Difference between revisions of "Aufgaben:Exercise 2.3: Yet Another Multi-Path Channel"
m (Text replacement - "Zum_Rechnen_mit_komplexen_Zahlen" to "Calculating_With_Complex_Numbers") |
m (Text replacement - "Dirac impulse" to "Dirac delta") |
||
(6 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Mobile_Communications/Multipath_Reception_in_Mobile_Communications}} |
[[File:P_ID2160__Mob_A_2_3.png|right|frame|Given piecewise constant impulse response]] | [[File:P_ID2160__Mob_A_2_3.png|right|frame|Given piecewise constant impulse response]] | ||
We consider a multipath channel, which is characterized by the following impulse response: | We consider a multipath channel, which is characterized by the following impulse response: | ||
− | $$h(\tau, \hspace{0.05cm} t) = h(\tau) = \sum_{m = 1}^{M} k_m \cdot \delta( \tau - \tau_m) | + | :$$h(\tau, \hspace{0.05cm} t) = h(\tau) = \sum_{m = 1}^{M} k_m \cdot \delta( \tau - \tau_m) |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | All coefficients $k_{m}$ are real (positive or negative). Furthermore, we note | + | All coefficients $k_{m}$ are real (positive or negative). Furthermore, we note: |
− | * From the specification $h(\tau, \hspace{0.05cm}t) = h(\tau)$ you can see that the channel is time invariant. | + | * From the specification $h(\tau, \hspace{0.05cm}t) = h(\tau)$ you can see that the channel is time–invariant. |
− | * Generally, the channel has $M$ paths. | + | * Generally, the channel has $M$ paths. The value of $M$ should be determined from the graph. |
− | * The following relations apply to the delay times: $\tau_1 < \tau_2 < \tau_3 < \ \ text{...}$ | + | * The following relations apply to the delay times: $\tau_1 < \tau_2 < \tau_3 < \ \text{...}$. |
− | The graph shows the output signal $r(\tau)$ of the channel when the following transmitted signal is present at the input (shown in the equivalent low-pass range): | + | The graph shows the output signal $r(\tau)$ of the channel when the following transmitted signal is present at the input (shown in the equivalent low-pass range): |
:$$s(\tau) = \left\{ \begin{array}{c} s_0\\ | :$$s(\tau) = \left\{ \begin{array}{c} s_0\\ | ||
0 \end{array} \right.\quad | 0 \end{array} \right.\quad | ||
Line 24: | Line 24: | ||
''Notes:'' | ''Notes:'' | ||
− | * This task refers to the chapter [[Mobile_Communications/ | + | * This task refers to the chapter [[Mobile_Communications/Multi-Path_Reception_in_Mobile_Communications| Multi–Path Reception in Mobile Communications]]. |
− | * For the solution of subtask '''(1)''' assume that the impulse response $h(\tau)$ has a span of | + | * For the solution of subtask '''(1)''' assume that the impulse response $h(\tau)$ has a span of five microseconds. |
Line 32: | Line 32: | ||
===Questionnaire=== | ===Questionnaire=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {What is the impulse response $h(\tau)$? How many paths $(M)$ are there? | + | {What is the impulse response $h(\tau)$? How many paths $(M)$ are there? |
|type="{}"} | |type="{}"} | ||
$M \ = \ ${ 3 } | $M \ = \ ${ 3 } | ||
− | {Specify the first three delays $\tau_m$ | + | {Specify the first three delays $\tau_m$. |
|type="{}"} | |type="{}"} | ||
$\tau_1 \ = \ ${ 0. } $\ \ \rm µ s$ | $\tau_1 \ = \ ${ 0. } $\ \ \rm µ s$ | ||
Line 42: | Line 42: | ||
$\tau_3 \ = \ ${ 10 3% } $\ \ \rm µ s$ | $\tau_3 \ = \ ${ 10 3% } $\ \ \rm µ s$ | ||
− | {What are the weights of the first three Dirac | + | {What are the weights of the first three Dirac deltas? |
|type="{}"} | |type="{}"} | ||
$k_1 \ = \ ${ 0.75 3% } | $k_1 \ = \ ${ 0.75 3% } | ||
Line 48: | Line 48: | ||
$k_3 \ = \ ${ 0.25 3% } | $k_3 \ = \ ${ 0.25 3% } | ||
− | {Calculate the frequency response $H(f)$. What is the frequency period $f_0$? <br><i>Note:</i> With integer $i$, it must hold that $H(f + i \cdot f_0) = H(f)$ . | + | {Calculate the frequency response $H(f)$. What is the frequency period $f_0$? <br><i> Note:</i> With integer $i$, it must hold that $H(f + i \cdot f_0) = H(f)$ . |
|type="{}"} | |type="{}"} | ||
$f_0 \ = \ ${ 500 3% } $\ \ \rm kHz$ | $f_0 \ = \ ${ 500 3% } $\ \ \rm kHz$ | ||
− | {Calculate the magnitude of the frequency response. Which values result for the frequencies $f = 0$, $f = 250 \ \rm kHz$ and $f = 500 \ \rm kHz$? | + | {Calculate the magnitude of the frequency response. Which values result for the frequencies $f = 0$, $f = 250 \ \rm kHz$ and $f = 500 \ \rm kHz$? |
|type="{}"} | |type="{}"} | ||
$|H(f = 0)| \ = \ ${ 0.5 3% } | $|H(f = 0)| \ = \ ${ 0.5 3% } | ||
Line 58: | Line 58: | ||
$|H(f = 500 \ \rm kHz)| \ = \ ${ 0.5 3% } | $|H(f = 500 \ \rm kHz)| \ = \ ${ 0.5 3% } | ||
− | {What is the worst value $({\rm worst \ case})$ for $k_3$ at frequency $f = 250 \ \rm kHz$? | + | {What is the worst value $({\rm worst \ case})$ for $k_3$ at frequency $f = 250 \ \rm kHz$ ? |
|type="{}"} | |type="{}"} | ||
$k_3 \ = \ ${ 1.25 3% } | $k_3 \ = \ ${ 1.25 3% } | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Here we have $r(\tau) = s(\tau) ∗ h(\tau)$, where $s(\tau)$ denotes a rectangular pulse of duration $T = 5 \ \ \rm µ s$ and the impulse response $h(\tau)$ is made up of $M$ weighted Dirac functions at $\tau_1, \tau_2, \ \text{...} \ , \tau_M$ | + | '''(1)''' Here we have $r(\tau) = s(\tau) ∗ h(\tau)$, where $s(\tau)$ denotes a rectangular pulse of duration $T = 5 \ \ \rm µ s$ and the impulse response $h(\tau)$ is made up of $M$ weighted Dirac functions at $\tau_1, \tau_2, \ \text{...} \ , \tau_M$. |
− | The sketched output signal $r(\tau)$ can only result if | + | The sketched output signal $r(\tau)$ can only result if |
− | * $\tau_1 = 0$ (otherwise $r(\tau)$ would not start at $\tau = 0$ | + | * $\tau_1 = 0$ $($otherwise $r(\tau)$ would not start at $\tau = 0)$, |
− | * $\tau_M = 10 \ \rm µ s$ | + | * $\tau_M = 10 \ \rm µ s$ $($this results in the rectangular section between $10 \ \rm µ s$ and $15 \ \ \rm µ s)$, |
− | * there is another Dirac function at $\tau_2 = 2 \ \rm µ s$ between the two. | + | * there is another Dirac function at $\tau_2 = 2 \ \rm µ s$ between the two. |
− | That means: The impulse response here consists of $\underline {M = 3}$ Dirac functions. | + | That means: The impulse response here consists of $\underline {M = 3}$ Dirac functions. |
Line 80: | Line 80: | ||
− | '''(3)''' If you compare input $s(\tau)$ and output $r(\tau)$, you will get the following results: | + | '''(3)''' If you compare input $s(\tau)$ and output $r(\tau)$, you will get the following results: |
− | * Interval $0 < \tau < 2 \ {\rm µ s} \text{:} \, s(\tau) = s_0, \hspace{1cm} r(\tau) = 0.75 \cdot s_0 \,\,\Rightarrow\,\, k_1 \ \underline {= 0.75}$, | + | * Interval $0 < \tau < 2 \ {\rm µ s} \text{:} \, s(\tau) = s_0, \hspace{1cm} r(\tau) = 0.75 \cdot s_0 \,\,\Rightarrow\,\, k_1 \ \underline {= 0.75}$, |
− | * Interval $2 \ {\rm µ s} < \tau < 5 \ {\rm µ s} \text{:} \, \hspace{2. | + | * Interval $2 \ {\rm µ s} < \tau < 5 \ {\rm µ s} \text{:} \, \hspace{2.45cm} r(\tau) =(k_1 + k_2) \cdot s_0 = 0.25 \cdot s_0 \Rightarrow k_2 \ \underline {= \, -0.50}$, |
− | * Interval $10 \ {\rm µ s} < \tau < 15 \ {\rm µ s} \text{:} \, \hspace{1. | + | * Interval $10 \ {\rm µ s} < \tau < 15 \ {\rm µ s} \text{:} \, \hspace{1.99cm} r(\tau) =k_3 \cdot s_0 = 0.25 \cdot s_0 \,\Rightarrow\, k_3 \ \underline {= 0.25}$. |
− | '''(4)''' Using the time | + | |
+ | |||
+ | '''(4)''' Using the time–shifting property, the Fourier transform of the impulse response $h(\tau)$ is: | ||
:$$h(\tau) = k_1 \cdot \delta( \tau) + k_2 \cdot \delta( \tau - \tau_2)+ k_3 \cdot \delta( \tau - \tau_3) \hspace{0.3cm} | :$$h(\tau) = k_1 \cdot \delta( \tau) + k_2 \cdot \delta( \tau - \tau_2)+ k_3 \cdot \delta( \tau - \tau_3) \hspace{0.3cm} | ||
\Rightarrow \hspace{0.3cm}H(f) = k_1 + k_2 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_2}+ k_3 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_3} | \Rightarrow \hspace{0.3cm}H(f) = k_1 + k_2 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_2}+ k_3 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_3} | ||
Line 91: | Line 93: | ||
Analysis of the individual contributions leads to the following conclusion: | Analysis of the individual contributions leads to the following conclusion: | ||
− | * The first part is constant | + | * The first part is constant ⇒ periode $f_1 → ∞$.. |
* The second part is periodic with $f_2 = 1/\tau_2 = 500 \ \rm kHz$. | * The second part is periodic with $f_2 = 1/\tau_2 = 500 \ \rm kHz$. | ||
* The third part is periodic with $f_3 = 1/\tau_3 = 100 \ \rm kHz$. | * The third part is periodic with $f_3 = 1/\tau_3 = 100 \ \rm kHz$. | ||
− | ⇒ $H(f)$ is thus periodic with $f_0 \ \underline {= 500 \ \ \rm kHz}$. | + | ⇒ $H(f)$ is thus periodic with $f_0 \ \underline {= 500 \ \ \rm kHz}$. |
− | '''(5)''' With $A = 2\pi f \cdot \tau_2$ and $B = 2\pi f \cdot \tau_3$ you get | + | '''(5)''' With $A = 2\pi f \cdot \tau_2$ and $B = 2\pi f \cdot \tau_3$ you get |
:$$|H(f)|^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} H(f) \cdot H^{\star}(f)= | :$$|H(f)|^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} H(f) \cdot H^{\star}(f)= | ||
\left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{-{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{-{\rm j}B}\right ] | \left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{-{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{-{\rm j}B}\right ] | ||
Line 109: | Line 111: | ||
\frac {3}{16} \cdot \left [ {\rm e}^{{\rm j}B} + {\rm e}^{-{\rm j}B}\right ]- \frac {1}{8} \cdot \left [ {\rm e}^{{\rm j}(B-A)} + {\rm e}^{-{\rm j}(B-A)}\right ]\hspace{0.05cm}.$$ | \frac {3}{16} \cdot \left [ {\rm e}^{{\rm j}B} + {\rm e}^{-{\rm j}B}\right ]- \frac {1}{8} \cdot \left [ {\rm e}^{{\rm j}(B-A)} + {\rm e}^{-{\rm j}(B-A)}\right ]\hspace{0.05cm}.$$ | ||
− | Using [[Signal_Representation/Calculating_With_Complex_Numbers# | + | Using [[Signal_Representation/Calculating_With_Complex_Numbers#Representation_by_Amplidute_and_Phase|Euler's theorem]], with consideration of the frequency periodicity, this results in |
:$$|H(f)|= \sqrt{\frac {7}{8 }- \frac {3}{4} \cdot \cos( 2 \pi f \tau_2) + | :$$|H(f)|= \sqrt{\frac {7}{8 }- \frac {3}{4} \cdot \cos( 2 \pi f \tau_2) + | ||
\frac {3}{8} \cdot \cos( 2 \pi f \tau_3)- \frac {1}{4} \cdot \cos( 2 \pi f (\tau_3 - \tau_2))}$$ | \frac {3}{8} \cdot \cos( 2 \pi f \tau_3)- \frac {1}{4} \cdot \cos( 2 \pi f (\tau_3 - \tau_2))}$$ | ||
Line 118: | Line 120: | ||
− | '''(6)''' At $f = 250 \ \rm kHz$, the frequency response is | + | '''(6)''' At $f = 250 \ \rm kHz$, the frequency response is |
[[File:P_ID2162__Mob_A_2_3e.png|right|frame|Amplitude frequency response for three-way channel]] | [[File:P_ID2162__Mob_A_2_3e.png|right|frame|Amplitude frequency response for three-way channel]] | ||
− | $$H(f = 250\,{\rm kHz})= k_1 + k_2 \cdot {\rm e}^{-{\rm j}\cdot \pi}+ k_3 \cdot {\rm e}^{-{\rm j}\cdot 5\pi} = k_1 - k_2 - k_3 | + | :$$H(f = 250\,{\rm kHz})= k_1 + k_2 \cdot {\rm e}^{-{\rm j}\cdot \pi}+ k_3 \cdot {\rm e}^{-{\rm j}\cdot 5\pi} = k_1 - k_2 - k_3 |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
If you now substitute | If you now substitute | ||
:$$k_3 = k_1 - k_2 = 0.75 + 0.50\hspace{0.1cm} \underline {= 1.25}\hspace{0.05cm},$$ | :$$k_3 = k_1 - k_2 = 0.75 + 0.50\hspace{0.1cm} \underline {= 1.25}\hspace{0.05cm},$$ | ||
− | the result is $|H(f = 250 \ \rm kHz)| = 0$ and thus the most unfavorable value for this signal frequency. | + | the result is $|H(f = 250 \ \rm kHz)| = 0$ and thus the most unfavorable value for this signal frequency. |
− | The graph shows $|H(f)|$ in the range between $0$ and $500 \ \rm kHz$: | + | The graph shows $|H(f)|$ in the range between $0$ and $500 \ \rm kHz$: |
− | *The blue curve corresponds to $k_3 = 0.25$ according to the specifications of | + | *The blue curve corresponds to $k_3 = 0.25$ according to the specifications of task '''(4)'''. |
− | *The red curve corresponds to $k_3 = 1.25$, the most unfavourable value for $f = 250 \ \rm kHz$. | + | *The red curve corresponds to $k_3 = 1.25$, the most unfavourable value for $f = 250 \ \rm kHz$. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category: | + | [[Category:Mobile Communications: Exercises|^2.2 Multi-Path Reception in Wireless Systems^]] |
Latest revision as of 08:04, 26 May 2021
We consider a multipath channel, which is characterized by the following impulse response:
- $$h(\tau, \hspace{0.05cm} t) = h(\tau) = \sum_{m = 1}^{M} k_m \cdot \delta( \tau - \tau_m) \hspace{0.05cm}.$$
All coefficients $k_{m}$ are real (positive or negative). Furthermore, we note:
- From the specification $h(\tau, \hspace{0.05cm}t) = h(\tau)$ you can see that the channel is time–invariant.
- Generally, the channel has $M$ paths. The value of $M$ should be determined from the graph.
- The following relations apply to the delay times: $\tau_1 < \tau_2 < \tau_3 < \ \text{...}$.
The graph shows the output signal $r(\tau)$ of the channel when the following transmitted signal is present at the input (shown in the equivalent low-pass range):
- $$s(\tau) = \left\{ \begin{array}{c} s_0\\ 0 \end{array} \right.\quad \begin{array}{*{1}c} 0 \le \tau < 5\,{\rm µ s}, \\ {\rm otherwise}. \\ \end{array}$$
We want to find the corresponding impulse response $h(\tau)$ as well as the transfer function $H(f)$.
Notes:
- This task refers to the chapter Multi–Path Reception in Mobile Communications.
- For the solution of subtask (1) assume that the impulse response $h(\tau)$ has a span of five microseconds.
Questionnaire
Solution
The sketched output signal $r(\tau)$ can only result if
- $\tau_1 = 0$ $($otherwise $r(\tau)$ would not start at $\tau = 0)$,
- $\tau_M = 10 \ \rm µ s$ $($this results in the rectangular section between $10 \ \rm µ s$ and $15 \ \ \rm µ s)$,
- there is another Dirac function at $\tau_2 = 2 \ \rm µ s$ between the two.
That means: The impulse response here consists of $\underline {M = 3}$ Dirac functions.
(2) As already calculated in the first subtask, one gets
- $$\tau_1 \hspace{0.1cm} \underline {= 0}\hspace{0.05cm},\hspace{0.2cm}\tau_2 \hspace{0.1cm} \underline {= 2\,{\rm µ s}}\hspace{0.05cm},\hspace{0.2cm}\tau_3 \hspace{0.1cm} \underline {= 10\,{\rm µ s}}\hspace{0.05cm}.$$
(3) If you compare input $s(\tau)$ and output $r(\tau)$, you will get the following results:
- Interval $0 < \tau < 2 \ {\rm µ s} \text{:} \, s(\tau) = s_0, \hspace{1cm} r(\tau) = 0.75 \cdot s_0 \,\,\Rightarrow\,\, k_1 \ \underline {= 0.75}$,
- Interval $2 \ {\rm µ s} < \tau < 5 \ {\rm µ s} \text{:} \, \hspace{2.45cm} r(\tau) =(k_1 + k_2) \cdot s_0 = 0.25 \cdot s_0 \Rightarrow k_2 \ \underline {= \, -0.50}$,
- Interval $10 \ {\rm µ s} < \tau < 15 \ {\rm µ s} \text{:} \, \hspace{1.99cm} r(\tau) =k_3 \cdot s_0 = 0.25 \cdot s_0 \,\Rightarrow\, k_3 \ \underline {= 0.25}$.
(4) Using the time–shifting property, the Fourier transform of the impulse response $h(\tau)$ is:
- $$h(\tau) = k_1 \cdot \delta( \tau) + k_2 \cdot \delta( \tau - \tau_2)+ k_3 \cdot \delta( \tau - \tau_3) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}H(f) = k_1 + k_2 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_2}+ k_3 \cdot {\rm e}^{- {\rm j}\cdot 2 \pi f \tau_3} \hspace{0.05cm}. $$
Analysis of the individual contributions leads to the following conclusion:
- The first part is constant ⇒ periode $f_1 → ∞$..
- The second part is periodic with $f_2 = 1/\tau_2 = 500 \ \rm kHz$.
- The third part is periodic with $f_3 = 1/\tau_3 = 100 \ \rm kHz$.
⇒ $H(f)$ is thus periodic with $f_0 \ \underline {= 500 \ \ \rm kHz}$.
(5) With $A = 2\pi f \cdot \tau_2$ and $B = 2\pi f \cdot \tau_3$ you get
- $$|H(f)|^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} H(f) \cdot H^{\star}(f)= \left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{-{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{-{\rm j}B}\right ] \left [ \frac {3}{4} - \frac {1}{2} \cdot {\rm e}^{{\rm j}A} + \frac {1}{4} \cdot {\rm e}^{{\rm j}B}\right ]$$
- $$\Rightarrow \hspace{0.3cm} |H(f)|^2 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac {9}{16 }- \frac {3 {\rm e}^{{\rm j}A}}{8} +\frac {3{\rm e}^{{\rm j}B}}{16} - \frac {3{\rm e}^{-{\rm j}A}}{8} +\frac {1}{4}- \frac {{\rm e}^{{\rm j}(B-A)}}{8} +\frac {3{\rm e}^{-{\rm j}B}}{16} - \frac {{\rm e}^{{\rm j}(A-B)}}{8} +\frac{1}{16 }=$$
- $$\hspace{2.1cm} \ = \ \hspace{-0.1cm}\frac {7}{8 }- \frac {3}{8} \cdot \left [ {\rm e}^{{\rm j}A} + {\rm e}^{-{\rm j}A}\right ]+ \frac {3}{16} \cdot \left [ {\rm e}^{{\rm j}B} + {\rm e}^{-{\rm j}B}\right ]- \frac {1}{8} \cdot \left [ {\rm e}^{{\rm j}(B-A)} + {\rm e}^{-{\rm j}(B-A)}\right ]\hspace{0.05cm}.$$
Using Euler's theorem, with consideration of the frequency periodicity, this results in
- $$|H(f)|= \sqrt{\frac {7}{8 }- \frac {3}{4} \cdot \cos( 2 \pi f \tau_2) + \frac {3}{8} \cdot \cos( 2 \pi f \tau_3)- \frac {1}{4} \cdot \cos( 2 \pi f (\tau_3 - \tau_2))}$$
- $$\Rightarrow \hspace{0.3cm} |H(f = 0)|\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{\frac {7}{8 }- \frac {3}{4} + \frac {3}{8} - \frac {1}{4} } = \sqrt{0.25}\hspace{0.1cm} \underline {= 0.5} = |H(f = 500\,{\rm kHz})|$$
- $$|H(f = 250\,{\rm kHz})|\hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{\frac {7}{8 }- \frac {3}{4} \cdot \cos( \pi ) + \frac {3}{8} \cdot \cos( 5 \pi )- \frac {1}{4} \cdot \cos( 4 \pi )} \hspace{0.1cm} \underline {= 1}\hspace{0.05cm}.$$
(6) At $f = 250 \ \rm kHz$, the frequency response is
- $$H(f = 250\,{\rm kHz})= k_1 + k_2 \cdot {\rm e}^{-{\rm j}\cdot \pi}+ k_3 \cdot {\rm e}^{-{\rm j}\cdot 5\pi} = k_1 - k_2 - k_3 \hspace{0.05cm}.$$
If you now substitute
- $$k_3 = k_1 - k_2 = 0.75 + 0.50\hspace{0.1cm} \underline {= 1.25}\hspace{0.05cm},$$
the result is $|H(f = 250 \ \rm kHz)| = 0$ and thus the most unfavorable value for this signal frequency.
The graph shows $|H(f)|$ in the range between $0$ and $500 \ \rm kHz$:
- The blue curve corresponds to $k_3 = 0.25$ according to the specifications of task (4).
- The red curve corresponds to $k_3 = 1.25$, the most unfavourable value for $f = 250 \ \rm kHz$.