Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.3Z: Hilbert Transformator"

From LNTwww
 
(6 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID717__Sig_Z_4_3_neu.png|right|frame|Hilbert-Transformator ]]
+
[[File:P_ID717__Sig_Z_4_3_neu.png|right|frame|Hilbert transformator ]]
Die Grafik beschreibt ein Modell, wie zumindest gedanklich
+
The diagram describes a model of how, at least mentally,  
*aus dem reellen Bandpass–Signal  $x(t)$  
+
*the analytical signal  $x_{+}(t)$  can be generated,
*das analytische Signal  $x_{+}(t)$  
+
*from the real band-pass signal  $x(t)$.
 
+
  
generiert werden kann.  
+
The lower branch contains the so-called  "Hilbert transformer"  with the frequency response  HHT(f). 
  
Der untere Zweig enthält den so genannten „Hilbert–Transformator” mit dem Frequenzgang  HHT(f). Dessen Ausgangssignal  y(t)  wird mit der imaginären Einheit  j  multipliziert und zum Signal  x(t)  addiert:
+
Its output signal  y(t)  is multiplied by the imaginary unit  j  and added to the signal  x(t) :
 
:x+(t)=x(t)+jy(t).
 
:x+(t)=x(t)+jy(t).
Als Testsignale werden verwendet, jeweils mit  A=1V  und  f0=10kHz:
+
As test signals are used, each with  A=1V  and  f0=10kHz:
 
:x1(t)=Acos(2πf0t),
 
:x1(t)=Acos(2πf0t),
 
:x2(t)=Asin(2πf0t),
 
:x2(t)=Asin(2πf0t),
:$$x_3(t) = A \cdot  {\cos} \big( 2 \pi f_0 (t - \tau) \big) \hspace{0.3cm}{\rm mit}\hspace{0.3cm}\tau = 12.5 \hspace{0.1cm}{\rm µ s}.$$
+
:$$x_3(t) = A \cdot  {\cos} \big( 2 \pi f_0 (t - \tau) \big) \hspace{0.3cm}{\rm with}\hspace{0.3cm}\tau = 12.5 \hspace{0.1cm}{\rm µ s}.$$
 
 
  
  
Line 23: Line 22:
  
  
 
+
''Hints:''  
 
+
*This exercise belongs to the chapter  [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function|Analytical Signal and its Spectral Function]].
''Hinweise:''  
 
*Die Aufgabe gehört zum  Kapitel  [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function|Analytisches Signal und zugehörige Spektralfunktion]].
 
 
   
 
   
*Für die Spektralfunktion des analytischen Signals gilt:  
+
*The following applies to the spectral function of the analytical signal:
 
:X+(f)=[1+sign(f)]X(f).
 
:X+(f)=[1+sign(f)]X(f).
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie den Frequenzgang&nbsp; HHT(f)&nbsp; des Hilbert-Transformators. Welcher Wert gilt für die Frequenz&nbsp; f0=10 kHz?
+
{Calculate the frequency response&nbsp; $H_{\rm HT}(f)$&nbsp; of the Hilbert transformer.&nbsp; Which value is valid for the frequency&nbsp; f0=10 kHz?
 
|type="{}"}
 
|type="{}"}
 
Re[HHT(f=f0)] =   { 0. }
 
Re[HHT(f=f0)] =   { 0. }
Line 41: Line 38:
  
  
{Wie lautet die Hilbert-Transformierte&nbsp; y1(t)&nbsp; für das Eingangssignal&nbsp; x1(t)? Welcher Wert ergibt sich insbesondere bei&nbsp; t=0?
+
{What is the Hilbert transform&nbsp; y1(t)&nbsp; for the input signal&nbsp; x1(t)?&nbsp; In particular, what value results at&nbsp; t=0?
 
|type="{}"}
 
|type="{}"}
 
y1(t=0) =  { 0. } &nbsp;V
 
y1(t=0) =  { 0. } &nbsp;V
  
  
{Wie lautet die Hilbert-Transformierte&nbsp; y2(t)&nbsp; für das Eingangssignal&nbsp; x2(t)? Welcher Wert ergibt sich insbesondere bei&nbsp; t=0?
+
{What is the Hilbert transform&nbsp; y2(t)&nbsp; for the input signal&nbsp; x2(t)?&nbsp; Which value results in particular at&nbsp; t=0?
 
|type="{}"}
 
|type="{}"}
 
y2(t=0) =  { -1.03--0.97 } &nbsp;V
 
y2(t=0) =  { -1.03--0.97 } &nbsp;V
  
  
{Wie lautet die Hilbert-Transformierte&nbsp; y3(t)&nbsp; für das Eingangssignal&nbsp; x3(t)? Welcher Wert ergibt sich für&nbsp; t=0? <br>Wie groß ist die Phasenverzögerung&nbsp; φHT&nbsp; des Hilbert-Transformators?
+
{What is the Hilbert transform&nbsp; y3(t)&nbsp; for the input signal&nbsp; x3(t)?&nbsp; What value results for&nbsp; t=0?&nbsp; What is the phase delay&nbsp; φHT&nbsp; of the Hilbert transformer?
 
|type="{}"}
 
|type="{}"}
 
φHT =  { 90 3% } &nbsp;Grad
 
φHT =  { 90 3% } &nbsp;Grad
Line 57: Line 54:
  
  
{Wie lautet das zu&nbsp; x3(t)&nbsp; gehörige analytische Signal? Welche Werte haben Real– und Imaginärteil dieses komplexen Signals zum Zeitpunkt&nbsp; t=0?
+
{What is the analytical signal associated with&nbsp; x3(t)?&nbsp; What are the values of the real and imaginary parts of this complex signal at time&nbsp; t=0?
 
|type="{}"}
 
|type="{}"}
 
Re[x3+(t=0)] =  { 0.707 3% } &nbsp;V
 
Re[x3+(t=0)] =  { 0.707 3% } &nbsp;V
Line 66: Line 63:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Für die Spektralfunktion am Modellausgang gilt:
+
'''(1)'''&nbsp;  For the spectral function at the model output holds:
 
:$$X_{\rm +}(f)= \left(1 + {\rm j}\cdot H_{\rm HT}(f)\right) \cdot
 
:$$X_{\rm +}(f)= \left(1 + {\rm j}\cdot H_{\rm HT}(f)\right) \cdot
 
  X(f).$$
 
  X(f).$$
*Ein Vergleich mit der angegebenen Beziehung
+
*A comparison with the given relation
 
:$$X_{\rm +}(f)= \left(1 + {\rm
 
:$$X_{\rm +}(f)= \left(1 + {\rm
 
sign}(f)\right) \cdot  X(f)$$
 
sign}(f)\right) \cdot  X(f)$$
:zeigt, dass&nbsp; HHT(f)=jsign(f)&nbsp; ist.  
+
:shows that&nbsp; HHT(f)=jsign(f).  
  
*Der gesuchte Realteil ist somit&nbsp; Re[X+(f)]=0_&nbsp; und  der Imaginärteil ist gleich&nbsp; Im[X+(f)]=1_.
+
*Thus, the real part we are looking for is&nbsp; Re[X+(f)]=0_&nbsp; and the imaginary part is equal to&nbsp; Im[X+(f)]=1_.
  
  
  
'''(2)'''&nbsp;  Aus der Spektralfunktion
+
'''(2)'''&nbsp;  From the spectral function
 
:$$X_1(f) = {A}/{2}\cdot\delta (f + f_{0})+
 
:$$X_1(f) = {A}/{2}\cdot\delta (f + f_{0})+
 
{A}/{2}\cdot\delta (f - f_{0}).$$
 
{A}/{2}\cdot\delta (f - f_{0}).$$
:wird nach dem Hilbert-Transformator:
+
:becomes according to the Hilbert transformer:
 
:$$Y_1(f) = {\rm j}\cdot {A}/{2}\cdot\delta (f + f_{0})-{\rm
 
:$$Y_1(f) = {\rm j}\cdot {A}/{2}\cdot\delta (f + f_{0})-{\rm
 
j}\cdot {A}/{2}\cdot\delta (f - f_{0}).$$
 
j}\cdot {A}/{2}\cdot\delta (f - f_{0}).$$
*Damit lautet das Signal am Ausgang des Hilbert-Transformators:
+
*Thus the signal at the output of the Hilbert transformer is:
 
:y1(t)=Asin(2πf0t)y1(t=0)=0_.
 
:y1(t)=Asin(2πf0t)y1(t=0)=0_.
  
  
  
'''(3)'''&nbsp;  Nun lauten die Spektralfunktionen am Eingang und Ausgang des Hilbert-Transformators:
+
'''(3)'''&nbsp;  Now the spectral functions at the input and output of the Hilbert transformer are:
 
:$$X_2(f) = {\rm j}\cdot {A}/{2}\cdot\delta (f + f_{0})-{\rm
 
:$$X_2(f) = {\rm j}\cdot {A}/{2}\cdot\delta (f + f_{0})-{\rm
 
j}\cdot {A}/{2}\cdot\delta (f - f_{0}),$$
 
j}\cdot {A}/{2}\cdot\delta (f - f_{0}),$$
 
:$$Y_2(f) = -{A}/{2}\cdot\delta (f + f_{0})-
 
:$$Y_2(f) = -{A}/{2}\cdot\delta (f + f_{0})-
 
{A}/{2}\cdot\delta (f - f_{0}).$$
 
{A}/{2}\cdot\delta (f - f_{0}).$$
*Daraus folgt y2(t)=Acos(2πf0t) und y2(t=0)=1V_.
+
*It follows that&nbsp; y2(t)=Acos(2πf0t)&nbsp; and&nbsp; y2(t=0)=1V_.
  
  
  
  
'''(4)'''&nbsp;  Dieses Eingangssignal lässt sich auch wie folgt darstellen:
+
'''(4)'''&nbsp;  This input signal can also be represented as follows:
 
:$$x_3(t) = A \cdot  {\cos} ( 2 \pi f_0 t -
 
:$$x_3(t) = A \cdot  {\cos} ( 2 \pi f_0 t -
 
  2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot {\rm 0.0125 \hspace{0.05cm} ms}) =
 
  2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot {\rm 0.0125 \hspace{0.05cm} ms}) =
 
A \cdot  {\cos} ( 2 \pi f_0 t - \pi/4)\hspace{0.3cm}
 
A \cdot  {\cos} ( 2 \pi f_0 t - \pi/4)\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}y_3(t) = A \cdot  {\cos} ( 2 \pi f_0 t - 3\pi/4).$$
 
\Rightarrow \hspace{0.3cm}y_3(t) = A \cdot  {\cos} ( 2 \pi f_0 t - 3\pi/4).$$
*Die Signalphase ist somit&nbsp; φ=π/4.  
+
*The signal phase is thus&nbsp; φ=π/4.  
*Durch den Hilbert-Transformator wird diese um&nbsp; φHT=90_(π/2)&nbsp; verzögert.  
+
*The Hilbert transformer delays this by&nbsp; φHT=90_(π/2).  
*Deshalb ist das Ausgangssignal&nbsp; y3(t)=Acos(2πf0t3π/4)&nbsp; und der Signalwert zur Zeit&nbsp; t=0&nbsp; beträgt&nbsp; Acos(135)=0.707V_.
+
*Therefore, the output signal&nbsp; y3(t)=Acos(2πf0t3π/4)&nbsp; and the signal value at time&nbsp; t=0&nbsp; is&nbsp; Acos(135)=0.707V_.
  
  
  
'''(5)'''&nbsp;  Die Spektralfunktion des Signals&nbsp; x3(t)&nbsp; lautet:
+
'''(5)'''&nbsp;  The spectral function of the signal&nbsp; x3(t)&nbsp; is:
 
:$$X_3(f) = {A_0}/{2} \cdot {\rm e}^{{\rm j} \varphi}\cdot\delta
 
:$$X_3(f) = {A_0}/{2} \cdot {\rm e}^{{\rm j} \varphi}\cdot\delta
 
(f + f_{\rm 0}) + {A_0}/{2} \cdot {\rm e}^{-{\rm j}
 
(f + f_{\rm 0}) + {A_0}/{2} \cdot {\rm e}^{-{\rm j}
 
\varphi}\cdot\delta (f - f_{\rm 0})  .$$
 
\varphi}\cdot\delta (f - f_{\rm 0})  .$$
*Beim analytischen Signal verschwindet der erste Anteil und der Anteil bei&nbsp; +f0&nbsp; wird verdoppelt:
+
*For the analytical signal, the first component disappears and the component at&nbsp; +f0&nbsp; is doubled:
 +
 
 
:$$X_{3+}(f) =  {A_0} \cdot {\rm e}^{-{\rm j} \varphi}\cdot\delta (f
 
:$$X_{3+}(f) =  {A_0} \cdot {\rm e}^{-{\rm j} \varphi}\cdot\delta (f
 
- f_{\rm 0})  .$$
 
- f_{\rm 0})  .$$
*Durch Anwendung des&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Verschiebungssatzes]]&nbsp; lautet damit die zugehörige Zeitfunktion mit&nbsp; φ=π/4:
+
*By applying the&nbsp; "Shifting Theorem"&nbsp;, the associated time function with&nbsp; φ=π/4 is:
 
:$$x_{3+}(t) = A_0 \cdot {\rm e}^{{\rm j}( 2 \pi f_{\rm 0} t
 
:$$x_{3+}(t) = A_0 \cdot {\rm e}^{{\rm j}( 2 \pi f_{\rm 0} t
 
\hspace{0.05cm}-\hspace{0.05cm} \varphi)}.$$
 
\hspace{0.05cm}-\hspace{0.05cm} \varphi)}.$$
*Speziell gilt für den Zeitpunkt&nbsp; t=0:
+
*Specifically, for time&nbsp; t=0:
 
:$$x_{3+}(t = 0) = A_0 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}
 
:$$x_{3+}(t = 0) = A_0 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}
 
\varphi} = A_0 \cdot{\cos} ( 45^\circ)-{\rm j}\cdot A_0  
 
\varphi} = A_0 \cdot{\cos} ( 45^\circ)-{\rm j}\cdot A_0  
Line 128: Line 126:
 
j}\cdot {\rm 0.707 \hspace{0.05cm} V}}.$$
 
j}\cdot {\rm 0.707 \hspace{0.05cm} V}}.$$
  
''Hinweis'': &nbsp;  
+
 
*Um von&nbsp; x(t)&nbsp; zu&nbsp; x+(t)&nbsp; zu kommen, muss man nur die Cosinusfunktion durch die komplexe Exponentialfunktion ersetzen.  
+
''Hint'': &nbsp;  
*Beispielsweise gilt für eine harmonische Schwingung:
+
*To get from&nbsp; x(t)&nbsp; to&nbsp; x+(t),&nbsp; just replace the cosine function with the complex exponential function.
 +
*For example, the following applies to a harmonic oscillation:
 
:$$x(t) = A \cdot  {\cos} ( 2 \pi f_0 t  
 
:$$x(t) = A \cdot  {\cos} ( 2 \pi f_0 t  
 
-\hspace{0.05cm} \varphi) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}  x_{+}(t) = A \cdot {\rm e}^{{\rm j}( 2 \pi f_{\rm 0} t
 
-\hspace{0.05cm} \varphi) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}  x_{+}(t) = A \cdot {\rm e}^{{\rm j}( 2 \pi f_{\rm 0} t
Line 138: Line 137:
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^4.2 Analytical Signal and Its Spectral Function^]]
+
[[Category:Signal Representation: Exercises|^4.2 Analytical Signal and its Spectral Function^]]

Latest revision as of 16:13, 24 May 2021

Hilbert transformator

The diagram describes a model of how, at least mentally,

  • the analytical signal  x+(t)  can be generated,
  • from the real band-pass signal  x(t).


The lower branch contains the so-called  "Hilbert transformer"  with the frequency response  HHT(f)

Its output signal  y(t)  is multiplied by the imaginary unit  j  and added to the signal  x(t) :

x+(t)=x(t)+jy(t).

As test signals are used, each with  A=1V  and  f0=10kHz:

x1(t)=Acos(2πf0t),
x2(t)=Asin(2πf0t),
x_3(t) = A \cdot {\cos} \big( 2 \pi f_0 (t - \tau) \big) \hspace{0.3cm}{\rm with}\hspace{0.3cm}\tau = 12.5 \hspace{0.1cm}{\rm µ s}.



Hints:

  • The following applies to the spectral function of the analytical signal:
X_{\rm +}(f)= \big[1 + {\rm sign}(f)\big] \cdot X(f).


Questions

1

Calculate the frequency response  H_{\rm HT}(f)  of the Hilbert transformer.  Which value is valid for the frequency  f_0 = 10 \text{ kHz}?

\text{Re}[H_{\rm HT}(f = f_0)]\ = \

\text{Im}[H_{\rm HT}(f = f_0)]\ = \

2

What is the Hilbert transform  y_1(t)  for the input signal  x_1(t)?  In particular, what value results at  t = 0?

y_1(t = 0)\ = \

 \rm V

3

What is the Hilbert transform  y_2(t)  for the input signal  x_2(t)?  Which value results in particular at  t = 0?

y_2(t = 0)\ = \

 \rm V

4

What is the Hilbert transform  y_3(t)  for the input signal  x_3(t)?  What value results for  t=0?  What is the phase delay  \varphi_{\rm HT}  of the Hilbert transformer?

\varphi_{\rm HT}\ = \

 \text{Grad}
y_3(t = 0)\ = \

 \text{V}

5

What is the analytical signal associated with  x_3(t)?  What are the values of the real and imaginary parts of this complex signal at time  t = 0?

\text{Re}[x_{3+}(t = 0)]\ = \

 \text{V}
\text{Im}[x_{3+}(t = 0)]\ = \

 \text{V}


Solution

(1)  For the spectral function at the model output holds:

X_{\rm +}(f)= \left(1 + {\rm j}\cdot H_{\rm HT}(f)\right) \cdot X(f).
  • A comparison with the given relation
X_{\rm +}(f)= \left(1 + {\rm sign}(f)\right) \cdot X(f)
shows that  H_{\rm HT}(f) = - {\rm j} \cdot \sign(f).
  • Thus, the real part we are looking for is  {\rm Re}[X_{\rm +}(f)]\hspace{0.15cm}\underline{=0}  and the imaginary part is equal to  {\rm Im}[X_{\rm +}(f)]\hspace{0.15cm}\underline{=-1}.


(2)  From the spectral function

X_1(f) = {A}/{2}\cdot\delta (f + f_{0})+ {A}/{2}\cdot\delta (f - f_{0}).
becomes according to the Hilbert transformer:
Y_1(f) = {\rm j}\cdot {A}/{2}\cdot\delta (f + f_{0})-{\rm j}\cdot {A}/{2}\cdot\delta (f - f_{0}).
  • Thus the signal at the output of the Hilbert transformer is:
y_1(t) = A \cdot {\sin} ( 2 \pi f_0 t ) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}y_1(t=0)\hspace{0.15 cm}\underline{ =0}.


(3)  Now the spectral functions at the input and output of the Hilbert transformer are:

X_2(f) = {\rm j}\cdot {A}/{2}\cdot\delta (f + f_{0})-{\rm j}\cdot {A}/{2}\cdot\delta (f - f_{0}),
Y_2(f) = -{A}/{2}\cdot\delta (f + f_{0})- {A}/{2}\cdot\delta (f - f_{0}).
  • It follows that  y_2(t) = - A \cdot \cos(2\pi f_0 t)  and  y_2(t = 0)\; \underline{= -\hspace{-0.08cm}1 \,\text{V}}.



(4)  This input signal can also be represented as follows:

x_3(t) = A \cdot {\cos} ( 2 \pi f_0 t - 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot {\rm 0.0125 \hspace{0.05cm} ms}) = A \cdot {\cos} ( 2 \pi f_0 t - \pi/4)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}y_3(t) = A \cdot {\cos} ( 2 \pi f_0 t - 3\pi/4).
  • The signal phase is thus  \varphi = \pi /4.
  • The Hilbert transformer delays this by  \varphi_{\rm HT} \; \underline{= 90^\circ} \; (\pi /2).
  • Therefore, the output signal  y_3(t) = A \cdot \cos(2\pi f_0 t -3 \pi /4)  and the signal value at time  t = 0  is  A \cdot \cos(135^\circ) \; \underline{= -0.707 \,\text{V}}.


(5)  The spectral function of the signal  x_3(t)  is:

X_3(f) = {A_0}/{2} \cdot {\rm e}^{{\rm j} \varphi}\cdot\delta (f + f_{\rm 0}) + {A_0}/{2} \cdot {\rm e}^{-{\rm j} \varphi}\cdot\delta (f - f_{\rm 0}) .
  • For the analytical signal, the first component disappears and the component at  +f_0  is doubled:
X_{3+}(f) = {A_0} \cdot {\rm e}^{-{\rm j} \varphi}\cdot\delta (f - f_{\rm 0}) .
  • By applying the  "Shifting Theorem" , the associated time function with  \varphi = \pi /4 is:
x_{3+}(t) = A_0 \cdot {\rm e}^{{\rm j}( 2 \pi f_{\rm 0} t \hspace{0.05cm}-\hspace{0.05cm} \varphi)}.
  • Specifically, for time  t = 0:
x_{3+}(t = 0) = A_0 \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \varphi} = A_0 \cdot{\cos} ( 45^\circ)-{\rm j}\cdot A_0 \cdot{\sin} ( 45^\circ)= \hspace{0.15 cm}\underline{{\rm 0.707 \hspace{0.05cm} V}-{\rm j}\cdot {\rm 0.707 \hspace{0.05cm} V}}.


Hint:  

  • To get from  x(t)  to  x_+(t),  just replace the cosine function with the complex exponential function.
  • For example, the following applies to a harmonic oscillation:
x(t) = A \cdot {\cos} ( 2 \pi f_0 t -\hspace{0.05cm} \varphi) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_{+}(t) = A \cdot {\rm e}^{{\rm j}( 2 \pi f_{\rm 0} t \hspace{0.05cm}-\hspace{0.05cm} \varphi)}.