Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 5.3: Mean Square Error"

From LNTwww
 
(11 intermediate revisions by 4 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1145__Sig_A_5_3.png|250px|right|frame|Gaußimpuls, Rechteckimpuls, Spaltimpuls und einige Kenngrößen]]
+
[[File:P_ID1145__Sig_A_5_3.png|250px|right|frame|Gaussian pulse, square pulse, <br>sinc pulse and some parameters]]
  
Wir betrachten drei impulsartige Signale, nämlich
+
We consider three pulses, namely
*einen&nbsp; [[Signal_Representation/Special_Cases_of_Impulse_Signals#Gau.C3.9Fimpuls|Gaußimpuls]]&nbsp; mit  Amplitude&nbsp; A&nbsp; und äquivalenter Dauer&nbsp; T:
+
*a&nbsp; [[Signal_Representation/Special_Cases_of_Pulses#Gaussian_pulse|Gaussian pulse]]&nbsp; with amplitude&nbsp; A&nbsp; and equivalent duration&nbsp; T:
 
   
 
   
 
:x1(t)=Aeπ(t/T)2,
 
:x1(t)=Aeπ(t/T)2,
  
*einen&nbsp; [[Signal_Representation/Special_Cases_of_Impulse_Signals#Rechteckimpuls|Rechteckimpuls]]&nbsp; x2(t)&nbsp; mit  Amplitude&nbsp; A&nbsp; und (äquivalenter) Dauer&nbsp; T:
+
*a&nbsp; [[Signal_Representation/Special_Cases_of_Pulses#Rectangular_pulse|rectangular pulse]]&nbsp; x2(t)&nbsp; with amplitude&nbsp; A&nbsp; and (equivalent) duration&nbsp; T:
 
   
 
   
 
:$$x_2(t)  = \left\{ \begin{array}{c} A \\
 
:$$x_2(t)  = \left\{ \begin{array}{c} A \\
Line 20: Line 20:
 
\end{array}$$
 
\end{array}$$
  
*einen so genannten&nbsp; ''Spaltimpuls''&nbsp; gemäß nachfolgender Definition:
+
*a so called&nbsp; "sinc pulse"&nbsp; according to the following definition:
 
   
 
   
:$$x_3(t) = A \cdot {\rm si}(\pi \cdot t/ T) ,\hspace{0.15cm}{\rm si}(x) =
+
:$$x_3(t) = A \cdot {\rm sinc}(t/ T) ,\hspace{0.15cm}{\rm sinc}(x) =
  \sin(x)/x\hspace{0.05cm}.$$
+
  \sin(\pi x)/(\pi  x)\hspace{0.05cm}.$$
  
Die Signalparameter seien jeweils&nbsp; A=1 V&nbsp;  und&nbsp; T=1 ms.
+
Let the signal parameters be&nbsp; A=1 V&nbsp;  and&nbsp; T=1 ms in each case.
  
Die konventionelle&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse|Fouriertransformation]]&nbsp;  führt zu folgenden Spektralfunktionen:
+
The conventional&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse|Fourier transform]]&nbsp;  leads to the following spectral functions:
* X1(f)&nbsp; ist ebenfalls gaußförmig,
+
* X1(f)&nbsp; is also Gaussian,
* X2(f)&nbsp; verläuft entsprechend der&nbsp; $\rm si$–Funktion,
+
* X2(f)&nbsp; runs according to the&nbsp; $\rm sinc$ function,
* X3(f)&nbsp; ist für&nbsp; |f|<1/(2T)&nbsp; konstant und außerhalb Null.
+
* X3(f)&nbsp; is constant for&nbsp; |f|<1/(2T)&nbsp; and outside zero.
  
  
Für alle Spektralfunktionen gilt&nbsp; X(f=0)=AT.
+
For all spectral functions,&nbsp; X(f=0)=AT.
  
Ermittelt man das frequenzdiskrete Spektrum durch die&nbsp; [[Signal_Representation/Discrete_Fourier_Transform_(DFT)|Diskrete Fouriertransformation]]&nbsp; (DFT) mit den DFT-Parametern
+
If the discrete-frequency spectrum is determined by the&nbsp; [[Signal_Representation/Discrete_Fourier_Transform_(DFT)|Discrete Fourier Transform]]&nbsp; $\rm (DFT)$&nbsp; with the DFT parameters
* N=512 &nbsp; &rArr; &nbsp; Anzahl der berücksichtigten Abtastwerte im Zeit– und Frequenzbereich,
+
* N=512 &nbsp; &rArr; &nbsp; number of samples considered in the time and frequency domain,
*fA  &nbsp; &rArr; &nbsp; Stützstellenabstand im Frequenzbereich,
+
*fA  &nbsp; &rArr; &nbsp; interpolation distance in the frequency domain,
  
  
so wird dies aufgrund von Abbruch– und/oder Aliasingfehler zu Verfälschungen führen.  
+
this will lead to distortions due to truncation and/or aliasing errors.
  
Die weiteren DFT–Parameter liegen mit&nbsp; N&nbsp; und&nbsp; fA&nbsp; eindeutig fest. Für diese gilt:
+
 
+
The other DFT parameters are clearly fixed withn&nbsp; N&nbsp; and&nbsp; fA.&nbsp; The following applies to these:  
 
:$$f_{\rm P} = N \cdot f_{\rm A},\hspace{0.3cm}T_{\rm P} = 1/f_{\rm A},\hspace{0.3cm}T_{\rm A} = T_{\rm
 
:$$f_{\rm P} = N \cdot f_{\rm A},\hspace{0.3cm}T_{\rm P} = 1/f_{\rm A},\hspace{0.3cm}T_{\rm A} = T_{\rm
 
  P}/N
 
  P}/N
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Die Genauigkeit der jeweiligen DFT–Approximation wird durch den&nbsp; ''mittleren quadratischen Fehler''&nbsp; (MQF) erfasst:
+
The accuracy of the respective DFT approximation is captured by the&nbsp; "mean square error"&nbsp; $\rm (MSE).&nbsp; <br>Here, we use the designation&nbsp;\rm MQF$ &nbsp; &rArr; &nbsp; (German:&nbsp; "Mittlerer Quadratischer Fehler"):  
 
 
:$${\rm MQF} =  \frac{1}{N}\cdot \sum_{\mu = 0 }^{N-1}
 
:$${\rm MQF} =  \frac{1}{N}\cdot \sum_{\mu = 0 }^{N-1}
 
  \left|X(\mu \cdot f_{\rm A})-\frac{D(\mu)}{f_{\rm A}}\right|^2 \hspace{0.05cm}.$$
 
  \left|X(\mu \cdot f_{\rm A})-\frac{D(\mu)}{f_{\rm A}}\right|^2 \hspace{0.05cm}.$$
  
Die sich ergebenden MQF–Werte sind in obiger Grafik angegeben, gültig für&nbsp; N=512&nbsp; sowie für
+
The resulting MQF values are given in the graph above, valid for&nbsp; N=512&nbsp; as well as for
 
*fAT=1/4,  
 
*fAT=1/4,  
 
*fAT=1/8,  
 
*fAT=1/8,  
Line 65: Line 64:
  
  
''Hinweise:''  
+
''Hints:''  
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Signal_Representation/Possible_Errors_When_Using_DFT|Fehlermöglichkeiten bei Anwendung der DFT]].
+
*This task belongs to the chapter&nbsp; [[Signal_Representation/Possible_Errors_When_Using_DFT|Possible errors when using DFT]].
 
   
 
   
*Die Theorie zu diesem Kapitel ist im Lernvideo&nbsp; [[Fehlermöglichkeiten_bei_Anwendung_der_DFT_(Lernvideo)|Fehlermöglichkeiten bei Anwendung der DFT]]&nbsp; zusammengefasst.
+
*The theory for this chapter is summarised in the (German language) learning video <br> &nbsp; &nbsp; &nbsp;[[Fehlermöglichkeiten_bei_Anwendung_der_DFT_(Lernvideo)|Fehlermöglichkeiten bei Anwendung der DFT]] &nbsp; &rArr; &nbsp; "Possible errors when using DFT".
  
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welcher Bereich&nbsp; |f|fmax&nbsp; wird mit&nbsp; N=512&nbsp; und&nbsp; fAT=1/8&nbsp; erfasst?
+
{Which range&nbsp; |f|fmax&nbsp; is covered with&nbsp; N=512&nbsp; and&nbsp; fAT=1/8&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
fmaxT =   { 32 3% }
 
fmaxT =   { 32 3% }
  
{In welchem Zeitabstand&nbsp; TA&nbsp; liegen die Abtastwerte von&nbsp; x(t)&nbsp; vor?
+
{At what time interval&nbsp; TA&nbsp; are the sampled values of&nbsp; x(t)&nbsp; available?
 
|type="{}"}
 
|type="{}"}
 
TA/T =  { 0.01562 3% }
 
TA/T =  { 0.01562 3% }
  
{Aufgrund welcher Effekte erhöht sich der MQF–Wert für den Gaußimpuls, wenn man&nbsp;  fAT=1/4&nbsp; anstelle von&nbsp; fAT=1/8&nbsp; verwendet?
+
{Due to which effect does the MQF value for the Gaussian pulse increase when using &nbsp;  fAT=1/4&nbsp; instead of&nbsp; fAT=1/8?
 
|type="()"}
 
|type="()"}
+ Der Abbruchfehler wird signifikant vergrößert.
+
+ The truncation error is significantly increased.
- Der Aliasingfehler wird signifikant vergrößert.
+
- The aliasing error is significantly increased.
  
{Aufgrund welcher Effekte erhöht sich der MQF–Wert für den Gaußimpuls, wenn man&nbsp; fAT=1/16&nbsp; anstelle von fAT=1/4&nbsp; verwendet?
+
{Due to what effect does the MQF value for the Gaussian pulse increase when using&nbsp; fAT=1/16&nbsp; instead of  fAT=1/4?
 
|type="()"}
 
|type="()"}
- Der Abbruchfehler wird signifikant vergrößert.
+
- The truncation error is significantly increased.
+ Der Aliasingfehler wird signifikant vergrößert.
+
+ The aliasing error is significantly increased.
  
{Vergleichen Sie die MQF–Werte des Rechteckimpulses&nbsp; x2(t)&nbsp; mit denen des Gaußimpulses&nbsp; x1(t). Welche der folgenden Aussagen treffen zu?
+
{Compare the&nbsp; MQF&nbsp; values of the rectangular pulse&nbsp; x2(t)&nbsp; with those of the Gaussian pulse&nbsp; x1(t).&nbsp; Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
+ MQF&nbsp; wird größer, da die Spektralfunktion&nbsp; X2(f)&nbsp; asymptotisch langsamer abfällt als&nbsp; X1(f).
+
+ MQF&nbsp; becomes larger because the spectral function&nbsp; X2(f)&nbsp; decays asymptotically slower than&nbsp; X1(f).
+ Es dominiert der Aliasingfehler.
+
+ The aliasing error dominates.
- Es dominiert der Abbruchfehler.
+
- The truncation error dominates.
  
{Vergleichen Sie die MQF–Werte des Spaltimpulses&nbsp; x3(t)&nbsp; mit denen des Gaußimpulses&nbsp; x1(t). Welche der folgenden Aussagen treffen zu?
+
{Compare the&nbsp; MQF&nbsp; values of the "sinc pulse"&nbsp; x3(t)&nbsp; with those of the Gaussian pulse&nbsp; x1(t).&nbsp; Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- MQF&nbsp; wird größer, da die Spektralfunktion&nbsp; X3(f)&nbsp; asymptotisch langsamer abfällt als&nbsp; X1(f).
+
- MQF&nbsp; becomes larger because the spectral function&nbsp; X3(f)&nbsp; decays asymptotically slower than&nbsp; X1(f).
- Es dominiert der Aliasingfehler.
+
- The aliasing error dominates.
+ Es dominiert der Abbruchfehler.
+
+ The truncation error dominates.
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Mit den DFT–Parametern&nbsp; N=512&nbsp; und&nbsp; fAT=1/8&nbsp; folgt nach Multiplikation der beiden Größen:  
+
'''(1)'''&nbsp; With the DFT parameters&nbsp; N=512&nbsp; and&nbsp; fAT=1/8&nbsp; the following follows after multiplying the two quantities:
 
:fPT=N(fAT)=64.
 
:fPT=N(fAT)=64.
*Dadurch wird der Frequenzbereich&nbsp; $–f_{\rm P}/2 \leq f < f_{\rm P}/2$&nbsp; erfasst:
+
*This covers the frequency range&nbsp; $-f_{\rm P}/2 \leq f < +f_{\rm P}/2$:
 
:fmaxT=32_.
 
:fmaxT=32_.
  
  
'''(2)'''&nbsp; Die Periodifizierung der Zeitfunktion basiert auf dem Parameter&nbsp; TP=1/fA=8T.  
+
'''(2)'''&nbsp; The periodisation of the time function is based on the parameter&nbsp; TP=1/fA=8T.  
*Der Abstand zweier Abtastwerte beträgt somit
+
*The distance between two samples is therefore
 
:TA/T=TP/TN=8512=0.015625_.
 
:TA/T=TP/TN=8512=0.015625_.
  
  
'''(3)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 1 &nbsp; &rArr; &nbsp;  Erhöhung des Abbruchfehlers</u>:
+
'''(3)'''&nbsp; Correct is the <u>proposed solution 1 &nbsp; &rArr; &nbsp;  increase of the truncation error</u>:
*Mit dieser Maßnahme wird gleichzeitig&nbsp; TP&nbsp; von&nbsp; 8T&nbsp; auf&nbsp; 4T&nbsp; halbiert.  
+
*This measure simultaneously halves&nbsp; TP&nbsp; from&nbsp; 8T&nbsp; to&nbsp; 4T&nbsp;.
*Berücksichtigt werden somit nur noch Abtastwerte im Bereich&nbsp; –2T \leq t < 2T, wodurch der Abbruchfehler erhöht wird.  
+
*Thus, only samples in the range&nbsp; –2T \leq t < 2T are taken into account, which increases the truncation error.  
*Der mittlere quadratische Fehler&nbsp; (\rm MQF)&nbsp; steigt dadurch beim Gaußimpuls&nbsp; x_1(t)&nbsp; von&nbsp; 0.15 \cdot 10^{-15}&nbsp; auf&nbsp; 8 \cdot 10^{-15}, obwohl der Aliasingfehler durch diese Maßnahme sogar etwas kleiner wird.
+
*The mean square error&nbsp; (\rm MQF)&nbsp; increases from&nbsp; 0.15 \cdot 10^{-15}&nbsp; to&nbsp; $8 \cdot 10^{-15} for the Gaussian pulse&nbsp; x_1(t)$,&nbsp;
 +
*although the aliasing error actually decreases slightly by this measure.
  
  
  
'''(4)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2 &nbsp; &rArr; &nbsp;  Erhöhung des Aliasingfehlers</u>:
+
'''(4)'''&nbsp; Correct is the <u>proposed solution 2 &nbsp; &rArr; &nbsp;  increase of the aliasing error:</u>:
*Durch die Halbierung von&nbsp; f_{\rm A}&nbsp; wird auch&nbsp; f_{\rm P}&nbsp; halbiert.  
+
*By halving&nbsp; f_{\rm A}&nbsp; &rArr; &nbsp; f_{\rm P}&nbsp; is also halved.  
*Dadurch wird der Aliasingfehler etwas größer bei gleichzeitig kleinerem Abbruchfehler.  
+
*As a result, the aliasing error becomes somewhat larger with a smaller truncation error at the same time.  
*Insgesamt steigt beim Gaußimpuls&nbsp; x_1(t)&nbsp; der mittlere quadratische Fehler&nbsp; (\rm MQF)&nbsp; von&nbsp; 1.5 \cdot 10^{-16}&nbsp; auf&nbsp; 3.3 \cdot 10^{-16}.
+
*Overall, for the Gaussian pulse&nbsp; x_1(t), the mean square error&nbsp; (\rm MQF)&nbsp; increases from&nbsp; 1.5 \cdot 10^{-16}&nbsp; to&nbsp; 3.3 \cdot 10^{-16}.
  
  
  
'''(5)'''&nbsp; Richtig sind die <u> Lösungsvorschläge 1 und 2</u>:
+
'''(5)'''&nbsp; <u>Proposed solutions 1 and 2</u> are correct:
*Wie aus der Grafik zu ersehen ist, trifft die letzte Aussage nicht zu im Gegensatz zu den ersten beiden.  
+
*As can be seen from the graph, the last statement is not true in contrast to the first two.  
*Aufgrund des langsamen,&nbsp; $\rm si$–förmigen Abfalls der Spektralfunktion dominiert der Aliasingfehler.  
+
*Due to the slow&nbsp; ($\rm sinc$–shaped)&nbsp; decay of the spectral function, the aliasing error dominates.  
*Der&nbsp; \rm MQF–Wert ist bei&nbsp; f_{\rm A} \cdot T = 1/8&nbsp; mit&nbsp; 1.4 \cdot 10^{-5}&nbsp; deshalb deutlich größer als beim Gaußimpuls&nbsp; (1.5 \cdot 10^{-16}).
+
*The&nbsp; \rm MQF value at&nbsp; f_{\rm A} \cdot T = 1/8&nbsp; with&nbsp; 1.4 \cdot 10^{-5}&nbsp; is therefore significantly larger than for the Gaussian pulse&nbsp; (1.5 \cdot 10^{-16}).
  
  
  
'''(6)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 3</u>:
+
'''(6)'''&nbsp;  <u>Proposed solution 3</u> is correct:
*Die Spektralfunktion&nbsp; X_3(f)&nbsp; hat hier einen rechteckförmigen Vorlauf, so dass die beiden ersten Aussagen nicht zutreffen.  
+
*The spectral function&nbsp; X_3(f)&nbsp; here has a rectangular lead, so that the first two statements do not apply.  
*Dagegen ist bei dieser&nbsp; $\rm si$–förmigen Zeitfunktion ein Abbruchfehler unvermeidbar. Dieser führt zu den angegebenen großen&nbsp; \rm MQF–Werten.  
+
*On the other hand, a truncation error is unavoidable with this&nbsp; $\rm sinc$–shaped time function.&nbsp; This leads to the large&nbsp; \rm MQF values given.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^5.3 Possible DFT Errors^]]
+
[[Category:Signal Representation: Exercises|^5.3 Possible DFT Errors^]]

Latest revision as of 17:14, 17 May 2021

Gaussian pulse, square pulse,
sinc pulse and some parameters

We consider three pulses, namely

  • Gaussian pulse  with amplitude  A  and equivalent duration  T:
x_1(t) = A \cdot {\rm e}^{- \pi (t/T)^2} \hspace{0.05cm},
  • rectangular pulse  x_2(t)  with amplitude  A  and (equivalent) duration  T:
x_2(t) = \left\{ \begin{array}{c} A \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} |t| < T/2 \hspace{0.05cm}, \\ |t| > T/2 \hspace{0.05cm}, \\ \end{array}
  • a so called  "sinc pulse"  according to the following definition:
x_3(t) = A \cdot {\rm sinc}(t/ T) ,\hspace{0.15cm}{\rm sinc}(x) = \sin(\pi x)/(\pi x)\hspace{0.05cm}.

Let the signal parameters be  A = 1\ {\rm V}  and  T = 1\ {\rm ms} in each case.

The conventional  Fourier transform  leads to the following spectral functions:

  • X_1(f)  is also Gaussian,
  • X_2(f)  runs according to the  \rm sinc function,
  • X_3(f)  is constant for  |f| < 1/(2 T)  and outside zero.


For all spectral functions,  X(f = 0) = A \cdot T.

If the discrete-frequency spectrum is determined by the  Discrete Fourier Transform  \rm (DFT)  with the DFT parameters

  • N = 512   ⇒   number of samples considered in the time and frequency domain,
  • f_{\rm A}   ⇒   interpolation distance in the frequency domain,


this will lead to distortions due to truncation and/or aliasing errors.


The other DFT parameters are clearly fixed withn  N  and  f_{\rm A}.  The following applies to these:

f_{\rm P} = N \cdot f_{\rm A},\hspace{0.3cm}T_{\rm P} = 1/f_{\rm A},\hspace{0.3cm}T_{\rm A} = T_{\rm P}/N \hspace{0.05cm}.

The accuracy of the respective DFT approximation is captured by the  "mean square error"  \rm (MSE)
Here, we use the designation  \rm MQF   ⇒   (German:  "Mittlerer Quadratischer Fehler"):

{\rm MQF} = \frac{1}{N}\cdot \sum_{\mu = 0 }^{N-1} \left|X(\mu \cdot f_{\rm A})-\frac{D(\mu)}{f_{\rm A}}\right|^2 \hspace{0.05cm}.

The resulting MQF values are given in the graph above, valid for  N = 512  as well as for

  • f_{\rm A} \cdot T = 1/4,
  • f_{\rm A} \cdot T = 1/8,
  • f_{\rm A} \cdot T = 1/16.





Hints:



Questions

1

Which range  |f| \leq f_{\text{max}}  is covered with  N = 512  and  f_{\rm A} \cdot T = 1/8 ?

f_{\text{max}} \cdot T\ = \

2

At what time interval  T_{\rm A}  are the sampled values of  x(t)  available?

T_{\rm A}/T\ = \

3

Due to which effect does the MQF value for the Gaussian pulse increase when using   f_{\rm A} \cdot T = 1/4  instead of  f_{\rm A} \cdot T = 1/8?

The truncation error is significantly increased.
The aliasing error is significantly increased.

4

Due to what effect does the MQF value for the Gaussian pulse increase when using  f_{\rm A} \cdot T = 1/16  instead of f_{\rm A} \cdot T = 1/4?

The truncation error is significantly increased.
The aliasing error is significantly increased.

5

Compare the  \rm MQF  values of the rectangular pulse  x_2(t)  with those of the Gaussian pulse  x_1(t).  Which of the following statements are true?

\rm MQF  becomes larger because the spectral function  X_2(f)  decays asymptotically slower than  X_1(f).
The aliasing error dominates.
The truncation error dominates.

6

Compare the  \rm MQF  values of the "sinc pulse"  x_3(t)  with those of the Gaussian pulse  x_1(t).  Which of the following statements are true?

\rm MQF  becomes larger because the spectral function  X_3(f)  decays asymptotically slower than  X_1(f).
The aliasing error dominates.
The truncation error dominates.


Solution

(1)  With the DFT parameters  N = 512  and  f_{\rm A} \cdot T = 1/8  the following follows after multiplying the two quantities:

f_{\rm P} \cdot T = N \cdot (f_{\rm A} \cdot T) = 64.
  • This covers the frequency range  -f_{\rm P}/2 \leq f < +f_{\rm P}/2:
f_{\rm max }\cdot T \hspace{0.15 cm}\underline{= 32}\hspace{0.05cm}.


(2)  The periodisation of the time function is based on the parameter  T_{\rm P} = 1/f_{\rm A} = 8T.

  • The distance between two samples is therefore
T_{\rm A}/T = \frac{T_{\rm P}/T}{N} = \frac{8}{512}\hspace{0.15 cm}\underline{ = 0.015625}\hspace{0.05cm}.


(3)  Correct is the proposed solution 1   ⇒   increase of the truncation error:

  • This measure simultaneously halves  T_{\rm P}  from  8T  to  4T .
  • Thus, only samples in the range  –2T \leq t < 2T are taken into account, which increases the truncation error.
  • The mean square error  (\rm MQF)  increases from  0.15 \cdot 10^{-15}  to  8 \cdot 10^{-15} for the Gaussian pulse  x_1(t)
  • although the aliasing error actually decreases slightly by this measure.


(4)  Correct is the proposed solution 2   ⇒   increase of the aliasing error::

  • By halving  f_{\rm A}  ⇒   f_{\rm P}  is also halved.
  • As a result, the aliasing error becomes somewhat larger with a smaller truncation error at the same time.
  • Overall, for the Gaussian pulse  x_1(t), the mean square error  (\rm MQF)  increases from  1.5 \cdot 10^{-16}  to  3.3 \cdot 10^{-16}.


(5)  Proposed solutions 1 and 2 are correct:

  • As can be seen from the graph, the last statement is not true in contrast to the first two.
  • Due to the slow  (\rm sinc–shaped)  decay of the spectral function, the aliasing error dominates.
  • The  \rm MQF value at  f_{\rm A} \cdot T = 1/8  with  1.4 \cdot 10^{-5}  is therefore significantly larger than for the Gaussian pulse  (1.5 \cdot 10^{-16}).


(6)  Proposed solution 3 is correct:

  • The spectral function  X_3(f)  here has a rectangular lead, so that the first two statements do not apply.
  • On the other hand, a truncation error is unavoidable with this  \rm sinc–shaped time function.  This leads to the large  \rm MQF values given.