Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 2.2: DC Component of Signals"

From LNTwww
 
(11 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID273__Sig_A_2_2.png|right|frame|Rechtecksignale mit und ohne Gleichanteil]]
+
[[File:P_ID273__Sig_A_2_2.png|right|frame|Square wave signal with/ without DC component]]
  
Die Grafik zeigt einige Zeitsignale, die für alle Zeiten (von    bis  +)  definiert sind. Bei allen sechs Beispielsignalen  xi(t)  kann für die zugehörige Spektralfunktion geschrieben werden:
+
The graph shows six time signals defined for all times (from    to  +).  For all sample signals  xi(t)  the associated spectral function can be written as:
 
   
 
   
 
:Xi(f)=A0δ(f)+ΔXi(f).
 
:Xi(f)=A0δ(f)+ΔXi(f).
  
Hierbei bezeichnen
+
Here:
*A0  den Gleichsignalanteil, und
+
*A0  is the DC component of the signal.
*ΔXi(f)  das Spektrum des um den Gleichanteil verminderten Restsignals  Δxi(t)=xi(t)A0.
+
*ΔXi(f)  is the spectrum of the residual signal reduced by the DC component:   
 +
:$$\Delta x_i(t) = x_i(t) - A_0.$$
  
  
  
 +
''Hint:''
 +
*This exercise belongs to the chapter&nbsp; <br>[[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal|Direct Current Signal - Limit Case of a Periodic Signal]].
  
  
  
  
 
+
===Questions===
''Hinweis:''
 
*Die Aufgabe gehört zum Kapitel&nbsp; [[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal|Gleichsignal - Grenzfall eines periodischen Signals]].
 
 
 
 
 
 
 
 
 
 
 
 
===Fragebogen===
 
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der Signale beinhalten einen Gleichanteil, das heißt, bei welchen Signalen ist&nbsp; A00?
+
{Which of the signals contains a DC component, i.e. for which signals is &nbsp; A00?
 
|type="[]"}
 
|type="[]"}
 
+ Signal&nbsp; x1(t),
 
+ Signal&nbsp; x1(t),
- Signal&nbsp; x2(t),
+
- signal&nbsp; x2(t),
+ Signal&nbsp; x3(t),
+
+ signal&nbsp; x3(t),
+ Signal&nbsp; x4(t),
+
+ signal&nbsp; x4(t),
+ Signal&nbsp; x5(t),
+
+ signal&nbsp; x5(t),
+ Signal&nbsp; x6(t).
+
+ signal&nbsp; x6(t).
  
  
{Bei welchen der Signale gilt für das „Restspektrum”&nbsp; ΔXi(f)=0?
+
{For which of the signals is the „residual spectrum”&nbsp; ΔXi(f)=0?
 
|type="[]"}
 
|type="[]"}
 
- Signal&nbsp; x1(t),
 
- Signal&nbsp; x1(t),
- Signal&nbsp; x2(t),
+
- signal&nbsp; x2(t),
- Signal&nbsp; x3(t),
+
- signal&nbsp; x3(t),
- Signal&nbsp; x4(t),
+
- signal&nbsp; x4(t),
+ Signal&nbsp; x5(t),
+
+ signal&nbsp; x5(t),
- Signal&nbsp; x6(t).
+
- signal&nbsp; x6(t).
  
  
{Wie groß ist der Gleichanteil des Signals&nbsp; x3(t)?
+
{What is the DC component of the signal&nbsp; x3(t)?
 
|type="{}"}
 
|type="{}"}
 
x3(t):A0 =   { -0.35--0.31 } &nbsp; V  
 
x3(t):A0 =   { -0.35--0.31 } &nbsp; V  
  
{Wie groß ist der Gleichanteil des Signals&nbsp; x4(t)?
+
{What is the DC component of the signal&nbsp; x4(t)?
 
|type="{}"}
 
|type="{}"}
 
x4(t):A0 =  { 0.5 3% } &nbsp; V  
 
x4(t):A0 =  { 0.5 3% } &nbsp; V  
  
{Wie groß ist der Gleichanteil des Signals&nbsp; x6(t)?
+
{What is the DC component of the signal&nbsp; x6(t)?
 
|type="{}"}
 
|type="{}"}
 
x6(t):A0 =  { 0.5 3% } &nbsp; V  
 
x6(t):A0 =  { 0.5 3% } &nbsp; V  
Line 65: Line 59:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Antworten 1, 3, 4, 5 und 6</u>.
+
'''(1)'''&nbsp; The correct <u>answers are 1, 3, 4, 5 and 6</u>.
*Alle Signale mit Ausnahme von&nbsp; x2(t)&nbsp; beinhalten einen Gleichsignalanteil.  
+
*All signals except&nbsp; x2(t)&nbsp; contain a DC signal component.
 
 
  
  
'''(2)'''&nbsp; Richtig ist <u>allein der Lösungsvorschlag 5</u>:
+
'''(2)'''&nbsp; Only <u>solution 5 is correct</u>:
*Subtrahiert man vom Signal&nbsp; x5(t)&nbsp; den Gleichanteil&nbsp; 1V, so ist das Restsignal&nbsp; Δx5(t)=x5(t)1V&nbsp; gleich Null.  
+
*If the DC component &nbsp; 1V is subtracted from the signal &nbsp; x5(t),&nbsp; the residual signal&nbsp; Δx5(t)=x5(t)1V&nbsp; is  zero.  
*Dementspechend ist auch die Spektralfunktion&nbsp; ΔX5(f)=0.  
+
*Accordignly, the spectral function is&nbsp; ΔX5(f)=0.  
*Bei allen anderen Zeitverläufen ist&nbsp; Δxi(t)&nbsp; ungleich Null und damit auch die dazugehörige Spektralfunktion&nbsp; ΔXi(f).  
+
*For all other time courses&nbsp; $\Delta x_i(t)ßne 0$&nbsp; and thus the associated spectral function &nbsp; $\Delta X_i(f)\ne 0$,&nbsp; too.  
  
  
  
'''(3)'''&nbsp; Bei einem periodischen Signal genügt zur Berechnung des Gleichsignalanteils&nbsp; A0&nbsp; die Mittelung über eine Periodendauer.  
+
'''(3)'''&nbsp; Given a periodic signal, averaging over a period duration is sufficient to calculate the DC signal component&nbsp; A0&nbsp;.  
*Beim Beispielsignal&nbsp;  x3(t)&nbsp; ist diese&nbsp; T0=3ms. Damit ergibt sich der gesuchte Gleichanteil zu
+
*For signal&nbsp;  x3(t)&nbsp; the period duration is&nbsp; T0=3ms.&nbsp; This results in the required DC component:$$A_0=\rm \frac{1}{3\,ms}\cdot \big[1\,V\cdot 1\,ms+(-1\,V)\cdot 2\,ms \big]
 
:$$A_0=\rm \frac{1}{3\,ms}\cdot \big[1\,V\cdot 1\,ms+(-1\,V)\cdot 2\,ms \big]
 
 
\hspace{0.15cm}\underline{=-0.333\,V}.$$
 
\hspace{0.15cm}\underline{=-0.333\,V}.$$
  
  
  
'''(4)'''&nbsp; Für das Signal&nbsp; x4(t)&nbsp; kann geschrieben werden:&nbsp; x_4(t) = 0.5 \,{\rm V} + Δx_4(t).  
+
'''(4)'''&nbsp; The signal&nbsp; x_4(t)&nbsp; can be written as:&nbsp; x_4(t) = 0.5 \,{\rm V} + Δx_4(t).  
*Hierbei bezeichnet&nbsp; Δx_4(t)&nbsp; einen Rechteckimpuls mit Amplitude&nbsp; 0.5 \,{\rm V} &nbsp; und Dauer&nbsp; 4 \,{\rm ms} , der wegen seiner endlichen Dauer nicht zum Gleichsignalanteil beiträgt.  
+
*Here&nbsp; Δx_4(t)&nbsp; denotes a rectangular pulse with amplitude&nbsp; 0.5 \,{\rm V} &nbsp; and duration&nbsp; 4 \,{\rm ms} ,  
*Deshalb gilt hier&nbsp; A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}}.
+
*which due to its finite duration does not contribute to the DC signal component.  
 +
*Therefore&nbsp; A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}} applies here.
  
  
  
'''(5)'''&nbsp; Die allgemeine Gleichung zur Berechnung des Gleichsignalanteils lautet:
+
'''(5)'''&nbsp; The general equation for calculating the DC signal component is:
 
   
 
   
 
:A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int_{-T_{\rm M}/2}^{+T_{\rm M}/2}x(t)\, {\rm d }t.
 
:A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int_{-T_{\rm M}/2}^{+T_{\rm M}/2}x(t)\, {\rm d }t.
  
*Spaltet man dieses Integral in zwei Teilintegrale auf, so erhält man:
+
*If one splits this integral into two partial integrals, one obtains:
 
   
 
   
 
:A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{-T_{\rm M}/2}^{0}0 {\rm V} \cdot\, {\rm d } {\it t }+\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{0}^{+T_{\rm M}/2}1 \rm V \ {\rm d }{\it t }.
 
:A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{-T_{\rm M}/2}^{0}0 {\rm V} \cdot\, {\rm d } {\it t }+\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{0}^{+T_{\rm M}/2}1 \rm V \ {\rm d }{\it t }.
  
*Nur der zweite Term liefert einen Beitrag. Daraus folgt wiederum&nbsp; A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}}.
+
*Only the second term makes a contribution.&nbsp; From this follows again :&nbsp; A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}}.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^2.2 Direct Current Signal - Limit Case of a Periodic Signal^]]
+
[[Category:Signal Representation: Exercises|^2.2 Direct Current Signal^]]

Latest revision as of 18:30, 17 May 2021

Square wave signal with/ without DC component

The graph shows six time signals defined for all times (from  -\infty  to  +\infty).  For all sample signals  x_i(t)  the associated spectral function can be written as:

X_i(f)=A_0\cdot{\rm \delta}(f)+\Delta X_i(f).

Here:

  • A_0  is the DC component of the signal.
  • \Delta X_i(f)  is the spectrum of the residual signal reduced by the DC component: 
\Delta x_i(t) = x_i(t) - A_0.


Hint:



Questions

1

Which of the signals contains a DC component, i.e. for which signals is   A_0 \neq 0?

Signal  x_1(t),
signal  x_2(t),
signal  x_3(t),
signal  x_4(t),
signal  x_5(t),
signal  x_6(t).

2

For which of the signals is the „residual spectrum”  \Delta X_i(f) =0?

Signal  x_1(t),
signal  x_2(t),
signal  x_3(t),
signal  x_4(t),
signal  x_5(t),
signal  x_6(t).

3

What is the DC component of the signal  x_3(t)?

x_3(t)\hspace{-0.1cm}:\,\,A_0 \ = \

  {\rm V}

4

What is the DC component of the signal  x_4(t)?

x_4(t)\hspace{-0.1cm}:\,\,A_0\ = \

  {\rm V}

5

What is the DC component of the signal  x_6(t)?

x_6(t)\hspace{-0.1cm}:\,\,A_0\ = \

  {\rm V}


Solution

(1)  The correct answers are 1, 3, 4, 5 and 6.

  • All signals except  x_2(t)  contain a DC signal component.


(2)  Only solution 5 is correct:

  • If the DC component   1\text{V} is subtracted from the signal   x_5(t),  the residual signal  \Delta x_5(t) = x5(t) - 1\text{V}  is zero.
  • Accordignly, the spectral function is  \Delta X_5(f) = 0.
  • For all other time courses  \Delta x_i(t)ßne 0  and thus the associated spectral function   \Delta X_i(f)\ne 0,  too.


(3)  Given a periodic signal, averaging over a period duration is sufficient to calculate the DC signal component  A_0 .

  • For signal  x_3(t)  the period duration is  T_0 = 3\,\text{ms}.  This results in the required DC component:A_0=\rm \frac{1}{3\,ms}\cdot \big[1\,V\cdot 1\,ms+(-1\,V)\cdot 2\,ms \big] \hspace{0.15cm}\underline{=-0.333\,V}.


(4)  The signal  x_4(t)  can be written as:  x_4(t) = 0.5 \,{\rm V} + Δx_4(t).

  • Here  Δx_4(t)  denotes a rectangular pulse with amplitude  0.5 \,{\rm V}   and duration  4 \,{\rm ms} ,
  • which due to its finite duration does not contribute to the DC signal component.
  • Therefore  A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}} applies here.


(5)  The general equation for calculating the DC signal component is:

A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int_{-T_{\rm M}/2}^{+T_{\rm M}/2}x(t)\, {\rm d }t.
  • If one splits this integral into two partial integrals, one obtains:
A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{-T_{\rm M}/2}^{0}0 {\rm V} \cdot\, {\rm d } {\it t }+\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{0}^{+T_{\rm M}/2}1 \rm V \ {\rm d }{\it t }.
  • Only the second term makes a contribution.  From this follows again :  A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}}.