Difference between revisions of "Aufgaben:Exercise 2.5: Half-Wave Rectification"

From LNTwww
 
(6 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID311__Sig_A_2_5.png|right|frame|Gleichgerichtete Cosinusfunktionen]]
+
[[File:P_ID311__Sig_A_2_5.png|right|frame|Rectified cosine functions]]
  
We are looking for the Fourier coefficients of the signal  $x(t)$, sketched below, which results from the one-way rectification of the sinusoidal signal  $w(t)$  with amplitude  $\pi /2$ .
+
We are looking for the Fourier coefficients of the signal  $x(t)$, sketched below, which results from the one-way rectification of the sinusoidal signal  $w(t)$  with amplitude  $\pi /2$.
  
The Fourier series representation of the signal  $u(t)$ sketched above is assumed to be known. This was already determined in  [[Aufgaben:Aufgabe_2.4:_Gleichgerichteter_Cosinus|Aufgabe 2.4]] . Taking into account the amplitude  $\pi /2$  the following applies:
+
The Fourier series representation of the signal  $u(t)$ sketched above is assumed to be known.  This was already determined in  [[Aufgaben:Aufgabe_2.4:_Gleichgerichteter_Cosinus|Exercise 2.4]].  Taking into account the amplitude  $\pi /2$  the following applies:
 
:$$u(t)=1+\frac{2}{3} \cdot \cos(\omega_1t)-\frac{2}{15}\cdot \cos(2\omega_1t)+\frac{2}{35}\cdot \cos(3\omega_1t)-\dots$$
 
:$$u(t)=1+\frac{2}{3} \cdot \cos(\omega_1t)-\frac{2}{15}\cdot \cos(2\omega_1t)+\frac{2}{35}\cdot \cos(3\omega_1t)-\dots$$
 
   
 
   
 
It should be noted:
 
It should be noted:
*The fundamental angular frequency is denoted by  $\omega_1$ . But since the period of the signals  $u(t)$  and  $v(t)$  is  $T/2$ ,   $\omega_1 = 2\pi /(T/2) = 4 \pi /T$.
+
*The basic circular frequency is denoted by  $\omega_1$ .  But since the period of the signals  $u(t)$  and  $v(t)$  is  $T/2$,   $\omega_1 = 2\pi /(T/2) = 4 \pi /T$.
*Because in this task the signals  $u(t)$,  $w(t)$  and  $x(t)$  are to be related to each other, the signal  $u(t)$  must also be represented with the period duration  $T$  of the signal  $x(t)$ .
+
*Because in this task the signals  $u(t)$,  $w(t)$  and  $x(t)$  are to be related to each other, the signal  $u(t)$  must also be represented with the period duration  $T$  of the signal  $x(t)$. 
 
*With  $\omega_0 = 2\pi /T = \omega_1/2$  the same applies:
 
*With  $\omega_0 = 2\pi /T = \omega_1/2$  the same applies:
 
   
 
   
Line 37: Line 37:
  
 
''Hints:''  
 
''Hints:''  
*This exercise belongs to the chapter  [[Signal_Representation/Fourier_Series|Fourierreihe]].
+
*This exercise belongs to the chapter  [[Signal_Representation/Fourier_Series|Fourier Series]].
 
*You can find a compact summary of the topic in the two learning videos  
 
*You can find a compact summary of the topic in the two learning videos  
::[[Zur_Berechnung_der_Fourierkoeffizienten_(Lernvideo)|Zur Berechnung der Fourierkoeffizienten]],
+
::[[Zur_Berechnung_der_Fourierkoeffizienten_(Lernvideo)|Zur Berechnung der Fourierkoeffizienten]]  ⇒   "To calculate the Fourier coefficients",
::[[Eigenschaften_der_Fourierreihendarstellung_(Lernvideo)|Eigenschaften der Fourierreihendarstellung]].
+
:: [[Eigenschaften_der_Fourierreihendarstellung_(Lernvideo)|Eigenschaften der Fourierreihendarstellung]]   ⇒    "Properties of the Fourier series representation".
 
   
 
   
  
Line 47: Line 47:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Calculate the Fourier coefficients of the signal&nbsp; $v(t)$. What is the value of the coefficient&nbsp; $A_2$?
+
{Calculate the Fourier coefficients of the signal&nbsp; $v(t)$.&nbsp; What is the coefficient&nbsp; $A_2$?
 
|type="{}"}
 
|type="{}"}
 
$v(t)$: &nbsp; $A_2\ = \ $  { -0.67--0.66 }
 
$v(t)$: &nbsp; $A_2\ = \ $  { -0.67--0.66 }
  
{Calculate the Fourier coefficients of the signal&nbsp; $w(t)$. What is the value of the coefficient&nbsp; $B_1$?
+
{Calculate the Fourier coefficients of the signal&nbsp; $w(t)$.&nbsp; What is the coefficient&nbsp; $B_1$?
 
|type="{}"}
 
|type="{}"}
 
$w(t)$: &nbsp;$B_1\ = \ $ { 1.571 3% }
 
$w(t)$: &nbsp;$B_1\ = \ $ { 1.571 3% }
  
{How can&nbsp; $x(t)$&nbsp; be composed of&nbsp; $v(t)$&nbsp; and&nbsp; $w(t)$&nbsp;? Give the corresponding Fourier coefficients of the signal&nbsp; $x(t)$&nbsp; in particular
+
{How can&nbsp; $x(t)$&nbsp; be composed of&nbsp; $v(t)$&nbsp; and&nbsp; $w(t)$?&nbsp; Give the corresponding Fourier coefficients of the signal&nbsp; $x(t)$.&nbsp; In particular:
 
|type="{}"}
 
|type="{}"}
 
$x(t)$: &nbsp;$A_0\ = \ $ { 0.5 3% }
 
$x(t)$: &nbsp;$A_0\ = \ $ { 0.5 3% }
Line 65: Line 65:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Auch das verschobene Signal&nbsp; $v(t)$&nbsp; ist gerade und alle Sinuskoeffizienten sind dementsprechend Null.  
+
'''(1)'''&nbsp; The shifted signal&nbsp; $v(t)$&nbsp; is also even and all sine coefficients are accordingly zero.
*Am Gleichsignalkoeffizienten ändert sich ebenfalls nichts:&nbsp; $A_0 = 1$.
+
*Nothing changes in the DC signal coefficient: &nbsp; $A_0 = 1$.
  
*Aus den Signalverläufen ist zu erkennen, dass&nbsp; $v(t) = u(t - T/4)$&nbsp; gilt:&nbsp;
+
*From the signal curves it can be seen that&nbsp; $v(t) = u(t - T/4)$&nbsp; applies:&nbsp;
 
   
 
   
 
:$$v(t)=1+\frac{2}{3}\cdot \cos(2\omega_0(t-\frac{T}{4}))-\frac{2}{15}\cdot \cos(4\omega_0(t-\frac{T}{4}))+\frac{2}{35}\cdot \cos(6\omega_0(t-\frac{T}{4}))-\dots$$
 
:$$v(t)=1+\frac{2}{3}\cdot \cos(2\omega_0(t-\frac{T}{4}))-\frac{2}{15}\cdot \cos(4\omega_0(t-\frac{T}{4}))+\frac{2}{35}\cdot \cos(6\omega_0(t-\frac{T}{4}))-\dots$$
  
*Die Cosinusterme können nun mit&nbsp; $\omega_0 \cdot T = 2 \pi$&nbsp; umgeformt werden:&nbsp;
+
*The cosine terms can now be transformed with&nbsp; $\omega_0 \cdot T = 2 \pi$&nbsp; :&nbsp;
 
   
 
   
 
:$$\cos(2\omega_0(t-\frac{T}{4}))=\cos(2\omega_0t-\pi)=-\cos(2\omega_0t),$$
 
:$$\cos(2\omega_0(t-\frac{T}{4}))=\cos(2\omega_0t-\pi)=-\cos(2\omega_0t),$$
Line 80: Line 80:
 
:$$\cos(6\omega_0(t-\frac{T}{4}))=\cos(6\omega_0t-3\pi)=-\cos(6\omega_0t).$$
 
:$$\cos(6\omega_0(t-\frac{T}{4}))=\cos(6\omega_0t-3\pi)=-\cos(6\omega_0t).$$
  
*Damit erhält man für die Fourierreihe:
+
*This gives us for the Fourier series:
 
   
 
   
 
:$$v(t)=1-{2}/{3}\cdot \cos(2\omega_0t)-{2}/{15}\cdot \cos(4\omega_0t)-{2}/{35}\cdot \cos(6\omega_0t)-\dots$$
 
:$$v(t)=1-{2}/{3}\cdot \cos(2\omega_0t)-{2}/{15}\cdot \cos(4\omega_0t)-{2}/{35}\cdot \cos(6\omega_0t)-\dots$$
  
:bzw. für die Cosinuskoeffizienten mit geradzahligem&nbsp; $n$:
+
:or for the cosine coefficients with even-numbered&nbsp; $n$:
 
   
 
   
 
:$$A_n=\frac{-2}{n^2-1}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}A_2=-\hspace{-0.05cm}2/3 \hspace{0.1cm}\underline{= -\hspace{-0.05cm}0.667}.$$
 
:$$A_n=\frac{-2}{n^2-1}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}A_2=-\hspace{-0.05cm}2/3 \hspace{0.1cm}\underline{= -\hspace{-0.05cm}0.667}.$$
Line 90: Line 90:
  
  
'''(2)'''&nbsp; Wegen&nbsp; $w(t) = \pi /2 \cdot \sin(\omega_0 t)$&nbsp; sind alle Fourierkoeffizienten außer&nbsp; $B_1 = \pi /2 \hspace{0.1cm}\underline{=1.571}$&nbsp; gleich Null.
+
'''(2)'''&nbsp; Because of&nbsp; $w(t) = \pi /2 \cdot \sin(\omega_0 t)$&nbsp; all Fourier coefficients except&nbsp; $B_1 = \pi /2 \hspace{0.1cm}\underline{=1.571}$&nbsp; are zero.
  
  
'''(3)'''&nbsp; Aus der grafischen Darstellung erkennt man den Zusammenhang&nbsp; $x(t)={1}/{2} \cdot \big [v(t)+w(t) \big].$ Das bedeutet:
+
'''(3)'''&nbsp; From the graphical representation one can see the relationship&nbsp; $x(t)={1}/{2} \cdot \big [v(t)+w(t) \big].$ This means:
 
   
 
   
 
:$$x(t)=\frac{1}{2}+\frac{\pi}{4}\cdot \sin(\omega_0 t)-\frac{1}{3}\cdot \cos(2\omega_0 t)-\frac{1}{15}\cdot \cos(4\omega_0 t)-\frac{1}{35}\cdot \cos(6\omega_0 t)-\ldots$$
 
:$$x(t)=\frac{1}{2}+\frac{\pi}{4}\cdot \sin(\omega_0 t)-\frac{1}{3}\cdot \cos(2\omega_0 t)-\frac{1}{15}\cdot \cos(4\omega_0 t)-\frac{1}{35}\cdot \cos(6\omega_0 t)-\ldots$$
  
*Die gesuchten Fourierkoeffizienten sind somit:  
+
*The Fourier coefficients sought are thus:  
 
:$$A_0 \hspace{0.1cm}\underline{=0.5},\hspace{1cm}  
 
:$$A_0 \hspace{0.1cm}\underline{=0.5},\hspace{1cm}  
 
B_1 = \pi /4 \hspace{0.1cm}\underline{= 0.785},\hspace{1cm}
 
B_1 = \pi /4 \hspace{0.1cm}\underline{= 0.785},\hspace{1cm}
Line 104: Line 104:
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^2.4 Fourier Series^]]
+
[[Category:Signal Representation: Exercises|^2.4 Fourier Series^]]

Latest revision as of 14:14, 15 April 2021

Rectified cosine functions

We are looking for the Fourier coefficients of the signal  $x(t)$, sketched below, which results from the one-way rectification of the sinusoidal signal  $w(t)$  with amplitude  $\pi /2$.

The Fourier series representation of the signal  $u(t)$ sketched above is assumed to be known.  This was already determined in  Exercise 2.4.  Taking into account the amplitude  $\pi /2$  the following applies:

$$u(t)=1+\frac{2}{3} \cdot \cos(\omega_1t)-\frac{2}{15}\cdot \cos(2\omega_1t)+\frac{2}{35}\cdot \cos(3\omega_1t)-\dots$$

It should be noted:

  • The basic circular frequency is denoted by  $\omega_1$ .  But since the period of the signals  $u(t)$  and  $v(t)$  is  $T/2$,   $\omega_1 = 2\pi /(T/2) = 4 \pi /T$.
  • Because in this task the signals  $u(t)$,  $w(t)$  and  $x(t)$  are to be related to each other, the signal  $u(t)$  must also be represented with the period duration  $T$  of the signal  $x(t)$. 
  • With  $\omega_0 = 2\pi /T = \omega_1/2$  the same applies:
$$u(t)=1+\frac{2}{3} \cdot \cos(2\omega_0t)-\frac{2}{15} \cdot \cos(4\omega_0t)+\frac{2}{35} \cdot \cos(6\omega_0t)-\dots$$

For the Fourier coefficients this means:

  • The DC coefficient results in  $A_0 = 1$,
  • All sine coefficients are  $B_n = 0$,
  • The cosine coefficients with odd  $n = 1, \ 3, \ 5, \dots$ are all  $0$,
  • The cosine coefficients with even  $n = 2, \ 4, \ 6, \dots$ are not equal to  $0$ :
$$A_n=(-1)^{\hspace{0.01cm}n/2+1}\frac{2}{n^2-1}.$$

This results in the following numerical values:

$$A_1=A_3=A_5=\dots=0,$$
$$A_2=2/3; \;A_4=-2/15;\;A_6=2/35;\;A_8=-2/63.$$




Hints:

  • This exercise belongs to the chapter  Fourier Series.
  • You can find a compact summary of the topic in the two learning videos
Zur Berechnung der Fourierkoeffizienten  ⇒   "To calculate the Fourier coefficients",
Eigenschaften der Fourierreihendarstellung   ⇒   "Properties of the Fourier series representation".


Questions

1

Calculate the Fourier coefficients of the signal  $v(t)$.  What is the coefficient  $A_2$?

$v(t)$:   $A_2\ = \ $

2

Calculate the Fourier coefficients of the signal  $w(t)$.  What is the coefficient  $B_1$?

$w(t)$:  $B_1\ = \ $

3

How can  $x(t)$  be composed of  $v(t)$  and  $w(t)$?  Give the corresponding Fourier coefficients of the signal  $x(t)$.  In particular:

$x(t)$:  $A_0\ = \ $

$\hspace{1cm}B_1\ = \ $

$\hspace{1cm}A_2\ = \ $


Solution

(1)  The shifted signal  $v(t)$  is also even and all sine coefficients are accordingly zero.

  • Nothing changes in the DC signal coefficient:   $A_0 = 1$.
  • From the signal curves it can be seen that  $v(t) = u(t - T/4)$  applies: 
$$v(t)=1+\frac{2}{3}\cdot \cos(2\omega_0(t-\frac{T}{4}))-\frac{2}{15}\cdot \cos(4\omega_0(t-\frac{T}{4}))+\frac{2}{35}\cdot \cos(6\omega_0(t-\frac{T}{4}))-\dots$$
  • The cosine terms can now be transformed with  $\omega_0 \cdot T = 2 \pi$  : 
$$\cos(2\omega_0(t-\frac{T}{4}))=\cos(2\omega_0t-\pi)=-\cos(2\omega_0t),$$
$$\cos(4\omega_0(t-\frac{T}{4}))=\cos(4\omega_0t-2\pi)=\cos(4\omega_0t),$$
$$\cos(6\omega_0(t-\frac{T}{4}))=\cos(6\omega_0t-3\pi)=-\cos(6\omega_0t).$$
  • This gives us for the Fourier series:
$$v(t)=1-{2}/{3}\cdot \cos(2\omega_0t)-{2}/{15}\cdot \cos(4\omega_0t)-{2}/{35}\cdot \cos(6\omega_0t)-\dots$$
or for the cosine coefficients with even-numbered  $n$:
$$A_n=\frac{-2}{n^2-1}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}A_2=-\hspace{-0.05cm}2/3 \hspace{0.1cm}\underline{= -\hspace{-0.05cm}0.667}.$$


(2)  Because of  $w(t) = \pi /2 \cdot \sin(\omega_0 t)$  all Fourier coefficients except  $B_1 = \pi /2 \hspace{0.1cm}\underline{=1.571}$  are zero.


(3)  From the graphical representation one can see the relationship  $x(t)={1}/{2} \cdot \big [v(t)+w(t) \big].$ This means:

$$x(t)=\frac{1}{2}+\frac{\pi}{4}\cdot \sin(\omega_0 t)-\frac{1}{3}\cdot \cos(2\omega_0 t)-\frac{1}{15}\cdot \cos(4\omega_0 t)-\frac{1}{35}\cdot \cos(6\omega_0 t)-\ldots$$
  • The Fourier coefficients sought are thus:
$$A_0 \hspace{0.1cm}\underline{=0.5},\hspace{1cm} B_1 = \pi /4 \hspace{0.1cm}\underline{= 0.785},\hspace{1cm} A_2\hspace{0.1cm}\underline{ = -0.333}.$$