Difference between revisions of "Signal Representation/Discrete Fourier Transform (DFT)"

From LNTwww
 
(41 intermediate revisions by 3 users not shown)
Line 2: Line 2:
 
{{Header
 
{{Header
 
|Untermenü=Time and Frequency-Discrete Signal Representation
 
|Untermenü=Time and Frequency-Discrete Signal Representation
|Vorherige Seite=Time Discrete Signal Representation
+
|Vorherige Seite=Discrete-Time Signal Representation
 
|Nächste Seite=Possible Errors When Using DFT
 
|Nächste Seite=Possible Errors When Using DFT
 
}}
 
}}
  
==Arguments for the Discrete Realisation of the Fourier Transform==
+
==Arguments for the discrete implementation of the Fourier transform==
 
<br>
 
<br>
The&nbsp; '''Fourier transform'''&nbsp; according to the previous description in chapter&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse|Aperiodic Signals &ndash; Pulses]]&nbsp;has an infinitely high selectivity due to the unlimited extension of the integration interval and is therefore an ideal theoretical tool of spectral analysis.
+
The&nbsp; &raquo;'''Fourier transform'''&laquo;&nbsp; according to the previous description in chapter&nbsp; [[Signal_Representation/The_Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|&raquo;Aperiodic Signals &ndash; Pulses&laquo;]]&nbsp; has an infinitely high selectivity due to the unlimited extension of the integration interval and is therefore an ideal theoretical tool of spectral analysis.
  
If the spectral components&nbsp; $X(f)$&nbsp; of a time function&nbsp; $x(t)$&nbsp; are to be determined numerically, the general transformation equations are
+
If the spectral components&nbsp; $X(f)$&nbsp; of a time function&nbsp; $x(t)$&nbsp; are to be determined numerically,&nbsp; the general transformation equations
 
   
 
   
 
:$$\begin{align*}X(f) & =  \int_{-\infty
 
:$$\begin{align*}X(f) & =  \int_{-\infty
Line 17: Line 17:
 
x(t) & =  \int_{-\infty
 
x(t) & =  \int_{-\infty
 
  }^{+\infty}\hspace{-0.15cm}X(f) \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}f\hspace{0.35cm} \Rightarrow\hspace{0.5cm}
 
  }^{+\infty}\hspace{-0.15cm}X(f) \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}f\hspace{0.35cm} \Rightarrow\hspace{0.5cm}
\text{Back Transform}\hspace{0.4cm} \Rightarrow\hspace{0.5cm} \text{second Fourier integral}
+
\text{Inverse Transform}\hspace{0.4cm} \Rightarrow\hspace{0.5cm} \text{second Fourier integral}
 
  \hspace{0.05cm}\end{align*}$$
 
  \hspace{0.05cm}\end{align*}$$
  
unsuitable for two reasons:
+
are unsuitable for two reasons:
*The equations apply exclusively to time-continuous signals. With digital computers or signal processors, however, one can only process time-discrete signals.
+
#The equations apply exclusively to continuous-time signals.&nbsp; With digital computers or signal processors,&nbsp; however,&nbsp; one can only process discrete-time signals.
*For a numerical evaluation of the two Fourier integrals it is necessary to limit the respective integration interval to a finite value.
+
#For a numerical evaluation of the two Fourier integrals it is necessary to limit the respective integration interval to a finite value.
  
  
Line 28: Line 28:
 
$\text{This leads to the following consequence:}$&nbsp;
 
$\text{This leads to the following consequence:}$&nbsp;
  
A&nbsp; '''continuous signal'''&nbsp; must undergo two processes before the numerical determination of its spectral properties, viz.
+
A&nbsp; &raquo;'''continuous-valued signal'''&laquo;&nbsp; must undergo two processes before the numerical determination of its spectral properties,&nbsp; viz.
*that of&nbsp; '''sampling'''&nbsp; for discretisation, and
+
#that of&nbsp; &raquo;'''sampling'''&laquo;&nbsp; for discretization,&nbsp; and<br>
*that of&nbsp; '''windowing'''&nbsp; to limit the integration interval.}}
+
#that of&nbsp; &raquo;'''windowing'''&laquo;&nbsp; to limit the integration interval.}}
  
  
In the following, starting from an aperiodic time function&nbsp; $x(t)$&nbsp; and the corresponding Fourier spectrum&nbsp; $X(f)$&nbsp; a time- and frequency-discrete description suitable for computer processing is developed step by step.
+
In the following,&nbsp; starting from an aperiodic time function&nbsp; $x(t)$&nbsp; and the corresponding Fourier spectrum&nbsp; $X(f)$&nbsp; a time and frequency-discrete description suitable for computer processing is developed step by step.
  
  
  
==Time Discretisation &ndash; Periodisation in the Frequency Domain==
+
==Time discretization &ndash; Periodification in the frequency domain==
 
<br>
 
<br>
The following graphs show uniformly the time domain on the left and the frequency domain on the right. Without limiting generality,&nbsp; $x(t)$&nbsp; and&nbsp; $X(f)$&nbsp; are each real and Gaussian.
+
The following graphs show uniformly the time domain on the left and the frequency domain on the right.&nbsp;
 +
*Without limiting generality,&nbsp; $x(t)$&nbsp; and&nbsp; $X(f)$&nbsp; are each real and Gaussian.
  
[[File:P_ID1132__Sig_T_5_1_S2_neu.png|center|frame| Time Discretisation - Periodisation in the Frequency Domain]]
+
*According to the chapter&nbsp; [[Signal_Representation/Time_Discrete_Signal_Representation|&raquo;Discrete-Time Signal Representation&laquo;]]&nbsp; one can describe the sampling of the time signal&nbsp; $x(t)$&nbsp; by multiplying it by a Dirac delta train &nbsp; &rArr; &nbsp; <br>&raquo;Dirac comb&nbsp; in the time domain&laquo;
 +
[[File:P_ID1132__Sig_T_5_1_S2_neu.png|right|frame| Time discretization &nbsp; &rArr; &nbsp; Periodification in the frequency domain.&nbsp; <u>Notation:</u><br> &nbsp; &nbsp; ${\rm A}\{x(t)\}$:&nbsp; Signal&nbsp; $x(t)$&nbsp; after&nbsp; &raquo;sampling&laquo;&nbsp; $($German:&nbsp; "Abtastung"$)$ &nbsp; &rArr; &nbsp; $\rm A\{\text{...}\}$ <br> &nbsp; &nbsp; ${\rm P}\{X(f)\}$:&nbsp; Spectrum&nbsp; $X(f)$&nbsp; after&nbsp; &raquo;periodification&laquo;&nbsp;  &nbsp; &rArr; &nbsp; $\rm P\{\text{...}\}$]]
  
According to the chapter&nbsp; [[Signal_Representation/Time_Discrete_Signal_Representation|Time Discrete Signal Representation]]&nbsp; one can describe the sampling of the time signal&nbsp; $x(t)$&nbsp; by multiplying it by a Dirac pulse&nbsp; $p_{\delta}(t)$&nbsp;. The result is the time signal sampled at a distance&nbsp; $T_{\rm A}$&nbsp;
+
:$$p_{\delta}(t) =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot
 +
\delta (t- \nu \cdot T_{\rm A}
 +
)\hspace{0.05cm}.$$  
 +
 
 +
The result is the time signal sampled at a distance&nbsp; $T_{\rm A}$:&nbsp;
 
   
 
   
 
:$${\rm A}\{x(t)\} =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot
 
:$${\rm A}\{x(t)\} =  \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot
Line 49: Line 55:
 
  )\hspace{0.05cm}.$$
 
  )\hspace{0.05cm}.$$
  
We now transform this sampled signal&nbsp; $\text{A}\{ x(t)\}$&nbsp; into the frequency domain. The multiplication of the Dirac pulse&nbsp; $p_{\delta}(t)$&nbsp; with&nbsp; $x(t)$&nbsp; corresponds in the frequency domain to the convolution of&nbsp; $P_{\delta}(f)$&nbsp; with&nbsp; $X(f)$. The result is the periodised spectrum&nbsp; $\text{P}\{ X(f)\}$, where&nbsp; $f_{\rm P}$&nbsp; indicates the frequency period of the function&nbsp; $\text{P}\{ X(f)\}$&nbsp;:
+
We transform this sampled signal&nbsp; $\text{A}\{ x(t)\}$&nbsp; into the frequency domain:
 +
*The multiplication of the Dirac comb&nbsp; $p_{\delta}(t)$&nbsp; with&nbsp; $x(t)$&nbsp; corresponds in the frequency domain to the convolution of&nbsp; $P_{\delta}(f)$&nbsp; with&nbsp; $X(f)$.
 +
 
 +
*The result is the periodified spectrum&nbsp; $\text{P}\{ X(f)\}$,&nbsp; where&nbsp; $f_{\rm
 +
P}$&nbsp; indicates the frequency period of the function&nbsp; $\text{P}\{ X(f)\}$&nbsp;:
 
   
 
   
 
:$${\rm A}\{x(t)\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{X(f)\} =  \sum_{\mu = - \infty }^{+\infty}
 
:$${\rm A}\{x(t)\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{X(f)\} =  \sum_{\mu = - \infty }^{+\infty}
  X (f- \mu \cdot f_{\rm P} )\hspace{0.5cm} {\rm with }\hspace{0.5cm}f_{\rm
+
  X (f- \mu \cdot f_{\rm P} ).$$
P}= {1}/{T_{\rm A}}\hspace{0.05cm}.$$
 
  
This relation was also already derived in the chapter&nbsp; [[Signal_Representation/Time_Discrete_Signal_Representation|Time Discrete Signal Representation]]&nbsp;  but with slightly different nomenclature:
+
This relation was already derived in the chapter&nbsp; [[Signal_Representation/Time_Discrete_Signal_Representation|"Discrete-Time Signal Representation"]]&nbsp;  but with slightly different nomenclature:
 
*We now denote the sampled signal by&nbsp; $\text{A}\{ x(t)\}$&nbsp; instead of&nbsp; $x_{\rm A}(t)$.
 
*We now denote the sampled signal by&nbsp; $\text{A}\{ x(t)\}$&nbsp; instead of&nbsp; $x_{\rm A}(t)$.
* The&nbsp; '''frequency period'''&nbsp; is now denoted by&nbsp; $f_{\rm P} = 1/T_{\rm A}$&nbsp; instead of&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp;.
 
  
 +
* The&nbsp; &raquo;frequency period&laquo;&nbsp; is now denoted by&nbsp; $f_{\rm P} = 1/T_{\rm A}$&nbsp; instead of&nbsp; $f_{\rm A} = 1/T_{\rm A}$.
  
These nomenclature changes are justified on the following pages.
 
  
The graph above shows the functional relationship described here. It should be noted:
+
These nomenclature changes are justified in the following sections.
*The frequency period&nbsp; $f_{\rm P}$&nbsp; has been deliberately chosen to be small here so that the overlap of the spectra to be summed can be clearly seen.
 
*In practice&nbsp; $f_{\rm P}$&nbsp; should be at least twice as large as the largest frequency contained in the signal&nbsp; $x(t)$&nbsp; due to the sampling theorem.
 
*If this is not fulfilled, then&nbsp; '''Aliasing'''&nbsp; must be reckoned with - see chapter&nbsp; [[Signal_Representation/Possible_Errors_When_Using_DFT|Possible Errors When Using DFT]].
 
  
 +
The graph above shows the functional relationship described here.&nbsp; It should be noted:
 +
#The frequency period&nbsp; $f_{\rm P}$&nbsp; has been deliberately chosen to be small here so that the overlap of the spectra to be summed can be clearly seen.
 +
#In practice&nbsp; $f_{\rm P}$&nbsp; should be at least twice as large as the largest frequency contained in the signal&nbsp; $x(t)$&nbsp; due to the sampling theorem.
 +
#If this is not fulfilled,&nbsp; then&nbsp; &raquo;'''aliasing'''&laquo;&nbsp; must be expected - see chapter&nbsp; [[Signal_Representation/Possible_Errors_When_Using_DFT|&raquo;Possible Errors when using DFT&laquo;]].
  
==Frequency Discretisation &ndash; Periodisation in the Time Domain ==
+
 
 +
==Frequency discretization &ndash; Periodification in the time domain ==
 
<br>
 
<br>
The discretisation of&nbsp; $X(f)$&nbsp; can also be described by a multiplication with a Dirac comb. The result is the spectrum sampled in the distance&nbsp; $f_{\rm A}$&nbsp;:  
+
The discretization of&nbsp; $X(f)$&nbsp; can also be described by a multiplication with a Dirac comb in the frequency domain.&nbsp; The result is the sampled spectrum with distance&nbsp; $f_{\rm A}$:  
 
:$${\rm A}\{X(f)\} =  X(f) \cdot  \sum_{\mu = - \infty }^{+\infty}
 
:$${\rm A}\{X(f)\} =  X(f) \cdot  \sum_{\mu = - \infty }^{+\infty}
 
  f_{\rm A} \cdot \delta (f- \mu \cdot f_{\rm A } ) =  \sum_{\mu = - \infty }^{+\infty}
 
  f_{\rm A} \cdot \delta (f- \mu \cdot f_{\rm A } ) =  \sum_{\mu = - \infty }^{+\infty}
 
  f_{\rm A} \cdot X(\mu \cdot f_{\rm A } ) \cdot\delta (f- \mu \cdot f_{\rm A } )\hspace{0.05cm}.$$
 
  f_{\rm A} \cdot X(\mu \cdot f_{\rm A } ) \cdot\delta (f- \mu \cdot f_{\rm A } )\hspace{0.05cm}.$$
  
If one transforms the frequency-dirac comb $($with pulse weights&nbsp; $f_{\rm A})$&nbsp; used here into the time domain, one obtains with&nbsp; $T_{\rm P} = 1/f_{\rm A}$:
+
*If one transforms the Dirac comb $($with impulse weights&nbsp; $f_{\rm A})$&nbsp; into the time domain,&nbsp; one obtains with&nbsp; $T_{\rm P} = 1/f_{\rm A}$:
 
   
 
   
 
:$$\sum_{\mu = - \infty }^{+\infty}
 
:$$\sum_{\mu = - \infty }^{+\infty}
Line 82: Line 92:
 
   \delta (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$
 
   \delta (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$
  
The multiplication with&nbsp; $X(f)$&nbsp; corresponds in the time domain to the convolution with&nbsp; $x(t)$. One obtains the signal&nbsp; $T_{\rm P}$&nbsp; periodified in the distance&nbsp; $\text{P}\{ x(t)\}$:
+
*The multiplication with&nbsp; $X(f)$&nbsp; corresponds in the time domain to the convolution with&nbsp; $x(t)$.&nbsp; One obtains the signal&nbsp; $\text{P}\{ x(t)\}$&nbsp; periodified with distance&nbsp; $T_{\rm P}$:
 
   
 
   
 
:$${\rm A}\{X(f)\} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm}
 
:$${\rm A}\{X(f)\} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm}
Line 89: Line 99:
 
   x (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$
 
   x (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$
  
[[File:P_ID1134__Sig_T_5_1_S3_neu.png|right|frame|Frequency Discretisation &ndash; Periodisation in the Time Domain]]
+
 
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
 +
[[File:P_ID1134__Sig_T_5_1_S3_neu.png|right|frame|Frequency discretization &ndash; Periodization in the time domain]]
 
$\text{Example 1:}$&nbsp;
 
$\text{Example 1:}$&nbsp;
 
This correlation is illustrated in the graph:  
 
This correlation is illustrated in the graph:  
*Due to the coarse frequency rastering, this example results in a relatively small value for the time period&nbsp; $T_{\rm P}$&nbsp;.
+
*Due to the coarse frequency rastering,&nbsp; this example results in a relatively small value for the time period&nbsp; $T_{\rm P}$&nbsp;.
  
  
* Therefore, the (blue) periodised time signal&nbsp; $\text{P}\{ x(t)\}$&nbsp; differs significantly from&nbsp; $x(t)$.}} due to overlaps.
+
* Therefore due to overlaps,&nbsp; the&nbsp; $($blue$)$&nbsp; periodified time signal&nbsp; $\text{P}\{ x(t)\}$&nbsp; differs significantly from&nbsp; $x(t)$.  
  
==Finite Signal Representation==
+
 
 +
*If one wants to achieve&nbsp; $\text{P}\{ x(t)\} \approx x(t)$&nbsp; then&nbsp; $T_{\rm P}$&nbsp; must be chosen much larger than in this example.}}
 +
 
 +
==Finite signal representation==
 
<br>
 
<br>
[[File:P_ID1135__Sig_T_5_1_S4_neu.png|right|frame|Finite Signals of the Discrete Fourier Transform (DFT)]]
+
[[File:P_ID1135__Sig_T_5_1_S4_neu.png|right|frame|Finite signals of the Discrete Fourier Transform&nbsp; $\rm (DFT)$]]
One arrives at the so-called&nbsp; ''finite signal representation''&nbsp;,
+
One arrives at the so-called&nbsp; &raquo;finite signal representation&laquo;,&nbsp; if both
*if both the time function&nbsp; $x(t)$  
+
*the time function&nbsp; $x(t)$,&nbsp;
*and the spectral function&nbsp; $X(f)$  
+
 +
*the spectral function&nbsp; $X(f)$  
  
  
are specified exclusively by their sample values.
+
are specified exclusively by their sample values.&nbsp; This graph is to be interpreted as follows:
<br clear=all>
+
*In the left graph,&nbsp; the function&nbsp; $\text{A}\{ \text{P}\{ x(t)\}\}$&nbsp; is drawn in blue.&nbsp; This results from sampling the periodified time function&nbsp; $\text{P}\{ x(t)\}$&nbsp; with equidistant Dirac deltas with distance&nbsp; $T_{\rm A} = 1/f_{\rm P}$.
The graph is to be interpreted as follows:
+
 
*In the left picture, drawn in blue, is the function&nbsp; $\text{A}\{ \text{P}\{ x(t)\}\}$. This results from sampling the periodified time function&nbsp; $\text{P}\{ x(t)\}$&nbsp; with equidistant dirac pulses at a distance&nbsp; $T_{\rm A} = 1/f_{\rm P}$.
+
*In the right graph,&nbsp; the function&nbsp; $\text{P}\{ \text{A}\{ X(f)\}\}$&nbsp; is drawn in green.&nbsp; This results from the periodification&nbsp; $($with&nbsp; $f_{\rm P})$&nbsp; of the sampled spectral function&nbsp; $\{ \text{A}\{ X(f)\}\}$.
*In the right picture the function is drawn in green&nbsp; $\text{P}\{ \text{A}\{ X(f)\}\}$. This results from periodisation $($with&nbsp; $f_{\rm P})$&nbsp; of the sampled spectral function&nbsp; $\{ \text{A}\{ X(f)\}\}$.  
+
*There is a Fourier correspondence between the blue finite signal (left sketch) and the green finite signal (right sketch), as follows:
+
*There is a Fourier correspondence between the blue finite signal&nbsp; $($in the left sketch$)$&nbsp; and the green finite signal&nbsp; $($in the right sketch$)$,&nbsp; as follows:
 
   
 
   
 
:$${\rm A}\{{\rm P}\{x(t)\}\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{{\rm A}\{X(f)\}\} \hspace{0.05cm}.$$
 
:$${\rm A}\{{\rm P}\{x(t)\}\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{{\rm A}\{X(f)\}\} \hspace{0.05cm}.$$
  
*The diraclines of the periodic continuation&nbsp; $\text{P}\{ \text{A}\{ X(f)\}\}$&nbsp; of the sampled spectral function, however, only fall into the same frequency grid as those of&nbsp; $\text{A}\{ X(f)\}$ if the frequency period&nbsp; $f_{\rm P}$&nbsp; is an integer multiple&nbsp; $(N)$&nbsp; of the frequency sampling interval&nbsp; $f_{\rm A}$&nbsp;.
+
*The Dirac delta lines of the periodic continuation&nbsp; $\text{P}\{ \text{A}\{ X(f)\}\}$&nbsp; of the sampled spectral function,&nbsp; however,&nbsp; only fall into the same frequency grid as those of&nbsp; $\text{A}\{ X(f)\}$&nbsp; if the frequency period&nbsp; $f_{\rm P}$&nbsp; is an integer multiple&nbsp; $(N)$&nbsp; of the frequency sampling interval&nbsp; $f_{\rm A}$.
*Therefore, when using the finite signal representation, the following condition must always be fulfilled, where the natural number&nbsp; $N$&nbsp; in practice is usually a power of two&nbsp; (the above graph is based on the value&nbsp; $N = 8$&nbsp;):
+
 
 +
*Therefore,&nbsp; when using the finite signal representation,&nbsp; the following condition must always be fulfilled,&nbsp; where in practice the natural number&nbsp; $N$&nbsp; is usually a power of two&nbsp; $($the above graph is based on the value&nbsp; $N = 8)$:
 
   
 
   
 
:$$f_{\rm P} = N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} {1}/{T_{\rm A}}= N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm}
 
:$$f_{\rm P} = N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} {1}/{T_{\rm A}}= N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm}
 
  N \cdot f_{\rm A}\cdot T_{\rm A} = 1\hspace{0.05cm}.$$
 
  N \cdot f_{\rm A}\cdot T_{\rm A} = 1\hspace{0.05cm}.$$
  
*If the condition&nbsp; $N \cdot f_{\rm A} \cdot T_{\rm A} = 1$&nbsp; the order of periodization and sampling is interchangeable. Thus:
+
*If the condition&nbsp; $N \cdot f_{\rm A} \cdot T_{\rm A} = 1$&nbsp; is fulfilled then the order of periodization and sampling is interchangeable.&nbsp; Thus:
 
   
 
   
 
:$${\rm A}\{{\rm P}\{x(t)\}\} = {\rm P}\{{\rm A}\{x(t)\}\}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
 
:$${\rm A}\{{\rm P}\{x(t)\}\} = {\rm P}\{{\rm A}\{x(t)\}\}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm}
Line 127: Line 143:
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
$\text{Conclusion:}$&nbsp;
+
$\text{Conclusions:}$&nbsp;
*The time function&nbsp; $\text{P}\{ \text{A}\{ x(t)\}\}$&nbsp; has the period&nbsp; $T_{\rm P} = N \cdot T_{\rm A}$.  
+
#The time function&nbsp; $\text{P}\{ \text{A}\{ x(t)\}\}$&nbsp; has the period&nbsp; $T_{\rm P} = N \cdot T_{\rm A}$.  
*The period in the frequency domain is&nbsp; $f_{\rm P} = N \cdot f_{\rm A}$.  
+
#The period in the frequency domain is&nbsp; $f_{\rm P} = N \cdot f_{\rm A}$.  
*For the description of the discretised time and frequency response in each case&nbsp; $N$&nbsp; '''complex numerical values''' in the form of pulse weights are thus sufficient.}}
+
#For the description of the discretized time and frequency response in each case&nbsp; $N$&nbsp; '''complex numerical values'''&nbsp; in the form of impulse weights are sufficient.}}
  
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
 
$\text{Example 2:}$&nbsp;
 
$\text{Example 2:}$&nbsp;
A time-limited (pulse-like) signal&nbsp; $x(t)$&nbsp; is present in sampled form, where the distance between two samples&nbsp; $T_{\rm A} = 1\, {\rm &micro; s}$&nbsp; is:  
+
A time-limited&nbsp; $($pulse-like$)$&nbsp; signal&nbsp; $x(t)$&nbsp; is present in sampled form,&nbsp; where the distance between two samples is&nbsp; $T_{\rm A} = 1\, {\rm &micro; s}$:  
*After a discrete Fourier transform with&nbsp; $N = 512$&nbsp; the spectrum&nbsp; $X(f)$&nbsp; is in the form of samples spaced&nbsp; $f_{\rm A} = (N \cdot T_{\rm A})^{-1} \approx 1.953\,\text{kHz} $&nbsp; before.
+
*After a discrete Fourier transform with&nbsp; $N = 512$&nbsp; the spectrum&nbsp; $X(f)$&nbsp; is available in form of frequency-samples at spacing&nbsp; $f_{\rm A} = (N \cdot T_{\rm A})^{-1} \approx 1.953\,\text{kHz} $.  
*Increasing the DFT&ndash;parameter to&nbsp; $N= 2048$ results in a (four times) finer frequency grid with&nbsp; $f_{\rm A} \approx 488\,\text{Hz}$.}}
 
  
 +
*Increasing the DFT parameter to&nbsp; $N= 2048$ results in a&nbsp; $($four times$)$&nbsp; finer frequency grid with&nbsp; $f_{\rm A} \approx 488\,\text{Hz}$.}}
  
==From the Continuous to the Discrete Fourier Transform==
+
 
 +
==From the continuous to the discrete Fourier transform==
 
<br>
 
<br>
From the conventional&nbsp;[[Signal_Representation/Fourier_Transform_and_Its_Inverse#Das_erste_Fourierintegral|first Fourier integral]]
+
From the conventional&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|&raquo;first Fourier integral&laquo;]]
 
   
 
   
 
:$$X(f) =\int_{-\infty
 
:$$X(f) =\int_{-\infty
 
  }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f  \hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}t$$
 
  }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f  \hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}t$$
  
arises from discretisation&nbsp; $(\text{d}t \to T_{\rm A}$,&nbsp; $t \to \nu \cdot T_{\rm A}$,&nbsp; $f \to \mu \cdot f_{\rm A}$,&nbsp; $T_{\rm A} \cdot f_{\rm A} = 1/N)$&nbsp; the sampled and periodised spectral function
+
arises from discretization&nbsp; $(\text{d}t \to T_{\rm A}$,&nbsp; $t \to \nu \cdot T_{\rm A}$,&nbsp; $f \to \mu \cdot f_{\rm A}$,&nbsp; $T_{\rm A} \cdot f_{\rm A} = 1/N)$&nbsp; the sampled and periodified spectral function
 
   
 
   
 
:$${\rm P}\{X(\mu \cdot f_{\rm A})\} = T_{\rm A} \cdot \sum_{\nu = 0 }^{N-1}
 
:$${\rm P}\{X(\mu \cdot f_{\rm A})\} = T_{\rm A} \cdot \sum_{\nu = 0 }^{N-1}
Line 153: Line 170:
 
  \cdot \hspace{0.05cm}\mu /N} \hspace{0.05cm}.$$
 
  \cdot \hspace{0.05cm}\mu /N} \hspace{0.05cm}.$$
  
It is taken into account that due to the discretisation, the periodised functions are to be used in each case.  
+
It is taken into account that due to the discretization,&nbsp; the periodified functions are to be used in each case.  
  
 
For reasons of simplified notation, we now make the following substitutions:
 
For reasons of simplified notation, we now make the following substitutions:
*The&nbsp; $N$&nbsp; '''time-domain coefficients''''&nbsp; are with the iterating variable&nbsp; $\nu = 0$, ... , $N - 1$:
+
*The&nbsp; $N$&nbsp; &raquo;time-domain coefficients&laquo;&nbsp; are with the variable&nbsp; $\nu = 0$, ... , $N - 1$:
:$$d(\nu) =.
+
:$$d(\nu) =
 
   {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.05cm}.$$
 
   {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.05cm}.$$
*Let&nbsp; $N$&nbsp; '''frequency domain coefficients''''&nbsp; be associated with the running variable&nbsp; $\mu = 0,$ ... , $N$ – 1:
+
*Let&nbsp; $N$&nbsp; &raquo;frequency domain coefficients&laquo;&nbsp; be associated with the variable&nbsp; $\mu = 0,$ ... , $N-1$:
 
:$$D(\mu) = f_{\rm A} \cdot
 
:$$D(\mu) = f_{\rm A} \cdot
 
   {\rm P}\left\{X(f)\right\}{\big|}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A}}\hspace{0.05cm}.$$
 
   {\rm P}\left\{X(f)\right\}{\big|}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A}}\hspace{0.05cm}.$$
*Abbreviation is written for the from&nbsp; $N$&nbsp; dependent&nbsp; '''complex rotation factor''''&nbsp;:
+
*Abbreviation is written for the from&nbsp; $N$&nbsp; dependent&nbsp; &raquo;complex rotation factor&laquo;&nbsp;:
 
:$$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N}
 
:$$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N}
 
  = \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right)
 
  = \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right)
 
  \hspace{0.05cm}.$$  
 
  \hspace{0.05cm}.$$  
  
[[File:P_ID2730__Sig_T_5_1_S5_neu.png|right|frame|On Defining the Discrete Fourier Transform (DFT) with&nbsp; $N=8$]]
 
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
 
+
The term&nbsp; &raquo;Discrete Fourier Transform&laquo;&nbsp; $\rm  (DFT)$&nbsp; means the calculation of the&nbsp; $N$&nbsp; spectral coefficients&nbsp; $D(\mu)$&nbsp; from the&nbsp; $N$&nbsp; signal coefficients&nbsp; $d(\nu)$:
The term&nbsp; '''Discrete Fourier Transform'''&nbsp; (in short '''DFT''')&nbsp; means the calculation of the&nbsp; $N$&nbsp; spectral coefficients&nbsp; $D(\mu)$&nbsp; from the&nbsp; $N$&nbsp; signal coefficients&nbsp; $d(\nu)$:
+
[[File:P_ID2730__Sig_T_5_1_S5_neu.png|right|frame|On defining the&nbsp; &raquo;Discrete Fourier Transform&laquo;&nbsp; $\rm (DFT)$&nbsp; with&nbsp; $N=8$]]
 
 
:$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1}
 
:$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1}
 
   d(\nu)\cdot  {w}^{\hspace{0.05cm}\nu \hspace{0.07cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}. $$
 
   d(\nu)\cdot  {w}^{\hspace{0.05cm}\nu \hspace{0.07cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}. $$
 +
:
 +
In the diagram you can see:
 +
*The&nbsp; $N = 8$&nbsp; signal coefficients&nbsp; $d(\nu)$&nbsp; by the blue filling,
  
In the diagram you can see
 
*the&nbsp; $N = 8$&nbsp; signal coefficients&nbsp; $d(\nu)$&nbsp; by the blue filling,
 
 
*the&nbsp; $N = 8$&nbsp; spectral coefficients&nbsp; $D(\mu)$&nbsp; at the green filling.}}
 
*the&nbsp; $N = 8$&nbsp; spectral coefficients&nbsp; $D(\mu)$&nbsp; at the green filling.}}
  
  
==Inverse Discrete Fourier Transform==
+
==Inverse discrete Fourier transform==
 
<br>
 
<br>
The Inverse Discrete Fourier Transform (IDFT) describes the&nbsp;  [[Signal_Representation/Fourier_Transform_and_Its_Inverse#Das_zweite_Fourierintegral|second Fourier integral]]
+
The&nbsp; &raquo;inverse discrete Fourier transform&laquo;&nbsp;  describes the&nbsp;  [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_second_Fourier_integral|&raquo;second Fourier integral&laquo;]]:
 
   
 
   
 
:$$\begin{align*}x(t) & =  \int_{-\infty
 
:$$\begin{align*}x(t) & =  \int_{-\infty
Line 194: Line 210:
 
   A}}\hspace{0.01cm}.$$
 
   A}}\hspace{0.01cm}.$$
  
[[File:P_ID2731__Sig_T_5_1_S6_neu.png|right|frame|On the Definition of the IDFT with&nbsp; $N=8$]]
+
{{BlaueBox|TEXT= $\text{Definition:}$&nbsp; The term&nbsp; &raquo;Inverse Discrete Fourier Transform&raquo; &nbsp; $\rm (IDFT)$&nbsp;&nbsp; means the calculation of the signal coefficients&nbsp; $d(\nu)$&nbsp; from the spectral coefficients&nbsp; $D(\mu)$:
{{BlaueBox|TEXT=
+
[[File:P_ID2731__Sig_T_5_1_S6_neu.png|right|frame|On defining the&nbsp; &raquo;Inverse Discrete Fourier Transform&laquo;&nbsp; $\rm (IDFT)$&nbsp; with&nbsp; $N=8$]]
$\text{Definition:}$&nbsp;
 
 
 
The term&nbsp; '''Inverse Discrete Fourier Transform'''&nbsp; (in short '''IDFT''')&nbsp; means the calculation of the signal coefficients&nbsp; $d(\nu)$&nbsp; from the spectral coefficients&nbsp; $D(\mu)$:
 
 
 
:$$d(\nu) = \sum_{\mu = 0 }^{N-1}
 
:$$d(\nu) = \sum_{\mu = 0 }^{N-1}
 
  D(\mu) \cdot {w}^{-\nu \hspace{0.07cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
 
  D(\mu) \cdot {w}^{-\nu \hspace{0.07cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
  
With the run variables&nbsp; $\nu = 0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$&nbsp; und&nbsp; $\mu = 0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$&nbsp; gilt auch hier:
+
*With indices&nbsp; $\nu = 0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1, $&nbsp; and &nbsp; $\mu = 0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$&nbsp; holds:
 
:$$d(\nu) =
 
:$$d(\nu) =
 
   {\rm P}\left\{x(t)\right\}{\big \vert}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm
 
   {\rm P}\left\{x(t)\right\}{\big \vert}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm
Line 213: Line 225:
  
 
:$$w  = {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N}
 
:$$w  = {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N}
  \hspace{0.01cm}.$$}}
+
  \hspace{0.01cm}.$$
  
+
*A comparison between&nbsp; [[Signal_Representation/Discrete_Fourier_Transform_(DFT)#From_the_continuous_to_the_discrete_Fourier_transform|&raquo;DFT&laquo;]]&nbsp; and&nbsp; &raquo;IDFT&laquo;&nbsp; shows that exactly the same algorithm can be used.&nbsp;
A comparison between the&nbsp; [[Signal_Representation/Discrete_Fourier_Transform_(DFT)#Von_der_kontinuierlichen_zur_diskreten_Fouriertransformation|DFT]]&nbsp; and IDFT shows that exactly the same algorithm can be used. The only differences between IDFT and DFT are:
+
 
*The exponent of the rotation factor is to be applied with different sign.
+
*The only differences between IDFT and DFT are:
*In the IDFT, the division by&nbsp; $N$ is omitted.
+
#The exponent of the rotation factor is to be applied with different sign.
 +
#In the IDFT,&nbsp; the division by&nbsp; $N$&nbsp; is omitted.}}
  
  
 
==Interpretation of DFT and IDFT==
 
==Interpretation of DFT and IDFT==
 
<br>
 
<br>
The graph shows the discrete coefficients in the time and frequency domain together with the periodified time-continuous functions.
+
The graph shows the discrete coefficients in the time and frequency domain together with the periodified continuous-time functions.
  
[[File:P_ID1136__Sig_T_5_1_S7_neu.png|center|frame|Time&ndash; and Frequency range Coefficients of the DFT]]
+
[[File:P_ID1136__Sig_T_5_1_S7_neu.png|right|frame|Time and frequency coefficients of the DFT]]
  
When using DFT or IDFT, please note:
+
When using DFT or IDFT,&nbsp; please note:
*According to the above definitions, the DFT coefficients&nbsp; $d(ν)$&nbsp; and&nbsp; $D(\mu)$&nbsp; always have the unit of the time function.  
+
#According to the above definitions, the DFT coefficients&nbsp; $d(ν)$&nbsp; and&nbsp; $D(\mu)$&nbsp; always have the unit of the time function.  
*Dividing&nbsp; $D(\mu)$&nbsp; by&nbsp; $f_{\rm A}$, one obtains the spectral value&nbsp; $X(\mu \cdot f_{\rm A})$.
+
#Dividing&nbsp; $D(\mu)$&nbsp; by&nbsp; $f_{\rm A}$,&nbsp; one obtains the spectral value&nbsp; $X(\mu \cdot f_{\rm A})$.
*The spectral coefficients&nbsp; $D(\mu)$&nbsp; must always be complex in order to be able to consider odd time functions.
+
#The spectral coefficients&nbsp; $D(\mu)$&nbsp; must always be complex in order to be able to consider odd time functions.
*In order to be able to transform bandpass signals in the equivalent lowpass&ndash;range, one usually also uses complex time coefficients&nbsp; $d(\nu)$.
+
#One also uses complex time coefficients&nbsp; $d(\nu)$ &nbsp; &rArr; &nbsp; DFT and IDFT are also applicable to band-pass signals.
*The basic interval for&nbsp; $\nu$&nbsp; and&nbsp; $\mu$&nbsp; is usually defined as the range from&nbsp; $0$&nbsp; to&nbsp; $N - 1$&nbsp; (filled circles in the graph).  
+
#The basic interval for&nbsp; $\nu$&nbsp; and&nbsp; $\mu$&nbsp; is usually defined as the range from&nbsp; $0$&nbsp; to&nbsp; $N - 1$&nbsp; $($filled circles in the graph$)$.
*With the complex-valued number sequences&nbsp; $\langle \hspace{0.1cm}d(\nu)\hspace{0.1cm}\rangle = \langle \hspace{0.1cm}d(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , d(N-1) \hspace{0.1cm}\rangle$ &nbsp; and &nbsp; $\langle \hspace{0.1cm}D(\mu)\hspace{0.1cm}\rangle = \langle \hspace{0.1cm}D(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , D(N-1) \hspace{0.1cm}\rangle$&nbsp; DFT and IDFT are symbolised similarly to the conventional Fourier transform:  
+
<br clear=all>
:$$\langle \hspace{0.1cm} D(\mu)\hspace{0.1cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.1cm} d(\nu) \hspace{0.1cm}\rangle \hspace{0.05cm}.$$  
+
With the complex-valued number sequences&nbsp;  
*If the time function&nbsp; $x(t)$&nbsp; is already limited to the range&nbsp; $0 \le t \lt N \cdot T_{\rm A}$&nbsp; then the time coefficients output by the IDFT directly give the samples of the time function: &nbsp; $d(\nu) = x(\nu \cdot T_{\rm A}).$
+
:$$\langle \hspace{0.03cm}d(\nu)\hspace{0.03cm}\rangle = \langle \hspace{0.03cm}d(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , d(N-1) \hspace{0.03cm}\rangle,$$
*If&nbsp; $x(t)$&nbsp; is shifted with respect to the basic interval, one has to choose the association shown in&nbsp; $\text{Example 3}$&nbsp; between&nbsp; $x(t)$&nbsp; and the coefficients&nbsp; $d(\nu)$&nbsp;.
+
:$$\langle \hspace{0.03cm}D(\mu)\hspace{0.03cm}\rangle = \langle \hspace{0.03cm}D(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , D(N-1) \hspace{0.03cm}\rangle,$$
 +
 
 +
DFT and IDFT are symbolized similarly to the conventional Fourier transform:  
 +
:$$\langle \hspace{0.03cm} D(\mu)\hspace{0.03cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.03cm} d(\nu) \hspace{0.03cm}\rangle \hspace{0.05cm}.$$  
 +
#If the function&nbsp; $x(t)$&nbsp; is already limited to the range&nbsp; $0 \le t \lt N \cdot T_{\rm A}$&nbsp; then the IDFT output directly give the samples of the time function:   &nbsp; $d(\nu) = x(\nu \cdot T_{\rm A}).$
 +
#If&nbsp; $x(t)$&nbsp; is shifted with respect to the basic interval,&nbsp; one has to choose the association shown in&nbsp; $\text{Example 3}$&nbsp; between&nbsp; $x(t)$&nbsp; and the coefficients&nbsp; $d(\nu)$.
  
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
 
$\text{Example 3:}$&nbsp;
 
$\text{Example 3:}$&nbsp;
Die obere Grafik zeigt den unsymmetrischen Dreieckimpuls&nbsp; $x(t)$, dessen absolute Breite kleiner ist als&nbsp; $T_{\rm P} = N \cdot T_{\rm A}$.  
+
The upper graph shows the asymmetric triangular pulse&nbsp; $x(t)$ whose absolute width is smaller than&nbsp; $T_{\rm P} = N \cdot T_{\rm A}$.  
 +
 
 +
[[File:EN_Sig_T_5_1_S7b_neu.png|right|frame|On assigning of the DFT coefficients with&nbsp; $N=8$]]
  
[[File:P_ID1139__Sig_T_5_1_S7b_neu.png|right|frame|On Assigning of the DFT Coefficients With&nbsp; $N=8$]]
 
  
 
The sketch below shows the assigned DFT coefficients $($valid for&nbsp; $N = 8)$.
 
The sketch below shows the assigned DFT coefficients $($valid for&nbsp; $N = 8)$.
  
*For&nbsp; $\nu = 0,\hspace{0.05cm}\text{...} \hspace{0.05cm} , N/2 = 4$&nbsp; $d(\nu) = x(\nu \cdot T_{\rm A})$ holds:
+
*For&nbsp; $\nu = 0,\hspace{0.05cm}\text{...} \hspace{0.05cm} , N/2 = 4$&nbsp; holds &nbsp; $d(\nu) = x(\nu \cdot T_{\rm A})$ :
  
 
:$$d(0) = x (0)\hspace{0.05cm}, \hspace{0.15cm}
 
:$$d(0) = x (0)\hspace{0.05cm}, \hspace{0.15cm}
Line 254: Line 273:
 
:$$d(3) = x (3T_{\rm A})\hspace{0.05cm}, \hspace{0.15cm}
 
:$$d(3) = x (3T_{\rm A})\hspace{0.05cm}, \hspace{0.15cm}
 
d(4) = x (4T_{\rm A})\hspace{0.05cm}.$$  
 
d(4) = x (4T_{\rm A})\hspace{0.05cm}.$$  
*On the other hand, the coefficients&nbsp; $d(5)$,&nbsp; $d(6)$&nbsp; and&nbsp; d$(7)$&nbsp; are to be set as follows:
+
*The coefficients&nbsp; $d(5)$,&nbsp; $d(6)$&nbsp; and&nbsp; d$(7)$&nbsp; are to be set as follows:
  
:$$d(\nu) = x \big ((\nu\hspace{-0.05cm} - \hspace{-0.05cm} N ) \cdot T_{\rm  A}\big )  $$
+
:$$d(5) = x (-3T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm}
 +
d(6) = x (-2T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm}
 +
d(7) = x (-T_{\rm A})\hspace{0.05cm}$$
 +
:$$ \Rightarrow \hspace{0.2cm}d(\nu) = x \big ((\nu\hspace{-0.05cm} - \hspace{-0.05cm} N ) \cdot T_{\rm  A}\big ). $$
  
:$$ \Rightarrow \hspace{0.2cm}d(5) = x (-3T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm}
+
}}
d(6) = x (-2T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm}
 
d(7) = x (-T_{\rm A})\hspace{0.05cm}.$$ }}
 
  
==Exercises for The Chapter==
+
==Exercises for the chapter==
 
<br>
 
<br>
 
[[Aufgaben:Exercise 5.2: Inverse Discrete Fourier Transform|Exercise 5.2: Inverse Discrete Fourier Transform]]
 
[[Aufgaben:Exercise 5.2: Inverse Discrete Fourier Transform|Exercise 5.2: Inverse Discrete Fourier Transform]]

Latest revision as of 16:57, 28 June 2023

Arguments for the discrete implementation of the Fourier transform


The  »Fourier transform«  according to the previous description in chapter  »Aperiodic Signals – Pulses«  has an infinitely high selectivity due to the unlimited extension of the integration interval and is therefore an ideal theoretical tool of spectral analysis.

If the spectral components  $X(f)$  of a time function  $x(t)$  are to be determined numerically,  the general transformation equations

$$\begin{align*}X(f) & = \int_{-\infty }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}t\hspace{0.5cm} \Rightarrow\hspace{0.5cm} \text{Transform}\hspace{0.7cm} \Rightarrow\hspace{0.5cm} \text{first Fourier integral} \hspace{0.05cm},\\ x(t) & = \int_{-\infty }^{+\infty}\hspace{-0.15cm}X(f) \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi f t}\hspace{0.1cm} {\rm d}f\hspace{0.35cm} \Rightarrow\hspace{0.5cm} \text{Inverse Transform}\hspace{0.4cm} \Rightarrow\hspace{0.5cm} \text{second Fourier integral} \hspace{0.05cm}\end{align*}$$

are unsuitable for two reasons:

  1. The equations apply exclusively to continuous-time signals.  With digital computers or signal processors,  however,  one can only process discrete-time signals.
  2. For a numerical evaluation of the two Fourier integrals it is necessary to limit the respective integration interval to a finite value.


$\text{This leads to the following consequence:}$ 

A  »continuous-valued signal«  must undergo two processes before the numerical determination of its spectral properties,  viz.

  1. that of  »sampling«  for discretization,  and
  2. that of  »windowing«  to limit the integration interval.


In the following,  starting from an aperiodic time function  $x(t)$  and the corresponding Fourier spectrum  $X(f)$  a time and frequency-discrete description suitable for computer processing is developed step by step.


Time discretization – Periodification in the frequency domain


The following graphs show uniformly the time domain on the left and the frequency domain on the right. 

  • Without limiting generality,  $x(t)$  and  $X(f)$  are each real and Gaussian.
  • According to the chapter  »Discrete-Time Signal Representation«  one can describe the sampling of the time signal  $x(t)$  by multiplying it by a Dirac delta train   ⇒  
    »Dirac comb  in the time domain«
Time discretization   ⇒   Periodification in the frequency domain.  Notation:
    ${\rm A}\{x(t)\}$:  Signal  $x(t)$  after  »sampling«  $($German:  "Abtastung"$)$   ⇒   $\rm A\{\text{...}\}$
    ${\rm P}\{X(f)\}$:  Spectrum  $X(f)$  after  »periodification«    ⇒   $\rm P\{\text{...}\}$
$$p_{\delta}(t) = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot \delta (t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.$$

The result is the time signal sampled at a distance  $T_{\rm A}$: 

$${\rm A}\{x(t)\} = \sum_{\nu = - \infty }^{+\infty} T_{\rm A} \cdot x(\nu \cdot T_{\rm A})\cdot \delta (t- \nu \cdot T_{\rm A} )\hspace{0.05cm}.$$

We transform this sampled signal  $\text{A}\{ x(t)\}$  into the frequency domain:

  • The multiplication of the Dirac comb  $p_{\delta}(t)$  with  $x(t)$  corresponds in the frequency domain to the convolution of  $P_{\delta}(f)$  with  $X(f)$.
  • The result is the periodified spectrum  $\text{P}\{ X(f)\}$,  where  $f_{\rm P}$  indicates the frequency period of the function  $\text{P}\{ X(f)\}$ :
$${\rm A}\{x(t)\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{X(f)\} = \sum_{\mu = - \infty }^{+\infty} X (f- \mu \cdot f_{\rm P} ).$$

This relation was already derived in the chapter  "Discrete-Time Signal Representation"  but with slightly different nomenclature:

  • We now denote the sampled signal by  $\text{A}\{ x(t)\}$  instead of  $x_{\rm A}(t)$.
  • The  »frequency period«  is now denoted by  $f_{\rm P} = 1/T_{\rm A}$  instead of  $f_{\rm A} = 1/T_{\rm A}$.


These nomenclature changes are justified in the following sections.

The graph above shows the functional relationship described here.  It should be noted:

  1. The frequency period  $f_{\rm P}$  has been deliberately chosen to be small here so that the overlap of the spectra to be summed can be clearly seen.
  2. In practice  $f_{\rm P}$  should be at least twice as large as the largest frequency contained in the signal  $x(t)$  due to the sampling theorem.
  3. If this is not fulfilled,  then  »aliasing«  must be expected - see chapter  »Possible Errors when using DFT«.


Frequency discretization – Periodification in the time domain


The discretization of  $X(f)$  can also be described by a multiplication with a Dirac comb in the frequency domain.  The result is the sampled spectrum with distance  $f_{\rm A}$:

$${\rm A}\{X(f)\} = X(f) \cdot \sum_{\mu = - \infty }^{+\infty} f_{\rm A} \cdot \delta (f- \mu \cdot f_{\rm A } ) = \sum_{\mu = - \infty }^{+\infty} f_{\rm A} \cdot X(\mu \cdot f_{\rm A } ) \cdot\delta (f- \mu \cdot f_{\rm A } )\hspace{0.05cm}.$$
  • If one transforms the Dirac comb $($with impulse weights  $f_{\rm A})$  into the time domain,  one obtains with  $T_{\rm P} = 1/f_{\rm A}$:
$$\sum_{\mu = - \infty }^{+\infty} f_{\rm A} \cdot \delta (f- \mu \cdot f_{\rm A } ) \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} \sum_{\nu = - \infty }^{+\infty} \delta (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$
  • The multiplication with  $X(f)$  corresponds in the time domain to the convolution with  $x(t)$.  One obtains the signal  $\text{P}\{ x(t)\}$  periodified with distance  $T_{\rm P}$:
$${\rm A}\{X(f)\} \hspace{0.2cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\, \hspace{0.2cm} {\rm P}\{x(t)\} = x(t) \star \sum_{\nu = - \infty }^{+\infty} \delta (t- \nu \cdot T_{\rm P } )= \sum_{\nu = - \infty }^{+\infty} x (t- \nu \cdot T_{\rm P } ) \hspace{0.05cm}.$$


Frequency discretization – Periodization in the time domain

$\text{Example 1:}$  This correlation is illustrated in the graph:

  • Due to the coarse frequency rastering,  this example results in a relatively small value for the time period  $T_{\rm P}$ .


  • Therefore due to overlaps,  the  $($blue$)$  periodified time signal  $\text{P}\{ x(t)\}$  differs significantly from  $x(t)$.


  • If one wants to achieve  $\text{P}\{ x(t)\} \approx x(t)$  then  $T_{\rm P}$  must be chosen much larger than in this example.

Finite signal representation


Finite signals of the Discrete Fourier Transform  $\rm (DFT)$

One arrives at the so-called  »finite signal representation«,  if both

  • the time function  $x(t)$, 
  • the spectral function  $X(f)$


are specified exclusively by their sample values.  This graph is to be interpreted as follows:

  • In the left graph,  the function  $\text{A}\{ \text{P}\{ x(t)\}\}$  is drawn in blue.  This results from sampling the periodified time function  $\text{P}\{ x(t)\}$  with equidistant Dirac deltas with distance  $T_{\rm A} = 1/f_{\rm P}$.
  • In the right graph,  the function  $\text{P}\{ \text{A}\{ X(f)\}\}$  is drawn in green.  This results from the periodification  $($with  $f_{\rm P})$  of the sampled spectral function  $\{ \text{A}\{ X(f)\}\}$.
  • There is a Fourier correspondence between the blue finite signal  $($in the left sketch$)$  and the green finite signal  $($in the right sketch$)$,  as follows:
$${\rm A}\{{\rm P}\{x(t)\}\} \hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{{\rm A}\{X(f)\}\} \hspace{0.05cm}.$$
  • The Dirac delta lines of the periodic continuation  $\text{P}\{ \text{A}\{ X(f)\}\}$  of the sampled spectral function,  however,  only fall into the same frequency grid as those of  $\text{A}\{ X(f)\}$  if the frequency period  $f_{\rm P}$  is an integer multiple  $(N)$  of the frequency sampling interval  $f_{\rm A}$.
  • Therefore,  when using the finite signal representation,  the following condition must always be fulfilled,  where in practice the natural number  $N$  is usually a power of two  $($the above graph is based on the value  $N = 8)$:
$$f_{\rm P} = N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} {1}/{T_{\rm A}}= N \cdot f_{\rm A} \hspace{0.5cm} \Rightarrow\hspace{0.5cm} N \cdot f_{\rm A}\cdot T_{\rm A} = 1\hspace{0.05cm}.$$
  • If the condition  $N \cdot f_{\rm A} \cdot T_{\rm A} = 1$  is fulfilled then the order of periodization and sampling is interchangeable.  Thus:
$${\rm A}\{{\rm P}\{x(t)\}\} = {\rm P}\{{\rm A}\{x(t)\}\}\hspace{0.2cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \hspace{0.2cm} {\rm P}\{{\rm A}\{X(f)\}\} = {\rm A}\{{\rm P}\{X(f)\}\}\hspace{0.05cm}.$$

$\text{Conclusions:}$ 

  1. The time function  $\text{P}\{ \text{A}\{ x(t)\}\}$  has the period  $T_{\rm P} = N \cdot T_{\rm A}$.
  2. The period in the frequency domain is  $f_{\rm P} = N \cdot f_{\rm A}$.
  3. For the description of the discretized time and frequency response in each case  $N$  complex numerical values  in the form of impulse weights are sufficient.


$\text{Example 2:}$  A time-limited  $($pulse-like$)$  signal  $x(t)$  is present in sampled form,  where the distance between two samples is  $T_{\rm A} = 1\, {\rm µ s}$:

  • After a discrete Fourier transform with  $N = 512$  the spectrum  $X(f)$  is available in form of frequency-samples at spacing  $f_{\rm A} = (N \cdot T_{\rm A})^{-1} \approx 1.953\,\text{kHz} $.
  • Increasing the DFT parameter to  $N= 2048$ results in a  $($four times$)$  finer frequency grid with  $f_{\rm A} \approx 488\,\text{Hz}$.


From the continuous to the discrete Fourier transform


From the conventional  »first Fourier integral«

$$X(f) =\int_{-\infty }^{+\infty}x(t) \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f \hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm} {\rm d}t$$

arises from discretization  $(\text{d}t \to T_{\rm A}$,  $t \to \nu \cdot T_{\rm A}$,  $f \to \mu \cdot f_{\rm A}$,  $T_{\rm A} \cdot f_{\rm A} = 1/N)$  the sampled and periodified spectral function

$${\rm P}\{X(\mu \cdot f_{\rm A})\} = T_{\rm A} \cdot \sum_{\nu = 0 }^{N-1} {\rm P}\{x(\nu \cdot T_{\rm A})\}\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm} \cdot \hspace{0.05cm}\nu \hspace{0.05cm} \cdot \hspace{0.05cm}\mu /N} \hspace{0.05cm}.$$

It is taken into account that due to the discretization,  the periodified functions are to be used in each case.

For reasons of simplified notation, we now make the following substitutions:

  • The  $N$  »time-domain coefficients«  are with the variable  $\nu = 0$, ... , $N - 1$:
$$d(\nu) = {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.05cm}.$$
  • Let  $N$  »frequency domain coefficients«  be associated with the variable  $\mu = 0,$ ... , $N-1$:
$$D(\mu) = f_{\rm A} \cdot {\rm P}\left\{X(f)\right\}{\big|}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A}}\hspace{0.05cm}.$$
  • Abbreviation is written for the from  $N$  dependent  »complex rotation factor« :
$$w = {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} = \cos \left( {2 \pi}/{N}\right)-{\rm j} \cdot \sin \left( {2 \pi}/{N}\right) \hspace{0.05cm}.$$

$\text{Definition:}$  The term  »Discrete Fourier Transform«  $\rm (DFT)$  means the calculation of the  $N$  spectral coefficients  $D(\mu)$  from the  $N$  signal coefficients  $d(\nu)$:

On defining the  »Discrete Fourier Transform«  $\rm (DFT)$  with  $N=8$
$$D(\mu) = \frac{1}{N} \cdot \sum_{\nu = 0 }^{N-1} d(\nu)\cdot {w}^{\hspace{0.05cm}\nu \hspace{0.07cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}. $$

In the diagram you can see:

  • The  $N = 8$  signal coefficients  $d(\nu)$  by the blue filling,
  • the  $N = 8$  spectral coefficients  $D(\mu)$  at the green filling.


Inverse discrete Fourier transform


The  »inverse discrete Fourier transform«  describes the  »second Fourier integral«:

$$\begin{align*}x(t) & = \int_{-\infty }^{+\infty}X(f) \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi \hspace{0.05cm}\cdot \hspace{0.05cm} f \hspace{0.05cm}\cdot \hspace{0.05cm} t}\hspace{0.1cm} {\rm d}f\end{align*}$$

in discretized form:  

$$d(\nu) = {\rm P}\left\{x(t)\right\}{\big|}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A}}\hspace{0.01cm}.$$

$\text{Definition:}$  The term  »Inverse Discrete Fourier Transform»   $\rm (IDFT)$   means the calculation of the signal coefficients  $d(\nu)$  from the spectral coefficients  $D(\mu)$:

On defining the  »Inverse Discrete Fourier Transform«  $\rm (IDFT)$  with  $N=8$
$$d(\nu) = \sum_{\mu = 0 }^{N-1} D(\mu) \cdot {w}^{-\nu \hspace{0.07cm} \cdot \hspace{0.05cm}\mu} \hspace{0.05cm}.$$
  • With indices  $\nu = 0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1, $  and   $\mu = 0, \hspace{0.05cm}\text{...} \hspace{0.05cm}, N-1$  holds:
$$d(\nu) = {\rm P}\left\{x(t)\right\}{\big \vert}_{t \hspace{0.05cm}= \hspace{0.05cm}\nu \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm A} }\hspace{0.01cm},$$
$$D(\mu) = f_{\rm A} \cdot {\rm P}\left\{X(f)\right\}{\big \vert}_{f \hspace{0.05cm}= \hspace{0.05cm}\mu \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm A} } \hspace{0.01cm},$$
$$w = {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2 \pi /N} \hspace{0.01cm}.$$
  • A comparison between  »DFT«  and  »IDFT«  shows that exactly the same algorithm can be used. 
  • The only differences between IDFT and DFT are:
  1. The exponent of the rotation factor is to be applied with different sign.
  2. In the IDFT,  the division by  $N$  is omitted.


Interpretation of DFT and IDFT


The graph shows the discrete coefficients in the time and frequency domain together with the periodified continuous-time functions.

Time and frequency coefficients of the DFT

When using DFT or IDFT,  please note:

  1. According to the above definitions, the DFT coefficients  $d(ν)$  and  $D(\mu)$  always have the unit of the time function.
  2. Dividing  $D(\mu)$  by  $f_{\rm A}$,  one obtains the spectral value  $X(\mu \cdot f_{\rm A})$.
  3. The spectral coefficients  $D(\mu)$  must always be complex in order to be able to consider odd time functions.
  4. One also uses complex time coefficients  $d(\nu)$   ⇒   DFT and IDFT are also applicable to band-pass signals.
  5. The basic interval for  $\nu$  and  $\mu$  is usually defined as the range from  $0$  to  $N - 1$  $($filled circles in the graph$)$.


With the complex-valued number sequences 

$$\langle \hspace{0.03cm}d(\nu)\hspace{0.03cm}\rangle = \langle \hspace{0.03cm}d(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , d(N-1) \hspace{0.03cm}\rangle,$$
$$\langle \hspace{0.03cm}D(\mu)\hspace{0.03cm}\rangle = \langle \hspace{0.03cm}D(0), \hspace{0.05cm}\text{...} \hspace{0.05cm} , D(N-1) \hspace{0.03cm}\rangle,$$

DFT and IDFT are symbolized similarly to the conventional Fourier transform:

$$\langle \hspace{0.03cm} D(\mu)\hspace{0.03cm}\rangle \hspace{0.2cm}\bullet\!\!-\!\!\!-(N)\!-\!\!\!-\!\!\hspace{0.05cm}\circ\, \hspace{0.2cm} \langle \hspace{0.03cm} d(\nu) \hspace{0.03cm}\rangle \hspace{0.05cm}.$$
  1. If the function  $x(t)$  is already limited to the range  $0 \le t \lt N \cdot T_{\rm A}$  then the IDFT output directly give the samples of the time function:   $d(\nu) = x(\nu \cdot T_{\rm A}).$
  2. If  $x(t)$  is shifted with respect to the basic interval,  one has to choose the association shown in  $\text{Example 3}$  between  $x(t)$  and the coefficients  $d(\nu)$.


$\text{Example 3:}$  The upper graph shows the asymmetric triangular pulse  $x(t)$ whose absolute width is smaller than  $T_{\rm P} = N \cdot T_{\rm A}$.

On assigning of the DFT coefficients with  $N=8$


The sketch below shows the assigned DFT coefficients $($valid for  $N = 8)$.

  • For  $\nu = 0,\hspace{0.05cm}\text{...} \hspace{0.05cm} , N/2 = 4$  holds   $d(\nu) = x(\nu \cdot T_{\rm A})$ :
$$d(0) = x (0)\hspace{0.05cm}, \hspace{0.15cm} d(1) = x (T_{\rm A})\hspace{0.05cm}, \hspace{0.15cm} d(2) = x (2T_{\rm A})\hspace{0.05cm}, $$
$$d(3) = x (3T_{\rm A})\hspace{0.05cm}, \hspace{0.15cm} d(4) = x (4T_{\rm A})\hspace{0.05cm}.$$
  • The coefficients  $d(5)$,  $d(6)$  and  d$(7)$  are to be set as follows:
$$d(5) = x (-3T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm} d(6) = x (-2T_{\rm A})\hspace{0.05cm}, \hspace{0.35cm} d(7) = x (-T_{\rm A})\hspace{0.05cm}$$
$$ \Rightarrow \hspace{0.2cm}d(\nu) = x \big ((\nu\hspace{-0.05cm} - \hspace{-0.05cm} N ) \cdot T_{\rm A}\big ). $$

Exercises for the chapter


Exercise 5.2: Inverse Discrete Fourier Transform

Exercise 5.2Z: DFT of a Triangular Pulse