Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 1.4Z: On the Doppler Effect"

From LNTwww
m (Text replacement - "”" to """)
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
   
 
   
{{quiz-Header|Buchseite=Mobile Kommunikation/Statistische Bindungen innerhalb des Rayleigh-Prozesses}}
+
{{quiz-Header|Buchseite=Mobile_Communications/Statistical_Bindings_within_the_Rayleigh_Process}}
  
 
[[File:P_ID2118__Mob_Z_1_4.png|right|frame|Directions of movement  (A), ...]]
 
[[File:P_ID2118__Mob_Z_1_4.png|right|frame|Directions of movement  (A), ...]]
Line 14: Line 14:
  
 
The equations given in the theoretical section for the reception frequency are
 
The equations given in the theoretical section for the reception frequency are
* taking into account the theory of relativity (briefly referred to as „relativistic”):
+
* taking into account the theory of relativity (briefly referred to as "relativistic"):
 
:equation(1):fE=fS1(v/c)21v/ccos(α),
 
:equation(1):fE=fS1(v/c)21v/ccos(α),
* without consideration of relativistic properties (referred to as „conventional”):
+
* without consideration of relativistic properties (referred to as "conventional"):
 
:equation(2):fE=fS[1+v/ccos(α)].
 
:equation(2):fE=fS[1+v/ccos(α)].
  
Line 57: Line 57:
 
</quiz>
 
</quiz>
  
===Solutions===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp; With the driving direction&nbsp; (A), the receiver approaches the transmitter at an angle&nbsp; α=0.&nbsp; This gives '''(1)''' according to the relativistic equation:
 
'''(1)'''&nbsp; With the driving direction&nbsp; (A), the receiver approaches the transmitter at an angle&nbsp; α=0.&nbsp; This gives '''(1)''' according to the relativistic equation:
Line 124: Line 124:
  
  
[[Category:Exercises for Mobile Communications|^1.3 Rayleigh Fading with Memory^]]
+
[[Category:Mobile Communications: Exercises|^1.3 Rayleigh Fading with Memory^]]

Latest revision as of 16:42, 28 May 2021

Directions of movement  (A), ...

The Doppler effect is the change in the perceived frequency of waves of any kind as the source (transmitter) and observer (receiver) move relative to each other.

Here we always assume a static transmitter, while the receiver can move in four different directions  (A),  (B),  (C)  and  (D)  (see diagram).

Different speeds are to be investigated:

  • an unrealistically high speed  v1=0.6c=1.8108 m/s,
  • the maximum speed  v2=3 km/s (10800 km/h)  during unmanned test flight,
  • approximately the maximum speed  v3=30 m/s=108  km/h  on federal roads.


The equations given in the theoretical section for the reception frequency are

  • taking into account the theory of relativity (briefly referred to as "relativistic"):
equation(1):fE=fS1(v/c)21v/ccos(α),
  • without consideration of relativistic properties (referred to as "conventional"):
equation(2):fE=fS[1+v/ccos(α)].



Notes:



Questions

1

Which Doppler frequencies result for the speeds  v1  and  v2  in driving direction  (A)  with equation (1)?

v1:fD/fS = 

v2:fD/fS = 

 105

2

Which Doppler frequencies are obtained for the opposite driving direction  (B)  with equation (1).

v1:fD/fS = 

v1:fD/fS = 

 105

3

Which Doppler frequencies are obtained under otherwise identical conditions with equation (2)?

direction (A),  v1:fD/fS = 

v2:fD/fS = 

\cdot \ 10^{\rm –5}
{\rm direction \ (B)}, \ \ v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \

\hspace{2.96cm} v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \

\cdot \ 10^{\rm –5}

4

Let f_{\rm S} = 2 \ \rm GHz.  Which Doppler frequencies result for the driving direction  \rm (C)  and  \rm (D)  with  equation (2)?

{\rm direction \ (C)}, \ \ v_3\text{:} \hspace{0.4cm} f_{\rm D} \ = \

\ \ \rm Hz
{\rm direction \ (D)}, \ \ v_3\text{:} \hspace{0.4cm} f_{\rm D} \ = \

\ \ \ \rm Hz


Solution

(1)  With the driving direction  \rm (A), the receiver approaches the transmitter at an angle  \alpha = 0.  This gives (1) according to the relativistic equation:

f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot \left [ \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \right ]\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \hspace{0.05cm}.
  • With  v_1/c = 0.6  you get
{f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - 0.6^2}}{1 - 0.6 } - 1 = \frac{0.8}{0.4 } - 1 \hspace{0.15cm} \underline{ = 1} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 2 \hspace{0.05cm}.
  • Correspondingly with  v_2/c = 10^{\rm -5}:
{f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (10^{-5})^2}}{1 - (10^{-5}) } - 1 \approx 1 + 10^{-5} - 1 \hspace{0.15cm} \underline{ = 10^{-5}} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 1.00001 \hspace{0.05cm}.


(2)  Now the receiver moves away from the transmitter  (\alpha = 180^°).

  • The reception frequency  f_{\rm E}  is lower than the transmission frequency  f_{\rm S}  and the Doppler frequency  f_{\rm D}  is negative.  With  {\rm cos}(\alpha) = \ -1  you now get
{f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (v/c)^2}}{1 + v/c } - 1 = \left\{ \begin{array}{c} \hspace{0.15cm} \underline{ -0.5} \\ \\ \hspace{0.15cm} \underline{ -10^{-5}} \end{array} \right.\quad \begin{array}{*{1}c} \hspace{-0.2cm}{\rm f\ddot{u}r}\hspace{0.15cm} v_1/c = 0.6 \\ \\ {\rm f\ddot{u}r}\hspace{0.15cm} v_2/c = 10^{-5} \\ \end{array} \hspace{0.05cm}.
  • Converting to  f_{\rm E}/f_{\rm S}  results in:
{f_{\rm E}}/{f_{\rm S}} = \left\{ \begin{array}{c} \hspace{0.15cm} { 0.5} \\ \\ \hspace{0.15cm} { 0.99999} \end{array} \right.\quad \begin{array}{*{1}c} \hspace{-0.2cm}{\rm f\ddot{u}r}\hspace{0.15cm} v_1/c = 0.6 \\ \\ {\rm f\ddot{u}r}\hspace{0.15cm} v_2/c = 10^{-5} \\ \end{array} \hspace{0.05cm}.


(3)  The following equations apply here:

f_{\rm E} = f_{\rm S} \cdot \left [ 1 + {v}/{c} \cdot \cos(\alpha) \right ] \Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} = {v}/{c} \cdot \cos(\alpha) \hspace{0.05cm}.

This results in the following numerical values:

  • Direction  \rm (A)v_1 = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 0.6} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 1.6,
  • Direction  \rm (A)v_2 = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 10^{\rm –5}} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 1.00001,
  • Direction  \rm (B)v_1 = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ –0.6} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 0.4,
  • Direction  \rm (B)v_2 = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ –10^{\rm –5}} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 0.99999.


You can tell:

  • For realistic speeds – including  v \ \approx \ 10000 \ {\rm km/h}  – the conventional equation  (2)  gives the same result as the relativistic equation  (1)  up to the accuracy of a pocket calculator.
  • With the approximation, the angles  \alpha = 0^°  and  \alpha = 180^\circ  result in the same absolute value for the Doppler frequency.
  • The approximations differ only in the sign.
  • In the relativistic equation this symmetry is no longer present.  See subtasks (1) and (2).


(4)  Equation (2) leads here to the result:

f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot {v_3}/{c} \cdot \cos(\alpha) \hspace{0.05cm}.
  • The driving direction  \rm (C)  is perpendicular  (\alpha = 90^\circ)  to the connection line transmitter–receiver.  In this case, no Doppler shift occurs:
f_{\rm D} \ \ \underline {= \ 0}.
  • The driving direction  \rm (D)  is characterized by  \alpha = \ –135^\circ.  As a result:
f_{\rm D} = 2 \cdot 10^{9}\,\,{\rm Hz} \cdot \frac{30\,\,{\rm m/s}}{3 \cdot 10^{8}\,\,{\rm m/s}} \cdot \cos(-135^{\circ}) \hspace{0.15cm} \underline{ \approx -141\,\,{\rm Hz}} \hspace{0.05cm}.