Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 2.4: Rectified Cosine"

From LNTwww
m (Text replacement - "Signal_Representation/Fourierreihe" to "Signal_Representation/Fourier_Series")
 
(12 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Fourierreihe
+
{{quiz-Header|Buchseite=Signal_Representation/Fourier_Series
 
}}
 
}}
  
[[File:P_ID300__Sig_A_2_4.png|right|frame|Gleichgerichteter Cosinus]]
+
[[File:P_ID300__Sig_A_2_4.png|right|frame|Cosine and rectified cosine]]
  
Ein Cosinussignal  x(t)  mit der Amplitude  1V  und der Frequenz  f0=10kHz  wird an den Eingang eines Doppelweggleichrichters gelegt. An dessen Ausgang ergibt sich das Signal  y(t), das in der Grafik unten dargestellt ist.
+
A cosine signal  x(t)  with amplitude  1V  and frequency  f0=10kHz  is applied to the input of a half-wave rectifier.  At its output, the signal  y(t) results, which is shown in the graph below.
  
Bei den Teilaufgaben  '''(6)'''  und  '''(7)'''  wird auch das Fehlersignal  ε3(t)=y3(t)y(t)  verwendet. Dieses beschreibt die Differenz zwischen der auf lediglich  N=3  Koeffizienten begrenzten Fourierreihe    ⇒   y3(t)   und dem tatsächlichen Ausgangssignal  y(t).
+
In subtasks  '''(6)'''  and  '''(7)'''  the error signal  ε3(t)=y3(t)y(t)  is also used.  This describes the difference between the Fourier series  ⇒   y3(t)   limited to only  N=3  coefficients and the actual output signal  y(t).
  
  
Line 15: Line 15:
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum Kapitel  [[Signal_Representation/Fourier_Series|Fourierreihe]].
+
*This exercise belongs to the chapter  [[Signal_Representation/Fourier_Series|Fourier Series]].
 
   
 
   
*Zur Lösung der Aufgabe können Sie das folgende bestimmte Integral benutzen  (n sei ganzzahlig):
+
*To solve the problem, you can use the following definite integral   $(letn$ be an integer):
 
   
 
   
 
:π/2π/2cos(u)cos(2nu)du=(1)n+124n21.
 
:π/2π/2cos(u)cos(2nu)du=(1)n+124n21.
  
*Eine kompakte Zusammenfassung der Thematik finden Sie im Lernvideo  [[Zur_Berechnung_der_Fourierkoeffizienten_(Lernvideo)|Zur Berechnung der Fourierkoeffizienten]].
+
*You can find a compact summary of the topic in the (German language) learning video<br> &nbsp; &nbsp; &nbsp;[[Zur_Berechnung_der_Fourierkoeffizienten_(Lernvideo)|Zur Berechnung der Fourierkoeffizienten]] &nbsp; &rArr; &nbsp; "To calculate the Fourier coefficients".
  
  
===Fragebogen===
+
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der folgenden Aussagen sind für das Signal&nbsp; x(t)&nbsp; zutreffend?
+
{Which of the following statements are true for the signal&nbsp; x(t)&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Die Periodendauer ist&nbsp;  T_0 = 100 \,&micro;{\rm s}.
+
+ The period duration is&nbsp;  T_0 = 100 \,&micro;{\rm s}.
+ Der Gleichsignalkoeffizient ist&nbsp; A0=0.
+
+ The DC signal coefficient is&nbsp; A0=0.
+ Von allen Cosinuskoeffizienten&nbsp; An&nbsp; ist genau einer ungleich Null.
+
+ Of all cosine coefficients&nbsp; An&nbsp; exactly one is not equal to zero.
- Von allen Sinuskoeffizienten&nbsp; Bn&nbsp; ist genau einer ungleich Null.
+
- Of all the sine coefficients&nbsp; Bn&nbsp; exactly one is not equal to zero.
+ Die Fourierreihe&nbsp; x3(t)&nbsp; weicht nicht vom tatsächlichen Signal&nbsp; x(t)&nbsp; ab.
+
+ The Fourier series&nbsp; x3(t)&nbsp; does not deviate from the actual signal&nbsp; x(t)&nbsp;.
  
{Wie groß ist die Periodendauer des Signals&nbsp; y(t)?
+
{What is the period duration of the signal&nbsp; y(t)?
 
|type="{}"}
 
|type="{}"}
 
T0 =  { 50 3% } &nbsp; {\rm &micro;s}
 
T0 =  { 50 3% } &nbsp; {\rm &micro;s}
  
{Berechnen Sie den Gleichsignalanteil des Signals&nbsp; y(t).
+
{Calculate the DC component of the signal&nbsp; y(t).
 
|type="{}"}
 
|type="{}"}
 
A0 =   { 0.637 3% } &nbsp; V
 
A0 =   { 0.637 3% } &nbsp; V
  
{Wie lauten die Sinuskoeffizienten&nbsp; Bn? Begründen Sie Ihr Ergebnis. Geben Sie zur Kontrolle den Koeffizienten&nbsp; B2&nbsp; ein.
+
{What are the sine coefficients&nbsp; Bn? Justify your result. Enter the coefficient&nbsp; B2&nbsp; as a check.
 
|type="{}"}
 
|type="{}"}
 
B2 =   { 0. } &nbsp; V
 
B2 =   { 0. } &nbsp; V
  
  
{Berechnen Sie nun die Cosinuskoeffizienten&nbsp; An. Geben Sie zur Kontrolle den Koeffizienten&nbsp; A2&nbsp; ein.
+
{Now calculate the cosine coefficient&nbsp; An. Enter the coefficient&nbsp; A2&nbsp; as a check.
 
|type="{}"}
 
|type="{}"}
 
A2 =   { -0.087--0.083 } &nbsp; V
 
A2 =   { -0.087--0.083 } &nbsp; V
  
  
{Geben Sie die Fourierreihe&nbsp; y3(t)&nbsp; analytisch an (Begrenzung auf je&nbsp; N=3&nbsp; Sinus– bzw. Cosinuskoeffizienten).  
+
{Specify the Fourier series&nbsp; y3(t)&nbsp; analytically&nbsp; $($limit to&nbsp; N=3&nbsp; sine and cosine coefficients each$)$.
<br>Wie groß ist der Fehler zwischen dieser endlichen Fourierreihe und dem tatsächlichen Signalwert bei&nbsp; t=0?
+
<br>How large is the error between this finite Fourier series and the actual signal value at&nbsp; t=0?
 
|type="{}"}
 
|type="{}"}
 
ε3(t=0) =   { 0.0125 3% } V
 
ε3(t=0) =   { 0.0125 3% } V
  
{Berechnen Sie nun den Fehler&nbsp; \varepsilon_3(t= 25 \,&micro;{\rm s}). Interpretieren Sie diesen Wert im Vergleich zum Ergebnis aus&nbsp; '''(6)'''.
+
{Now calculate the error&nbsp; \varepsilon_3(t= 25 \,&micro;{\rm s}).&nbsp; Interpret this value in comparison to the result from&nbsp; '''(6)'''.
 
|type="{}"}
 
|type="{}"}
 
\varepsilon_3(t= 25 \,&micro;{\rm s})\ = \  { 0.091 3% } V
 
\varepsilon_3(t= 25 \,&micro;{\rm s})\ = \  { 0.091 3% } V
Line 66: Line 68:
  
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind hier alle Lösungsvorschläge außer dem Vierten:
+
'''(1)'''&nbsp; All solutions are correct except the fourth:
*Aus der Signalfrequenz&nbsp; f0=10kHz&nbsp; folgt&nbsp; T_0 = 1/f_0 = 100\,&micro;\text{s}.  
+
*From the signal frequency&nbsp; f0=10kHz&nbsp; follows&nbsp; T_0 = 1/f_0 = 100\,&micro;\text{s}.  
*Das Cosinussignal ist gleichsignalfrei&nbsp; (A0=0)&nbsp; und wird durch einen einzigen Cosinuskoeffizienten nämlich&nbsp; A1&nbsp; – vollständig beschrieben.  
+
*The cosine signal is mean&ndash;free&nbsp; (A0=0)&nbsp; and it is completely described by a single cosine coefficient namely&nbsp; A1&nbsp;.  
*Alle Sinuskoeffizienten  sind&nbsp; Bn0, da&nbsp; x(t)&nbsp; eine gerade Funktion ist.  
+
*All sine coefficients are&nbsp; Bn0, since&nbsp; x(t)&nbsp; is an even function.  
*Die Fourierreihendarstellung&nbsp; x3(t)&nbsp; bildet&nbsp; x(t)&nbsp; fehlerfrei nach.  
+
*The Fourier series representation&nbsp; x3(t)&nbsp; reproduces&nbsp; x(t)&nbsp; without error.  
  
  
  
'''(2)'''&nbsp; Aufgrund der Doppelweggleichrichtung ergibt sich für die Periodendauer nunmehr der halbe Wert:&nbsp; T_0 \hspace{0.1cm}\underline{= 50\,&micro;\text{s}}.  
+
'''(2)'''&nbsp; Due to the double path rectification, the period duration is now half the value:&nbsp; T_0 \hspace{0.1cm}\underline{= 50\,&micro;\text{s}}.  
*Bei allen nachfolgenden Punkten bezieht sich die Angabe&nbsp; T0&nbsp; auf diesen Wert, also auf die Periodendauer des Signals&nbsp; y(t).
+
*For all subsequent points, the specification&nbsp; T0&nbsp; refers to this value, i.e. to the period of the signal&nbsp; y(t).
  
  
  
'''(3)'''&nbsp; Im Bereich von&nbsp; –T_0/2&nbsp; bis&nbsp; +T_0/2 \ (–25\,&micro;\text{s} \ \text{...}  +25\,&micro;\text{s})&nbsp; ist&nbsp; y(t) = x(t). Mit&nbsp; f_x= 10\,\rm{kHz} = 1/(2T_0)&nbsp; gilt deshalb für diesen Abschnitt:
+
'''(3)'''&nbsp; In the range from&nbsp; –T_0/2&nbsp; to&nbsp; +T_0/2 \ (–25\,&micro;\text{s} \ \text{...}  +25\,&micro;\text{s})&nbsp; is&nbsp; y(t) = x(t). With&nbsp; f_x= 10\,\rm{kHz} = 1/(2T_0)&nbsp; therefore applies to this section:
 
   
 
   
 
:y(t)={\rm 1V}\cdot\cos(2{\pi} f_0\hspace{0.05cm}t)={\rm 1V}\cdot\cos(\pi \cdot {t}/{T_0}).
 
:y(t)={\rm 1V}\cdot\cos(2{\pi} f_0\hspace{0.05cm}t)={\rm 1V}\cdot\cos(\pi \cdot {t}/{T_0}).
  
*Daraus ergibt sich für den Gleichsignalanteil:
+
*This results in the following for the DC coefficient:
 
   
 
   
 
:A_0=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}y(t)\,{\rm d} t=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}{\rm 1V}\cdot\cos(\pi\cdot {t}/{T_0})\,{\rm d}t.
 
:A_0=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}y(t)\,{\rm d} t=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}{\rm 1V}\cdot\cos(\pi\cdot {t}/{T_0})\,{\rm d}t.
  
*Mit der Substitution&nbsp; u = \pi \cdot t/T_0&nbsp; erhält man schließlich:
+
*With the substitution&nbsp; u = \pi \cdot t/T_0&nbsp; one obtains:
 
   
 
   
 
:A_0=\left. \frac{ {\rm 1V}}{\pi}\int_{-\pi /2}^{\pi/2}\cos(u)\,{\rm d}u=\frac{ {\rm 1V}}{\pi}\sin(u)\; \right| _{-\pi/2}^{\pi/2}=\frac{ {\rm 1V}\cdot 2}{\pi} \hspace{0.15cm}\underline{\approx 0.637\;{\rm V}}.
 
:A_0=\left. \frac{ {\rm 1V}}{\pi}\int_{-\pi /2}^{\pi/2}\cos(u)\,{\rm d}u=\frac{ {\rm 1V}}{\pi}\sin(u)\; \right| _{-\pi/2}^{\pi/2}=\frac{ {\rm 1V}\cdot 2}{\pi} \hspace{0.15cm}\underline{\approx 0.637\;{\rm V}}.
  
  
'''(4)'''&nbsp; Da&nbsp; y(–t) = y(t)&nbsp; gilt, sind alle Sinuskoeffizienten&nbsp; B_n = 0. Damit ist auch&nbsp; B_2 \hspace{0.1cm}\underline{= 0}.
+
'''(4)'''&nbsp; Since&nbsp; y(–t) = y(t)&nbsp; holds, all sine coefficients&nbsp; B_n = 0.&nbsp; Thus&nbsp; B_2 \hspace{0.1cm}\underline{= 0}&nbsp; also holds.
  
  
  
'''(5)'''&nbsp;  Für die Koeffizienten&nbsp; A_n&nbsp; gilt mit der Substitution&nbsp; u = \pi \cdot t/T_0&nbsp; entsprechend dem angegebenen Integral:
+
'''(5)'''&nbsp;  For the coefficients&nbsp; A_n&nbsp; applies with the substitution&nbsp; u = \pi \cdot t/T_0&nbsp; according to the given integral:
 
   
 
   
 
:$$A_n  = \frac{2{\rm V}}{T_0}\int_{-T_0/2}^{T_0/2}\cos(\pi\frac{t}{T_0})\cdot \cos(n\cdot 2\pi\frac{t}{T_0})\,{\rm d}t  = \frac{2{\rm V}}{\pi}\int_{-\pi/2}^{\pi/2}\cos(u)\cdot \cos(2n u)\,{\rm d}u \quad  
 
:$$A_n  = \frac{2{\rm V}}{T_0}\int_{-T_0/2}^{T_0/2}\cos(\pi\frac{t}{T_0})\cdot \cos(n\cdot 2\pi\frac{t}{T_0})\,{\rm d}t  = \frac{2{\rm V}}{\pi}\int_{-\pi/2}^{\pi/2}\cos(u)\cdot \cos(2n u)\,{\rm d}u \quad  
 
\Rightarrow  \quad A_n  = \left( { - 1} \right)^{n + 1} \frac{{4\;{\rm{V}}}}{{{\rm{\pi }}\left( {4n^2  - 1} \right)}}.$$
 
\Rightarrow  \quad A_n  = \left( { - 1} \right)^{n + 1} \frac{{4\;{\rm{V}}}}{{{\rm{\pi }}\left( {4n^2  - 1} \right)}}.$$
  
Der Koeffizient&nbsp; A_2&nbsp; ist damit gleich&nbsp; -4 \,\text{V}/(15\pi) \hspace{0.1cm}\underline{\approx -\hspace{0.05cm}0.085 \, \text{V}}.
+
The coefficient&nbsp; A_2&nbsp; is thus equal to&nbsp; -4 \,\text{V}/(15\pi) \hspace{0.1cm}\underline{\approx -\hspace{0.05cm}0.085 \, \text{V}}.
 +
 
  
  
 +
'''(6)'''&nbsp; For the finite Fourier series with&nbsp; N = 3&nbsp; the following applies in general:
  
'''(6)'''&nbsp; Für die endliche Fourierreihe mit&nbsp; N = 3&nbsp; gilt allgemein:
 
 
 
:y_3(t)=\frac{2{\rm V}}{\pi} \cdot \left [ 1+{2}/{3} \cdot \cos(\omega_0t)-{2}/{15}\cdot \cos(2\omega_0t)+{2}/{35}\cdot \cos(3\omega_0t) \right ].
 
:y_3(t)=\frac{2{\rm V}}{\pi} \cdot \left [ 1+{2}/{3} \cdot \cos(\omega_0t)-{2}/{15}\cdot \cos(2\omega_0t)+{2}/{35}\cdot \cos(3\omega_0t) \right ].
  
Zum Zeitpunkt&nbsp; t = 0&nbsp; ist&nbsp; y_3(0) \approx 1.0125 \ \rm V; damit ergibt sich der Fehler zu&nbsp; \varepsilon_3(t = 0) \hspace{0.15cm}\underline{= 0.0125 \,\text{V}} .
+
At time&nbsp; t = 0:&nbsp; &nbsp; y_3(0) \approx 1.0125 \ \rm V; thus the error is&nbsp; \varepsilon_3(t = 0) \hspace{0.15cm}\underline{= 0.0125 \,\text{V}} .
  
  
  
'''(7)'''&nbsp; Die Zeit&nbsp; t = 25\,&micro;\text{s}&nbsp;  entspricht der halben Periodendauer des Signals&nbsp; y(t). Hierfür gilt wegen&nbsp; \omega_0 \cdot T_0 = 2\pi:
+
'''(7)'''&nbsp; The time&nbsp; t = 25\,&micro;\text{s}&nbsp;  corresponds to half the period of the signal&nbsp; y(t).&nbsp; The following applies here because of&nbsp; \omega_0 \cdot T_0 = 2\pi:
 
   
 
   
 
:y_3(T_0/2)  = \frac{2{\rm V}}{\pi} \left [1+\frac{2}{3} \cdot \cos({\pi}) -\frac{2}{15}\cdot \cos(2\pi)+\frac{2}{35}\cdot \cos(3\pi)\right ]=  \frac{2{\rm V}}{\pi}\left [1-\frac{2}{3}-\frac{2}{15}-\frac{2}{35}\right ] =  \frac{2{\rm V}}{7\pi}\approx 0.091{\rm V}.
 
:y_3(T_0/2)  = \frac{2{\rm V}}{\pi} \left [1+\frac{2}{3} \cdot \cos({\pi}) -\frac{2}{15}\cdot \cos(2\pi)+\frac{2}{35}\cdot \cos(3\pi)\right ]=  \frac{2{\rm V}}{\pi}\left [1-\frac{2}{3}-\frac{2}{15}-\frac{2}{35}\right ] =  \frac{2{\rm V}}{7\pi}\approx 0.091{\rm V}.
  
*Da&nbsp; y(T_0/2) = 0&nbsp; ist, ergibt sich auch&nbsp; \varepsilon_3(T_0/2) \hspace{0.15cm}\underline{\approx 0.091\,{\rm V}}.  
+
*Since&nbsp; y(T_0/2) = 0&nbsp; this also results in&nbsp; \varepsilon_3(T_0/2) \hspace{0.15cm}\underline{\approx 0.091\,{\rm V}}.  
*Dieser Fehler ist um mehr als den Faktor 7 größer als der Fehler bei&nbsp; t = 0, da&nbsp; y(t)&nbsp; bei&nbsp; t = T_0/2&nbsp; mehr hochfrequente Anteile besitzt (spitzförmiger Verlauf).  
+
*This error is larger than the error at&nbsp; $t = 0  by more than a factor of &nbsp;7$, since&nbsp; y(t)&nbsp; has more high-frequency components at&nbsp; t = T_0/2&nbsp; $(peak-shaped course)$.  
*Wird gefordert, dass der Fehler&nbsp; \varepsilon_3(T_0/2)&nbsp; kleiner als&nbsp; 0.01&nbsp; sein soll, dann müssten mindestens&nbsp; 32&nbsp; Fourierkoeffizienten berücksichtigt werden.
+
*If it is required that the error&nbsp; \varepsilon_3(T_0/2)&nbsp; be smaller than&nbsp; 0.01&nbsp; then at least&nbsp; 32&nbsp; Fourier coefficients would have to be taken into account.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^2. Periodische Signale^]]
+
[[Category:Signal Representation: Exercises|^2.4 Fourier Series^]]

Latest revision as of 14:24, 15 April 2021

Cosine and rectified cosine

A cosine signal  x(t)  with amplitude  1\,\rm{V}  and frequency  f_0= 10\,\rm{kHz}  is applied to the input of a half-wave rectifier.  At its output, the signal  y(t) results, which is shown in the graph below.

In subtasks  (6)  and  (7)  the error signal  \varepsilon_3(t) = y_3(t) - y(t)  is also used.  This describes the difference between the Fourier series  ⇒   y_3(t)   limited to only  N = 3  coefficients and the actual output signal  y(t).




Hints:

  • To solve the problem, you can use the following definite integral   (let n be an integer):
\int ^{\pi /2}_{-\pi /2}\cos(u)\cdot\cos(2nu)\,{\rm d}u = (-1)^{n+1}\cdot\frac{2}{4n^2-1}.



Questions

1

Which of the following statements are true for the signal  x(t) ?

The period duration is  T_0 = 100 \,µ{\rm s}.
The DC signal coefficient is  A_0 = 0.
Of all cosine coefficients  A_n  exactly one is not equal to zero.
Of all the sine coefficients  B_n  exactly one is not equal to zero.
The Fourier series  x_3(t)  does not deviate from the actual signal  x(t) .

2

What is the period duration of the signal  y(t)?

T_0\ = \

  {\rm µs}

3

Calculate the DC component of the signal  y(t).

A_0\ = \

  {\rm V}

4

What are the sine coefficients  B_n? Justify your result. Enter the coefficient  B_2  as a check.

B_2\ = \

  {\rm V}

5

Now calculate the cosine coefficient  A_n. Enter the coefficient  A_2  as a check.

A_2\ = \

  {\rm V}

6

Specify the Fourier series  y_3(t)  analytically  (limit to  N = 3  sine and cosine coefficients each).
How large is the error between this finite Fourier series and the actual signal value at  t = 0?

\varepsilon_3(t= 0)\ = \

{\rm V}

7

Now calculate the error  \varepsilon_3(t= 25 \,µ{\rm s}).  Interpret this value in comparison to the result from  (6).

\varepsilon_3(t= 25 \,µ{\rm s})\ = \

{\rm V}


Solution

(1)  All solutions are correct except the fourth:

  • From the signal frequency  f_0= 10\,\rm{kHz}  follows  T_0 = 1/f_0 = 100\,µ\text{s}.
  • The cosine signal is mean–free  (A_0 = 0)  and it is completely described by a single cosine coefficient – namely  A_1 .
  • All sine coefficients are  B_n \equiv 0, since  x(t)  is an even function.
  • The Fourier series representation  x_3(t)  reproduces  x(t)  without error.


(2)  Due to the double path rectification, the period duration is now half the value:  T_0 \hspace{0.1cm}\underline{= 50\,µ\text{s}}.

  • For all subsequent points, the specification  T_0  refers to this value, i.e. to the period of the signal  y(t).


(3)  In the range from  –T_0/2  to  +T_0/2 \ (–25\,µ\text{s} \ \text{...} +25\,µ\text{s})  is  y(t) = x(t). With  f_x= 10\,\rm{kHz} = 1/(2T_0)  therefore applies to this section:

y(t)={\rm 1V}\cdot\cos(2{\pi} f_0\hspace{0.05cm}t)={\rm 1V}\cdot\cos(\pi \cdot {t}/{T_0}).
  • This results in the following for the DC coefficient:
A_0=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}y(t)\,{\rm d} t=\frac{1}{T_0}\int^{T_0/2}_{-T_0/2}{\rm 1V}\cdot\cos(\pi\cdot {t}/{T_0})\,{\rm d}t.
  • With the substitution  u = \pi \cdot t/T_0  one obtains:
A_0=\left. \frac{ {\rm 1V}}{\pi}\int_{-\pi /2}^{\pi/2}\cos(u)\,{\rm d}u=\frac{ {\rm 1V}}{\pi}\sin(u)\; \right| _{-\pi/2}^{\pi/2}=\frac{ {\rm 1V}\cdot 2}{\pi} \hspace{0.15cm}\underline{\approx 0.637\;{\rm V}}.


(4)  Since  y(–t) = y(t)  holds, all sine coefficients  B_n = 0.  Thus  B_2 \hspace{0.1cm}\underline{= 0}  also holds.


(5)  For the coefficients  A_n  applies with the substitution  u = \pi \cdot t/T_0  according to the given integral:

A_n = \frac{2{\rm V}}{T_0}\int_{-T_0/2}^{T_0/2}\cos(\pi\frac{t}{T_0})\cdot \cos(n\cdot 2\pi\frac{t}{T_0})\,{\rm d}t = \frac{2{\rm V}}{\pi}\int_{-\pi/2}^{\pi/2}\cos(u)\cdot \cos(2n u)\,{\rm d}u \quad \Rightarrow \quad A_n = \left( { - 1} \right)^{n + 1} \frac{{4\;{\rm{V}}}}{{{\rm{\pi }}\left( {4n^2 - 1} \right)}}.

The coefficient  A_2  is thus equal to  -4 \,\text{V}/(15\pi) \hspace{0.1cm}\underline{\approx -\hspace{0.05cm}0.085 \, \text{V}}.


(6)  For the finite Fourier series with  N = 3  the following applies in general:

y_3(t)=\frac{2{\rm V}}{\pi} \cdot \left [ 1+{2}/{3} \cdot \cos(\omega_0t)-{2}/{15}\cdot \cos(2\omega_0t)+{2}/{35}\cdot \cos(3\omega_0t) \right ].

At time  t = 0:    y_3(0) \approx 1.0125 \ \rm V; thus the error is  \varepsilon_3(t = 0) \hspace{0.15cm}\underline{= 0.0125 \,\text{V}} .


(7)  The time  t = 25\,µ\text{s}  corresponds to half the period of the signal  y(t).  The following applies here because of  \omega_0 \cdot T_0 = 2\pi:

y_3(T_0/2) = \frac{2{\rm V}}{\pi} \left [1+\frac{2}{3} \cdot \cos({\pi}) -\frac{2}{15}\cdot \cos(2\pi)+\frac{2}{35}\cdot \cos(3\pi)\right ]= \frac{2{\rm V}}{\pi}\left [1-\frac{2}{3}-\frac{2}{15}-\frac{2}{35}\right ] = \frac{2{\rm V}}{7\pi}\approx 0.091{\rm V}.
  • Since  y(T_0/2) = 0  this also results in  \varepsilon_3(T_0/2) \hspace{0.15cm}\underline{\approx 0.091\,{\rm V}}.
  • This error is larger than the error at  t = 0 by more than a factor of  7, since  y(t)  has more high-frequency components at  t = T_0/2  (peak-shaped course).
  • If it is required that the error  \varepsilon_3(T_0/2)  be smaller than  0.01  then at least  32  Fourier coefficients would have to be taken into account.