Difference between revisions of "Applets:Generation of Walsh functions"

From LNTwww
 
(4 intermediate revisions by one other user not shown)
Line 1: Line 1:
{{LntAppletLinkEn|walsh_en}}        
+
{{LntAppletLinkEnDe|walsh_en|walsh}}
[https://en.lntwww.de/Applets:Zur_Erzeugung_von_Walsh-Funktionen_(neues_Applet)       '''German Version''']
 
  
 
== Program description==
 
== Program description==
Line 44: Line 43:
 
*Only  $J\hspace{-0.09cm} -\hspace{-0.09cm}1$, because the unspreaded sequence  $w_0(t)$  is usually not used.  
 
*Only  $J\hspace{-0.09cm} -\hspace{-0.09cm}1$, because the unspreaded sequence  $w_0(t)$  is usually not used.  
 
*Please note the color assignment between the lines of the Hadamard matrix and the spreading sequences  $w_j(t)$.  
 
*Please note the color assignment between the lines of the Hadamard matrix and the spreading sequences  $w_j(t)$.  
*The submatrix  $\mathbf H_4$  is highlighted in yellow.}}}
+
*The submatrix  $\mathbf H_4$  is highlighted in yellow.}}
 
<br clear=all>
 
<br clear=all>
  
Line 63: Line 62:
 
*The first German version was created in 2007 by&nbsp;  [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Thomas_Gro.C3.9Fer_.28Diplomarbeit_LB_2006.2C_danach_freie_Mitarbeit_bis_2010.29|Thomas Großer]]&nbsp;&nbsp; in the context of his diploma thesis with "FlashMX&ndash;Actionscript"&nbsp;  (Supervisor:&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).
 
*The first German version was created in 2007 by&nbsp;  [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Thomas_Gro.C3.9Fer_.28Diplomarbeit_LB_2006.2C_danach_freie_Mitarbeit_bis_2010.29|Thomas Großer]]&nbsp;&nbsp; in the context of his diploma thesis with "FlashMX&ndash;Actionscript"&nbsp;  (Supervisor:&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).
 
*2018/2019 the applet was converted on "HTML5" and redesigned by&nbsp;  [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; (Engineering practice, supervisor:&nbsp; [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] ).
 
*2018/2019 the applet was converted on "HTML5" and redesigned by&nbsp;  [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; (Engineering practice, supervisor:&nbsp; [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] ).
*2020 this English version was made by&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; (working student) and&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]].&nbsp; Translation using "www.DeepL.com/Translator" (free version).
+
*2020 this English version was made by&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; (working student) and&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]].&nbsp;  
 
==Call the applet again==
 
==Call the applet again==
 
<br>
 
<br>
{{LntAppletLinkEn|walsh_en}} &nbsp; &nbsp;  &nbsp; 
+
{{LntAppletLinkEnDe|walsh_en|walsh}}
[https://en.lntwww.de/Applets:Zur_Erzeugung_von_Walsh-Funktionen_(neues_Applet) &nbsp; &nbsp; &nbsp; '''German Version''']
+
<br><br>

Latest revision as of 19:05, 21 March 2023

Open Applet in new Tab   Deutsche Version Öffnen

Program description


This applet allows to display the Hadamard matrices  $\mathbf{H}_J$  for the construction of the Walsh functions  $w_j$.  The factor  $J$  of the band spreading as well as the selection of the individual Walsh functions  (by means of a blue border around rows of the matrix)  can be changed.

Theoretical background


Application


The  Walsh functions  are a group of periodic orthogonal functions.  Their application in digital signal processing mainly lies in the use for band spreading in CDMA systems, for example the mobile radio standard UMTS.

  • Due to their orthogonal properties and the favourable periodic cross-correlation function  $\rm (PCCF)$, the Walsh functions represent optimal spreading sequences for a distortion-free channel and a synchronous CDMA system.  If you take any two lines and form the correlation (averaging over the products), the PCCF value is always zero.
  • In asynchronous operation  (example:   uplink of a mobile radio system)  or de-orthogonalization due to multipath propagation, Walsh functions alone are not necessarily suitable for band spreading.
  • In terms of  $\rm (PACF)$  (periodic autocorrelation function) these sequences are not as good:  Each individual Walsh function has a different PACF and each individual PACF is less good than a comparable pseudo noise  $\rm (PN)$  sequence. That means:   The synchronization is more difficult with Walsh functions than with PN sequences.


Construction


The construction of Walsh functions can be done recursively using the  Hadamard matrices.

  • A Hadamard matrix  $\mathbf{H}_J$  of order  $J$  is a  $J\times J$  matrix, which contains line by line the  $\pm 1$  weights of the Walsh sequences.
  • The orders of the Hadamard matrices are fixed to powers of two, i.e.  $J = 2^G$  applies to a natural number  $G$. Starting from $\mathbf{H}_1 = [+1]$ and
$$ \mathbf{H}_2 = \left[ \begin{array}{rr} +1 & +1\\ +1 & -1 \\ \end{array}\right] $$

the following relationship applies to the generation of further Hadamard matrices:

$$ \mathbf{H}_{2N} = \left[ \begin{array}{rr} +\mathbf{H}_N & +\mathbf{H}_N\\ +\mathbf{H}_N & -\mathbf{H}_N \\ \end{array}\right] $$


$\text{Example:}$  The graphic shows the Hadamard matrix  $\mathbf H_8$  (right) and the  $J\hspace{-0.09cm} -\hspace{-0.09cm}1$  spreading sequences which can be constructed with it.

Walsh spreading sequences  $(J = 8)$  and Hadamard matrix  $\mathbf H_8$ 
  • Only  $J\hspace{-0.09cm} -\hspace{-0.09cm}1$, because the unspreaded sequence  $w_0(t)$  is usually not used.
  • Please note the color assignment between the lines of the Hadamard matrix and the spreading sequences  $w_j(t)$.
  • The submatrix  $\mathbf H_4$  is highlighted in yellow.


How to use the applet


Bildschirm Walsh EN 3.png

    (A)     Selection of  $G$   ⇒   Band spread factor:  $J= 2^G$

    (B)     Selection of the Walsh function  $w_j$  to be marked 

About the authors

This interactive calculation tool was designed and realized at the  Lehrstuhl für Nachrichtentechnik  $\rm (LNT)$  of the  Technical University of Munich  $\rm (TUM)$.

Call the applet again


Open Applet in new Tab   Deutsche Version Öffnen