Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.3: Pointer Diagram Representation"

From LNTwww
 
(10 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID716__Sig_A_4_3.png|250px|right|frame|Zeigerdiagramm einer Harmonischen]]
+
[[File:P_ID716__Sig_A_4_3.png|250px|right|frame|Pointer diagram of a harmonic]]
  
Wir betrachten ein analytisches Signal  x+(t), welches durch das gezeichnete Diagramm in der komplexen Ebene festgelegt ist. Je nach Wahl der Signalparameter ergeben sich daraus drei physikalische Bandpass–Signale  x1(t),  x2(t)  und  x3(t), die sich durch verschiedene Startpunkte  $S_i = x_i(t = 0)$  unterscheiden (blauer, grüner und roter Punkt). Zudem seien auch die Winkelgeschwindigkeiten der drei Konstellationen unterschiedlich:
+
We consider an analytical signal  x+(t), which is defined by the drawn diagram in the complex plane.  Depending on the choice of signal parameters, this results in three physical band-pass signals  x1(t),  x2(t)  and  x3(t), which differ by different starting points  Si=xi(t=0).  
*Das analytische Signal  x1+(t)  beginnt bei  S1=3 V. Die Winkelgeschwindigkeit ist  ω1=π104 1/s.
 
*Das Signal  x2+(t)  beginnt beim grünen Startpunkt  S2=j3 V  und dreht gegenüber  x1+(t)  mit doppelter Winkelgeschwindigkeit   ⇒   ω2=2ω1.
 
*Das Signal x3+(t) beginnt beim rot markierten Ausgangspunkt  S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}\hspace{0.05cm}\cdot\hspace{0.05cm}\pi /3}  und dreht mit gleicher Geschwindigkeit wie das Signal  $x_{2+}(t)$.
 
  
 +
In addition, the angular velocities of the three constellations  (blue, green and red point)  are also different:
 +
*The (blue) analytical signal  x_{1+}(t)  starts at  S_1 = 3 \ \rm V.  The angular velocity is  \omega_1 = \pi \cdot 10^{4} \ 1/\text{s}.
 +
*The signal  x_{2+}(t)  starts at the green starting point  S_2 = {\rm j} \cdot 3 \ \text{V}  and, compared to  x_{1+}(t) , rotates with twice the angular velocity  ⇒   \omega_2 = 2 \cdot \omega_1.
 +
*The signal x_{3+}(t) starts at the red starting point  S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}\hspace{0.05cm}\cdot\hspace{0.05cm}\pi /3}  and rotates with same speed as the signal  x_{2+}(t).
  
  
Line 18: Line 19:
  
  
''Hinweise:''  
+
 
*Die Aufgabe gehört zum  Kapitel  [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function|Analytisches Signal und zugehörige Spektralfunktion]].
+
''Hints:''  
*Das interaktive Applet  [[Applets:Physikalisches_Signal_%26_Analytisches_Signal|Physikalisches Signal & Analytisches Signal]]  verdeutlicht die hier behandelte Thematik.
+
*This exercise belongs to the chapter  [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function|Analytical Signal and its Spectral Function]].
 +
*The interactive applet  [[Applets:Physical_Signal_%26_Analytic_Signal|Physical and Analytical Signal]]  illustrates the topic covered here.
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß sind die Amplituden aller betrachteten Signale?
+
{What are the amplitudes of all signals considered?
 
|type="{}"}
 
|type="{}"}
 
A\ = \   { 3 3% } &nbsp;\text{V}
 
A\ = \   { 3 3% } &nbsp;\text{V}
  
{Welche Werte besitzen Frequenz und Phase des Signals&nbsp; x_1(t)?
+
{What are the frequency and phase values of the signal&nbsp; x_1(t)?
 
|type="{}"}
 
|type="{}"}
 
f_1\ = \   { 5 3% } &nbsp;\text{kHz}
 
f_1\ = \   { 5 3% } &nbsp;\text{kHz}
\varphi_1\ = \   { 0. } &nbsp;$\text{Grad}$
+
\varphi_1\ = \   { 0. } &nbsp;$\text{deg}$
  
{Welche Werte besitzen Frequenz und Phase des Signals&nbsp; x_2(t)?
+
{What are the frequency and phase values of the signal&nbsp; x_2(t)?
 
|type="{}"}
 
|type="{}"}
 
f_2\ = \   { 10 3% } &nbsp;\text{kHz}
 
f_2\ = \   { 10 3% } &nbsp;\text{kHz}
\varphi_2\ = \   { -91--89 } &nbsp;$\text{Grad}$
+
\varphi_2\ = \   { -91--89 } &nbsp;$\text{deg}$
  
{Welche Werte besitzen Frequenz und Phase des Signals&nbsp; x_3(t)?
+
{What are the frequency and phase values of the signal &nbsp; x_3(t)?
 
|type="{}"}
 
|type="{}"}
 
f_3\ = \   { 10 3% } &nbsp;\text{kHz}
 
f_3\ = \   { 10 3% } &nbsp;\text{kHz}
\varphi_3\ = \   { 60 3% } &nbsp;$\text{Grad}$
+
\varphi_3\ = \   { 60 3% } &nbsp;$\text{deg}$
  
{Nach welcher Zeit&nbsp; t_1&nbsp; ist das analytische Signal&nbsp; x_{3+}(t)&nbsp; erstmalig wieder gleich dem Startwert&nbsp; x_{3+}(t = 0)?
+
{After what time&nbsp; t_1&nbsp; is the analytical signal&nbsp; x_{3+}(t)&nbsp; for the first time again equal to the initial value&nbsp; x_{3+}(t = 0)?
 
|type="{}"}
 
|type="{}"}
 
t_1\ = \   { 0.1 3% } &nbsp;\text{ms}
 
t_1\ = \   { 0.1 3% } &nbsp;\text{ms}
  
{Nach welcher Zeit&nbsp; t_2&nbsp; ist das physikalische Signal&nbsp; x_3(t)&nbsp; zum ersten Mal wieder so groß wie zum Zeitpunkt&nbsp; t = 0?
+
{After what time&nbsp; t_2&nbsp; is the physical signal&nbsp; x_3(t)&nbsp; for the first time again as large as at time&nbsp; t = 0?
 
|type="{}"}
 
|type="{}"}
 
t_2\ = \   { 0.033 3% } &nbsp;\text{ms}
 
t_2\ = \   { 0.033 3% } &nbsp;\text{ms}
Line 57: Line 59:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Die Amplitude der harmonischen Schwingung ist gleich der Zeigerlänge. Für alle Signale gilt&nbsp; A \; \underline{= 3 \ \text{V}}.
+
'''(1)'''&nbsp;  The amplitude of the harmonic oscillation is equal to the pointer length.&nbsp; For all signals&nbsp; A \; \underline{= 3 \ \text{V}}.
  
  
'''(2)'''&nbsp;  Die gesuchte Frequenz ergibt sich zu&nbsp; f_1 = \omega_1/(2\pi ) \; \underline{= 5 \ \text{kHz}}.  
+
'''(2)'''&nbsp;  The sought frequency is given by&nbsp; f_1 = \omega_1/(2\pi ) \; \underline{= 5 \ \text{kHz}}.  
*Die Phase kann aus&nbsp; S_1 = 3 \ \text{V} \cdot \text{e}^{–\text{j} \hspace{0.05cm}\cdot \hspace{0.05cm} \varphi_1}&nbsp; ermittelt werden und ist&nbsp; \varphi_1 \; \underline{= 0}.  
+
*The phase can be determined from&nbsp; S_1 = 3 \ \text{V} \cdot \text{e}^{–\text{j} \hspace{0.05cm}\cdot \hspace{0.05cm} \varphi_1}&nbsp; and is&nbsp; \varphi_1 \; \underline{= 0}.  
*Insgesamt ergibt sich
+
*In total this gives
 
   
 
   
 
:$$x_1(t) = 3\hspace{0.05cm}{\rm V}
 
:$$x_1(t) = 3\hspace{0.05cm}{\rm V}
Line 70: Line 72:
  
  
'''(3)'''&nbsp;  Wegen&nbsp; \omega_2 = 2\cdot \omega_1&nbsp; beträgt nun die Frequenz&nbsp; f_2 = 2 \cdot f_1 \; \underline{= 10 \ \text{kHz}}.  
+
'''(3)'''&nbsp;  Because of&nbsp; \omega_2 = 2\cdot \omega_1&nbsp;, the frequency is now&nbsp; f_2 = 2 \cdot f_1 \; \underline{= 10 \ \text{kHz}}.  
*Die Phase ergibt sich mit dem Startzeitpunkt&nbsp; S_2&nbsp; zu&nbsp; \text{e}^{–\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}\varphi_2} = \text{j} &nbsp; &rArr; &nbsp; \varphi_2 \; \underline{= -\pi /2 \; (-90^{\circ})}.  
+
*The phase is obtained with the starting time&nbsp; S_2&nbsp; at&nbsp; \text{e}^{–\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}\varphi_2} = \text{j} &nbsp; &rArr; &nbsp; \varphi_2 \; \underline{= -\pi /2 \; (-90^{\circ})}.  
*Somit lautet die Zeitfunktion:
+
*Thus the time function is:
 
   
 
   
 
:$$x_2(t) = 3\hspace{0.05cm}{\rm V}
 
:$$x_2(t) = 3\hspace{0.05cm}{\rm V}
Line 78: Line 80:
 
  \cdot  {\sin} ( 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot t ).$$
 
  \cdot  {\sin} ( 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot t ).$$
  
Dieses Signal ist „minus–sinusförmig”, was auch direkt am Zeigerdiagramm abgelesen werden kann:  
+
This signal is "minus-sine", which can also be read directly from the pointer diagram:
*Der Realteil von&nbsp; x_{2+}(t)&nbsp; zum Zeitpunkt&nbsp; t = 0&nbsp; ist Null. Da der Zeiger entgegen dem Uhrzeigersinn dreht, ergibt sich zunächst ein negativer Realteil.  
+
*The real part of&nbsp; x_{2+}(t)&nbsp; at time&nbsp; t = 0&nbsp; is zero.&nbsp; Since the pointer turns counterclockwise, the real part is negative at first.
*Nach einer viertel Umdrehung ist&nbsp; x_2(T/4) = - 3 \ \text{V}.  
+
*After a quarter turn,&nbsp; x_2(T/4) = - 3 \ \text{V}.  
*Dreht man nochmals in Schritten von&nbsp; 90^\circ&nbsp; entgegen dem Uhrzeigersinn weiter, so ergeben sich die Signalwerte&nbsp; 0 \ \text{V},&nbsp; 3 \ \text{V}&nbsp; und&nbsp; 0 \ \text{V}.
+
*If one continues to turn counterclockwise in steps of&nbsp; 90^\circ, the signal values&nbsp; 0 \ \text{V},&nbsp; 3 \ \text{V}&nbsp; and&nbsp; 0 \ \text{V} result.
  
  
'''(4)'''&nbsp;   Diese Teilaufgabe kann analog zu den Fragen&nbsp; '''(2)'''&nbsp; und '''(3)''' gelöst werden: &nbsp;  
+
'''(4)'''&nbsp; This sub-task can be solved analogously to sub-tasks&nbsp; '''(2)'''&nbsp; and '''(3)''' : &nbsp;  
 
:f_3  \; \underline{= 10 \ \text{kHz}}, \ \varphi_3 \; \underline{= 60^\circ}.
 
:f_3  \; \underline{= 10 \ \text{kHz}}, \ \varphi_3 \; \underline{= 60^\circ}.
  
  
'''(5)'''&nbsp;   Der Zeiger benötigt für eine Umdrehung genau die Periodendauer&nbsp; T_3 = 1/f_3  \; \underline{= 0.1 \ \text{ms}} \;(= t_1).
+
'''(5)'''&nbsp; The pointer requires exactly the period&nbsp; T_3 = 1/f_3  \; \underline{= 0.1 \ \text{ms}} \;(= t_1) for one rotation.
  
  
'''(6)'''&nbsp;   Das analytische Signal startet bei&nbsp; S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}60^{\circ}}.  
+
'''(6)'''&nbsp; The analytical signal starts at&nbsp; S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}60^{\circ}}.  
*Dreht das Signal um&nbsp; 120^\circ&nbsp; weiter, so ergibt sich genau der gleiche Realteil.  
+
*If the signal rotates further by&nbsp; 120^\circ,&nbsp; exactly the same real part results.
*Es gilt dann mit&nbsp; t_2 = t_1/3 \; \underline{= 0.033 \ \text{ms}} &nbsp; die folgende Beziehung:
+
*The following relationship then applies with&nbsp; t_2 = t_1/3 \; \underline{= 0.033 \ \text{ms}} &nbsp;:
 
   
 
   
 
:$$x_3(t = t_2) = x_3(t = 0) = 3\hspace{0.05cm}{\rm V}
 
:$$x_3(t = t_2) = x_3(t = 0) = 3\hspace{0.05cm}{\rm V}
Line 101: Line 103:
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^4.2 Analytical Signal and Its Spectral Function^]]
+
[[Category:Signal Representation: Exercises|^4.2 Analytical Signal and its Spectral Function^]]

Latest revision as of 16:02, 6 May 2021

Pointer diagram of a harmonic

We consider an analytical signal  x_+(t), which is defined by the drawn diagram in the complex plane.  Depending on the choice of signal parameters, this results in three physical band-pass signals  x_1(t)x_2(t)  and  x_3(t), which differ by different starting points  S_i = x_i(t = 0).

In addition, the angular velocities of the three constellations  (blue, green and red point)  are also different:

  • The (blue) analytical signal  x_{1+}(t)  starts at  S_1 = 3 \ \rm V.  The angular velocity is  \omega_1 = \pi \cdot 10^{4} \ 1/\text{s}.
  • The signal  x_{2+}(t)  starts at the green starting point  S_2 = {\rm j} \cdot 3 \ \text{V}  and, compared to  x_{1+}(t) , rotates with twice the angular velocity  ⇒   \omega_2 = 2 \cdot \omega_1.
  • The signal x_{3+}(t) starts at the red starting point  S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}\hspace{0.05cm}\cdot\hspace{0.05cm}\pi /3}  and rotates with same speed as the signal  x_{2+}(t).





Hints:


Questions

1

What are the amplitudes of all signals considered?

A\ = \

 \text{V}

2

What are the frequency and phase values of the signal  x_1(t)?

f_1\ = \

 \text{kHz}
\varphi_1\ = \

 \text{deg}

3

What are the frequency and phase values of the signal  x_2(t)?

f_2\ = \

 \text{kHz}
\varphi_2\ = \

 \text{deg}

4

What are the frequency and phase values of the signal   x_3(t)?

f_3\ = \

 \text{kHz}
\varphi_3\ = \

 \text{deg}

5

After what time  t_1  is the analytical signal  x_{3+}(t)  for the first time again equal to the initial value  x_{3+}(t = 0)?

t_1\ = \

 \text{ms}

6

After what time  t_2  is the physical signal  x_3(t)  for the first time again as large as at time  t = 0?

t_2\ = \

 \text{ms}


Solution

(1)  The amplitude of the harmonic oscillation is equal to the pointer length.  For all signals  A \; \underline{= 3 \ \text{V}}.


(2)  The sought frequency is given by  f_1 = \omega_1/(2\pi ) \; \underline{= 5 \ \text{kHz}}.

  • The phase can be determined from  S_1 = 3 \ \text{V} \cdot \text{e}^{–\text{j} \hspace{0.05cm}\cdot \hspace{0.05cm} \varphi_1}  and is  \varphi_1 \; \underline{= 0}.
  • In total this gives
x_1(t) = 3\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi \cdot {\rm 5 \hspace{0.05cm} kHz}\cdot t) .


(3)  Because of  \omega_2 = 2\cdot \omega_1 , the frequency is now  f_2 = 2 \cdot f_1 \; \underline{= 10 \ \text{kHz}}.

  • The phase is obtained with the starting time  S_2  at  \text{e}^{–\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}\varphi_2} = \text{j}   ⇒   \varphi_2 \; \underline{= -\pi /2 \; (-90^{\circ})}.
  • Thus the time function is:
x_2(t) = 3\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot t + 90^\circ) = -3\hspace{0.05cm}{\rm V} \cdot {\sin} ( 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot t ).

This signal is "minus-sine", which can also be read directly from the pointer diagram:

  • The real part of  x_{2+}(t)  at time  t = 0  is zero.  Since the pointer turns counterclockwise, the real part is negative at first.
  • After a quarter turn,  x_2(T/4) = - 3 \ \text{V}.
  • If one continues to turn counterclockwise in steps of  90^\circ, the signal values  0 \ \text{V}3 \ \text{V}  and  0 \ \text{V} result.


(4)  This sub-task can be solved analogously to sub-tasks  (2)  and (3) :  

f_3 \; \underline{= 10 \ \text{kHz}}, \ \varphi_3 \; \underline{= 60^\circ}.


(5)  The pointer requires exactly the period  T_3 = 1/f_3 \; \underline{= 0.1 \ \text{ms}} \;(= t_1) for one rotation.


(6)  The analytical signal starts at  S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}60^{\circ}}.

  • If the signal rotates further by  120^\circ,  exactly the same real part results.
  • The following relationship then applies with  t_2 = t_1/3 \; \underline{= 0.033 \ \text{ms}}  :
x_3(t = t_2) = x_3(t = 0) = 3\hspace{0.05cm}{\rm V} \cdot {\cos} ( 60^\circ) = 1.5\hspace{0.05cm}{\rm V} .