega_1 = 2\pi f_1$&nbsp; die Kreisfrequenz des Cosinusanteils.  
+
[[File:P_ID293__Sig_A_2_3_a.png|right|frame|Sum signal of DC, cosine and sine components]]
*Zum Zeitpunkt&nbsp; $t = 0$&nbsp; hat das Signal den Wert&nbsp; $x(t=0)\hspace{0.15 cm}\underline{=1\,\rm V}$.
 
  
 +
*Here&nbsp; $\omega_1 = 2\pi f_1$&nbsp; denotes the circular frequency of the cosine component.
 +
*At time&nbsp; $t = 0$&nbsp; the signal has the value&nbsp; $x(t=0)\hspace{0.15 cm}\underline{=1\,\rm V}$.
  
  
'''(2)'''&nbsp; Die Grundfrequenz&nbsp; $f_0$&nbsp; ist der kleinste gemeinsame Teiler
+
'''(2)'''&nbsp; The basic frequency&nbsp; $f_0$&nbsp; is the greatest common divisor
*von $f_1 = 4{\,\rm kHz}$   
+
*of $f_1 = 4{\,\rm kHz}$   
*und $2.5 · f_1 = 10{\,\rm kHz}$.  
+
*and $2.5 · f_1 = 10{\,\rm kHz}$.  
  
  
Daraus folgt&nbsp; $f_0 = 2{\,\rm kHz}$ &nbsp; &rArr; &nbsp;  Periodendauer $T_0 = 1/f_0 \hspace{0.1cm}\underline{= 0.5 {\,\rm ms}}$.
+
From this follows&nbsp; $f_0 = 2{\,\rm kHz}$ &nbsp; &rArr; &nbsp;  period duration $T_0 = 1/f_0 \hspace{0.1cm}\underline{= 0.5 {\,\rm ms}}$.
 
<br clear=all>
 
<br clear=all>
[[File:P_ID294__Sig_A_2_3_d_neu.png|right|300px|frame|Spektrum mit diskreten Anteilen]]
+
'''(3)'''&nbsp; The following applies to the output signal $y(t)$ of the differentiatior:
'''(3)'''&nbsp; Für das Ausgangssignal $y(t)$ des Differenzierers gilt:
 
  
 
:$$y(t)=\frac{1}{\omega_1}\cdot\frac{ {\rm d}x(t)}{{\rm d}t}=\frac{ {\rm -2V}}{\omega_1}\cdot\omega_1 \cdot (-\sin(\omega_1 t))+\frac{\rm 4V}{\omega_1}\cdot 2.5\omega_1\cdot {\rm cos}(2.5\omega_1t).$$
 
:$$y(t)=\frac{1}{\omega_1}\cdot\frac{ {\rm d}x(t)}{{\rm d}t}=\frac{ {\rm -2V}}{\omega_1}\cdot\omega_1 \cdot (-\sin(\omega_1 t))+\frac{\rm 4V}{\omega_1}\cdot 2.5\omega_1\cdot {\rm cos}(2.5\omega_1t).$$
 +
 +
[[File:P_ID294__Sig_A_2_3_d_neu.png|right|300px|frame|Spectrum with discrete components]]
 
   
 
   
*Dies führt zum Ergebnis:
+
*This leads to the solution:
  
 
:$$y(t)={\rm 2V}\cdot\sin(\omega_1 t)+{\rm 10V}\cdot\cos(2.5\omega_1 t).$$
 
:$$y(t)={\rm 2V}\cdot\sin(\omega_1 t)+{\rm 10V}\cdot\cos(2.5\omega_1 t).$$
 
   
 
   
*Für&nbsp; $t = 0$&nbsp; ergibt sich der Wert&nbsp; $y(t=0)\hspace{0.15cm}\underline{=10\,\rm V}$.  
+
*For&nbsp; $t = 0$&nbsp; the value&nbsp; $y(t=0)\hspace{0.15cm}\underline{=10\,\rm V}$ follows.  
*Rechts ist das Spektrum&nbsp; $Y(f)$&nbsp; dargestellt.  
+
*The spectrum&nbsp; $Y(f)$&nbsp; is shown on the right.  
  
  
  
'''(4)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 4</u>:
+
'''(4)'''&nbsp; The <u>solutions 1 and 4</u> are correct:
*Die Periodendauer $T_0$ wird durch die Amplitude und die Phase der beiden Anteile nicht verändert.  
+
*The period duration $T_0$ is not changed by the amplitude and phase of the two components.  
*Das bedeutet, dass weiterhin&nbsp; $T_0 = 0.5 {\,\rm ms}$&nbsp;  gilt.  
+
*This means, that&nbsp; $T_0 = 0.5 {\,\rm ms}$&nbsp;  still applies.  
*Der Gleichanteil verschwindet aufgrund der Differentiation.  
+
*The DC component disappears due to the differentiation.  
*Der Anteil bei&nbsp; $f_1$&nbsp; ist sinusförmig. Somit hat&nbsp; $X(f)$&nbsp; einen (imaginären) Dirac bei&nbsp; $f = f_1$, jedoch mit negativem Vorzeichen.  
+
*The component&nbsp; $f_1$&nbsp; is sinusoidal. Thus&nbsp; $X(f)$&nbsp; has an (imaginary) Dirac at&nbsp; $f = f_1$, but with a negative sign.  
*Der Cosinusanteil mit der Amplitude&nbsp; ${10\,\rm V}$&nbsp; hat die beiden Diracfunktionen bei&nbsp; $\pm 2.5 \cdot f_1$&nbsp; zur Folge, jeweils mit dem Gewicht&nbsp; ${5\,\rm V}$ .  
+
*The cosine component with amplitude&nbsp; ${10\,\rm V}$&nbsp; results in the two Dirac functions at&nbsp; $\pm 2.5 \cdot f_1$&nbsp;, each with weight&nbsp; ${5\,\rm V}$ .  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^2. Periodische Signale^]]
+
[[Category:Signal Representation: Exercises|^2.3 Harmonic Oscillation^]]

Latest revision as of 17:33, 17 May 2021

Spectra of DC, cosine and sine components

Given is the amplitude spectrum  $X(f)$  of a signal  $x(t)$  according to the graph.

  • Let  $f_1 = 4\,\text{kHz}$ be the normalisation frequency.
  • Thus the frequencies of the signal components are  $0\,\text{kHz}$,  $4\,\text{kHz}$  and  $10\,\text{kHz}$.


This signal  $x(t)$  is at the input of a linear differentiator whose output can be represented with  $\omega_1 = 2\pi f_1$  as follows:

$$y(t)=\frac{1}{\omega_1}\cdot\frac{ {\rm d} x(t)}{{\rm d} t}.$$




Hint:




Questions

1

Give  $x(t)$  analytically.  What is the signal value at  $t = 0$?

$x(t=0)\ = \ $

  ${\rm V}$

2

What is the period duration of the signal  $x(t)$?

$T_0\ = \ $

  ${\rm ms}$

3

Calculate the output signal  $y(t)$  of the differentiator.  What is the signal value at time  $t = 0$?

$y(t=0)\ = \ $

  ${\rm V}$

4

Which of the following statements are true regarding the signal  $y(t)$  or its spectrum  $Y(f)$ ?

$y(t)$  has the same period duration as the signal  $x(t)$.
$Y(f)$  contains a Dirac function at the frequency  $f = 0$.
$Y(f)$  contains a Dirac function at  $+f_1$  with weight  $\rm{j} · 1\,{\rm V}$.
$Y(f)$  contains a Dirac function at  $–\hspace{-0.1cm}2.5 \cdot f_1$  with weight  $5\,{\rm V}$.


Solution

(1)  The time signal has the following form:

$$x(t)={\rm 3V}-{\rm 2V}\cdot \cos(\omega_{\rm 1} \cdot t)+{\rm 4V} \cdot \sin(2.5 \cdot \omega_{\rm 1} \cdot t).$$
Sum signal of DC, cosine and sine components
  • Here  $\omega_1 = 2\pi f_1$  denotes the circular frequency of the cosine component.
  • At time  $t = 0$  the signal has the value  $x(t=0)\hspace{0.15 cm}\underline{=1\,\rm V}$.


(2)  The basic frequency  $f_0$  is the greatest common divisor

  • of $f_1 = 4{\,\rm kHz}$
  • and $2.5 · f_1 = 10{\,\rm kHz}$.


From this follows  $f_0 = 2{\,\rm kHz}$   ⇒   period duration $T_0 = 1/f_0 \hspace{0.1cm}\underline{= 0.5 {\,\rm ms}}$.
(3)  The following applies to the output signal $y(t)$ of the differentiatior:

$$y(t)=\frac{1}{\omega_1}\cdot\frac{ {\rm d}x(t)}{{\rm d}t}=\frac{ {\rm -2V}}{\omega_1}\cdot\omega_1 \cdot (-\sin(\omega_1 t))+\frac{\rm 4V}{\omega_1}\cdot 2.5\omega_1\cdot {\rm cos}(2.5\omega_1t).$$
Spectrum with discrete components
  • This leads to the solution:
$$y(t)={\rm 2V}\cdot\sin(\omega_1 t)+{\rm 10V}\cdot\cos(2.5\omega_1 t).$$
  • For  $t = 0$  the value  $y(t=0)\hspace{0.15cm}\underline{=10\,\rm V}$ follows.
  • The spectrum  $Y(f)$  is shown on the right.


(4)  The solutions 1 and 4 are correct:

  • The period duration $T_0$ is not changed by the amplitude and phase of the two components.
  • This means, that  $T_0 = 0.5 {\,\rm ms}$  still applies.
  • The DC component disappears due to the differentiation.
  • The component  $f_1$  is sinusoidal. Thus  $X(f)$  has an (imaginary) Dirac at  $f = f_1$, but with a negative sign.
  • The cosine component with amplitude  ${10\,\rm V}$  results in the two Dirac functions at  $\pm 2.5 \cdot f_1$ , each with weight  ${5\,\rm V}$ .