Difference between revisions of "Aufgaben:Exercise 2.2: DC Component of Signals"
From LNTwww
(11 intermediate revisions by 3 users not shown) | |||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID273__Sig_A_2_2.png|right|frame| | + | [[File:P_ID273__Sig_A_2_2.png|right|frame|Square wave signal with/ without DC component]] |
− | + | The graph shows six time signals defined for all times (from −∞ to +∞). For all sample signals xi(t) the associated spectral function can be written as: | |
:Xi(f)=A0⋅δ(f)+ΔXi(f). | :Xi(f)=A0⋅δ(f)+ΔXi(f). | ||
− | + | Here: | |
− | *A0 | + | *A0 is the DC component of the signal. |
− | *ΔXi(f) | + | *ΔXi(f) is the spectrum of the residual signal reduced by the DC component: |
+ | :$$\Delta x_i(t) = x_i(t) - A_0.$$ | ||
+ | ''Hint:'' | ||
+ | *This exercise belongs to the chapter <br>[[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal|Direct Current Signal - Limit Case of a Periodic Signal]]. | ||
− | + | ===Questions=== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | === | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Which of the signals contains a DC component, i.e. for which signals is A0≠0? |
|type="[]"} | |type="[]"} | ||
+ Signal x1(t), | + Signal x1(t), | ||
− | - | + | - signal x2(t), |
− | + | + | + signal x3(t), |
− | + | + | + signal x4(t), |
− | + | + | + signal x5(t), |
− | + | + | + signal x6(t). |
− | { | + | {For which of the signals is the „residual spectrum” ΔXi(f)=0? |
|type="[]"} | |type="[]"} | ||
- Signal x1(t), | - Signal x1(t), | ||
− | - | + | - signal x2(t), |
− | - | + | - signal x3(t), |
− | - | + | - signal x4(t), |
− | + | + | + signal x5(t), |
− | - | + | - signal x6(t). |
− | { | + | {What is the DC component of the signal x3(t)? |
|type="{}"} | |type="{}"} | ||
x3(t):A0 = { -0.35--0.31 } V | x3(t):A0 = { -0.35--0.31 } V | ||
− | { | + | {What is the DC component of the signal x4(t)? |
|type="{}"} | |type="{}"} | ||
x4(t):A0 = { 0.5 3% } V | x4(t):A0 = { 0.5 3% } V | ||
− | { | + | {What is the DC component of the signal x6(t)? |
|type="{}"} | |type="{}"} | ||
x6(t):A0 = { 0.5 3% } V | x6(t):A0 = { 0.5 3% } V | ||
Line 65: | Line 59: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' The correct <u>answers are 1, 3, 4, 5 and 6</u>. |
− | * | + | *All signals except x2(t) contain a DC signal component. |
− | |||
− | '''(2)''' | + | '''(2)''' Only <u>solution 5 is correct</u>: |
− | * | + | *If the DC component 1V is subtracted from the signal x5(t), the residual signal Δx5(t)=x5(t)−1V is zero. |
− | * | + | *Accordignly, the spectral function is ΔX5(f)=0. |
− | * | + | *For all other time courses $\Delta x_i(t)ßne 0$ and thus the associated spectral function $\Delta X_i(f)\ne 0$, too. |
− | '''(3)''' | + | '''(3)''' Given a periodic signal, averaging over a period duration is sufficient to calculate the DC signal component A0 . |
− | * | + | *For signal x3(t) the period duration is T0=3ms. This results in the required DC component:$$A_0=\rm \frac{1}{3\,ms}\cdot \big[1\,V\cdot 1\,ms+(-1\,V)\cdot 2\,ms \big] |
− | |||
− | :$$A_0=\rm \frac{1}{3\,ms}\cdot \big[1\,V\cdot 1\,ms+(-1\,V)\cdot 2\,ms \big] | ||
\hspace{0.15cm}\underline{=-0.333\,V}.$$ | \hspace{0.15cm}\underline{=-0.333\,V}.$$ | ||
− | '''(4)''' | + | '''(4)''' The signal x_4(t) can be written as: x_4(t) = 0.5 \,{\rm V} + Δx_4(t). |
− | * | + | *Here Δx_4(t) denotes a rectangular pulse with amplitude 0.5 \,{\rm V} and duration 4 \,{\rm ms} , |
− | * | + | *which due to its finite duration does not contribute to the DC signal component. |
+ | *Therefore A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}} applies here. | ||
− | '''(5)''' | + | '''(5)''' The general equation for calculating the DC signal component is: |
:A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int_{-T_{\rm M}/2}^{+T_{\rm M}/2}x(t)\, {\rm d }t. | :A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int_{-T_{\rm M}/2}^{+T_{\rm M}/2}x(t)\, {\rm d }t. | ||
− | * | + | *If one splits this integral into two partial integrals, one obtains: |
:A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{-T_{\rm M}/2}^{0}0 {\rm V} \cdot\, {\rm d } {\it t }+\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{0}^{+T_{\rm M}/2}1 \rm V \ {\rm d }{\it t }. | :A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{-T_{\rm M}/2}^{0}0 {\rm V} \cdot\, {\rm d } {\it t }+\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{0}^{+T_{\rm M}/2}1 \rm V \ {\rm d }{\it t }. | ||
− | * | + | *Only the second term makes a contribution. From this follows again : A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}}. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
__NOEDITSECTION__ | __NOEDITSECTION__ | ||
− | [[Category: | + | [[Category:Signal Representation: Exercises|^2.2 Direct Current Signal^]] |
Latest revision as of 18:30, 17 May 2021
The graph shows six time signals defined for all times (from -\infty to +\infty). For all sample signals x_i(t) the associated spectral function can be written as:
- X_i(f)=A_0\cdot{\rm \delta}(f)+\Delta X_i(f).
Here:
- A_0 is the DC component of the signal.
- \Delta X_i(f) is the spectrum of the residual signal reduced by the DC component:
- \Delta x_i(t) = x_i(t) - A_0.
Hint:
- This exercise belongs to the chapter
Direct Current Signal - Limit Case of a Periodic Signal.
Questions
Solution
(1) The correct answers are 1, 3, 4, 5 and 6.
- All signals except x_2(t) contain a DC signal component.
(2) Only solution 5 is correct:
- If the DC component 1\text{V} is subtracted from the signal x_5(t), the residual signal \Delta x_5(t) = x5(t) - 1\text{V} is zero.
- Accordignly, the spectral function is \Delta X_5(f) = 0.
- For all other time courses \Delta x_i(t)ßne 0 and thus the associated spectral function \Delta X_i(f)\ne 0, too.
(3) Given a periodic signal, averaging over a period duration is sufficient to calculate the DC signal component A_0 .
- For signal x_3(t) the period duration is T_0 = 3\,\text{ms}. This results in the required DC component:A_0=\rm \frac{1}{3\,ms}\cdot \big[1\,V\cdot 1\,ms+(-1\,V)\cdot 2\,ms \big] \hspace{0.15cm}\underline{=-0.333\,V}.
(4) The signal x_4(t) can be written as: x_4(t) = 0.5 \,{\rm V} + Δx_4(t).
- Here Δx_4(t) denotes a rectangular pulse with amplitude 0.5 \,{\rm V} and duration 4 \,{\rm ms} ,
- which due to its finite duration does not contribute to the DC signal component.
- Therefore A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}} applies here.
(5) The general equation for calculating the DC signal component is:
- A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int_{-T_{\rm M}/2}^{+T_{\rm M}/2}x(t)\, {\rm d }t.
- If one splits this integral into two partial integrals, one obtains:
- A_0=\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{-T_{\rm M}/2}^{0}0 {\rm V} \cdot\, {\rm d } {\it t }+\lim_{T_{\rm M}\to \infty}\frac{1}{T_{\rm M}}\int _{0}^{+T_{\rm M}/2}1 \rm V \ {\rm d }{\it t }.
- Only the second term makes a contribution. From this follows again : A_0 \hspace{0.15cm}\underline{=0.5 \,{\rm V}}.