Difference between revisions of "Aufgaben:Exercise 3.6: Even and Odd Time Signals"

From LNTwww
 
(4 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID516__Sig_A_3_6_neu.png|250px|right|frame|„Keilfunktion” sowie ein gerades und ein ungerades Zeitsignal]]
+
[[File:P_ID516__Sig_A_3_6_neu.png|250px|right|frame|"Wedge function" as well as an even and an odd time signal]]
  
We are looking for the spectrum  X(f)  of the pulse-shaped signal  x(t) sketched opposite, which rises linearly from  $2\,\text{ V}  to 4\,\text{ V}  in the range from –T/2  to +T/2$  and is zero outside.
+
We are looking for the spectrum  X(f)  of the pulse  x(t) sketched opposite, which rises linearly from  $2\hspace{0.05cm} \text{V}  to 4\hspace{0.05cm} \text{V}  in the range from –T/2  to +T/2$  and is zero outside.
  
 
The spectral functions of the signals  g(t)  and  u(t)  shown below are assumed to be known:
 
The spectral functions of the signals  g(t)  and  u(t)  shown below are assumed to be known:
*The even, rectangular time function  g(t)  has the spectrum
+
*The even (German:  gerade) rectangular time function  g(t)  has the spectrum
 
   
 
   
:$$G( f ) = A_g  \cdot T \cdot {\mathop{\rm si}\nolimits}( { {\rm{\pi }}fT} ) \hspace{0.3cm} {\rm{mit}}\hspace{0.3cm} {\mathop{\rm si}\nolimits}( x ) =  {\sin ( x )}/{x}.$$
+
:$$G( f ) = A_g  \cdot T \cdot {\mathop{\rm si}\nolimits}( { {\rm{\pi }}fT} ) \hspace{0.3cm} {\rm{with}}\hspace{0.3cm} {\mathop{\rm si}\nolimits}( x ) =  {\sin ( x )}/{x}.$$
  
*The spectrum of the asymmetric function  u(t)  is:
+
*The spectrum of the odd (German:  ungerade) function  u(t)  is:
 
   
 
   
 
:U(f)=jAuT2πfT[si(πfT)cos(πfT)].
 
:U(f)=jAuT2πfT[si(πfT)cos(πfT)].
 
 
 
  
  
Line 24: Line 21:
  
 
''Hints:''  
 
''Hints:''  
*This exercise belongs to the chapter  [[Signal_Representation/Fourier_Transform_Laws|Fourier Transform Laws]].
+
*This exercise belongs to the chapter  [[Signal_Representation/Fourier_Transform_Theorems|Fourier Transform Theorems]].
*All of these laws are illustrated with examples in the learning video  [[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|Gesetzmäßigkeiten der Fouriertransformation]] .
+
*All the theorems presented here are illustrated with examples in the (German language) learning video<br> &nbsp; &nbsp; &nbsp;[[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|Gesetzmäßigkeiten der Fouriertransformation]] &nbsp; &rArr; &nbsp;  "Regularities to the Fourier transform".
*Solve this task with the help of the&nbsp; [[Signal_Representation/Fourier_Transform_Laws#Mapping_theorem|mapping theorem]].
+
*Solve this task with the help of the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Assignment_Theorem|Assignment Theorem]].
*Use the signal parameters&nbsp; Au=1 V&nbsp; and&nbsp; T=1 ms for the first two subtasks.
+
*For the first two subtasks use the signal parameters&nbsp; Au=1V&nbsp; and&nbsp; T=1ms.
 
   
 
   
  
Line 35: Line 32:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Calculate the (purely imaginary) spectral values of the unbalanced signal&nbsp; u(t)&nbsp; at the frequencies&nbsp; f=0.5kHz&nbsp; and&nbsp; f=1kHz.
+
{Calculate the (imaginary) spectral values of the odd signal&nbsp; u(t)&nbsp; at the frequencies&nbsp; f=0.5kHz&nbsp; and&nbsp; f=1kHz.
 
|type="{}"}
 
|type="{}"}
 
Im[U(f=0.5kHz)] =  { -0.205--0.195 } &nbsp;mV/Hz
 
Im[U(f=0.5kHz)] =  { -0.205--0.195 } &nbsp;mV/Hz
Line 60: Line 57:
 
:U(f=0.5kHz)=jAuTπsi(π/2)=j2π2AuT.
 
:U(f=0.5kHz)=jAuTπsi(π/2)=j2π2AuT.
  
*The imaginary part is numerically&nbsp;  Im[U(f=0.5kHz)]0.2mV/Hz_.  
+
*The imaginary part is&nbsp;  Im[U(f=0.5kHz)]0.2mV/Hz_.  
*In contrast, the si function at&nbsp; fT=1&nbsp; yields the value zero, while the cosine is equal to&nbsp; 1&nbsp;. Thus, with&nbsp; Au=1V&nbsp; and&nbsp; T=1ms one obtains:
+
*In contrast, the&nbsp; $\rm si$&ndash;function at&nbsp; fT=1&nbsp; yields the value zero, while the cosine is equal to&nbsp; 1.&nbsp; Thus with&nbsp; Au=1V&nbsp; and&nbsp; T=1ms&nbsp; one obtains:
 
   
 
   
 
:U(f=1kHz)=jAuT2πRe[...]=0_,Im[...]0.159mV/Hz_.
 
:U(f=1kHz)=jAuT2πRe[...]=0_,Im[...]0.159mV/Hz_.
Line 67: Line 64:
  
  
'''(2)'''&nbsp; According to the mapping theorem, an odd time function&nbsp; u(t)&nbsp; always has an imaginary and at the same time odd spectrum &nbsp;  
+
'''(2)'''&nbsp; According to the&nbsp; "Assignment Theorem", an odd time function&nbsp; u(t)&nbsp; always has an imaginary and at the same time odd spectrum&nbsp; $U( { - f} ) =  - U( f )$.&nbsp; With the boundary transition&nbsp; f&nbsp; follows from the given equation
$U( { - f} ) =  - U( f ).$ With the boundary transition&nbsp; f&nbsp; follows from the given equation
 
 
   
 
   
 
:U(f)=jAuT2πfT[si(πfT)cos(πfT)]
 
:U(f)=jAuT2πfT[si(πfT)cos(πfT)]
  
the result&nbsp; U(f=0)=0. Formally, one could confirm this result by applying l'Hospital's rule.  
+
the result&nbsp; U(f=0)=0.&nbsp; Formally, one could confirm this result by applying l'Hospital's rule.  
  
 
We proceed a little more pragmatically.
 
We proceed a little more pragmatically.
Line 80: Line 76:
  
 
*For even smaller frequency values, the result also becomes smaller and smaller.
 
*For even smaller frequency values, the result also becomes smaller and smaller.
*You get to the result&nbsp; U(f=0)=0_, more quickly if you take into account that the integral over&nbsp; u(t)&nbsp; disappears.  
+
*You get to the result&nbsp; U(f=0)=0_&nbsp; more quickly if you take into account that the integral over&nbsp; u(t)&nbsp; disappears.  
 
*So you don't have to calculate at all.
 
*So you don't have to calculate at all.
  
  
  
'''(3)'''&nbsp; The signal&nbsp; x(t)&nbsp; can be divided into the even and the odd part, which lead to the even real part and the odd imaginary part of&nbsp; X(f)&nbsp;:
+
'''(3)'''&nbsp; The signal&nbsp; x(t)&nbsp; can be divided into an even and an odd part, which lead to the even real part and the odd imaginary part of&nbsp; X(f)&nbsp;:
*The even part is equal to the function&nbsp; g(t)&nbsp; with&nbsp; Ag=3V. From this follows for the real part of the spectral value at&nbsp; fT=0.5:
+
*The even part is equal to the function&nbsp; g(t)&nbsp; with&nbsp; Ag=3V.&nbsp; From this follows for the real part of the spectral value at&nbsp; fT=0.5:
 
   
 
   
 
:Re[X(fT=0.5)]=AgTsi(π/2)=1.91mV/Hz_.
 
:Re[X(fT=0.5)]=AgTsi(π/2)=1.91mV/Hz_.
  
*The imaginary part results from the spectral function&nbsp; U(f) with Au=1V. This was already calculated in subtask&nbsp; '''(1)'''&nbsp;:
+
*The imaginary part results from the spectral function&nbsp; U(f)&nbsp; with Au=1V.&nbsp; This was already calculated in subtask&nbsp; '''(1)''':
 
   
 
   
 
:Im[X(fT=0.5)]0.2mV/Hz_.
 
:Im[X(fT=0.5)]0.2mV/Hz_.
Line 97: Line 93:
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^3.3 Fourier Transform Theorems^]]
+
[[Category:Signal Representation: Exercises|^3.3 Fourier Transform Theorems^]]

Latest revision as of 15:22, 27 April 2021

"Wedge function" as well as an even and an odd time signal

We are looking for the spectrum  X(f)  of the pulse  x(t) sketched opposite, which rises linearly from  2V  to  4V  in the range from  T/2  to  +T/2  and is zero outside.

The spectral functions of the signals  g(t)  and  u(t)  shown below are assumed to be known:

  • The even (German:  gerade) rectangular time function  g(t)  has the spectrum
G(f)=AgTsi(πfT)withsi(x)=sin(x)/x.
  • The spectrum of the odd (German:  ungerade) function  u(t)  is:
U(f)=jAuT2πfT[si(πfT)cos(πfT)].



Hints:



Questions

1

Calculate the (imaginary) spectral values of the odd signal  u(t)  at the frequencies  f=0.5kHz  and  f=1kHz.

Im[U(f=0.5kHz)] = 

 mV/Hz
Im[U(f=1.0kHz)] = 

 mV/Hz

2

What is the spectral value of  u(t)  at the frequency  f=0?     Hint: Think before you calculate.

Im[U(f=0)] = 

 mV/Hz

3

Using the result from  (1)  calculate the spectral value of the signal  x(t)  at the frequency  f=0.5kHz.

Re[X(f=0.5kHz)] = 

 mV/Hz
Im[X(f=0.5kHz)] = 

 mV/Hz


Solution

(1)  For  fT=0.5  one obtains from the given equation:

U(f=0.5kHz)=jAuTπsi(π/2)=j2π2AuT.
  • The imaginary part is  Im[U(f=0.5kHz)]0.2mV/Hz_.
  • In contrast, the  si–function at  fT=1  yields the value zero, while the cosine is equal to  1.  Thus with  Au=1V  and  T=1ms  one obtains:
U(f=1kHz)=jAuT2πRe[...]=0_,Im[...]0.159mV/Hz_.


(2)  According to the  "Assignment Theorem", an odd time function  u(t)  always has an imaginary and at the same time odd spectrum  U(f)=U(f).  With the boundary transition  f  follows from the given equation

U(f)=jAuT2πfT[si(πfT)cos(πfT)]

the result  U(f=0)=0.  Formally, one could confirm this result by applying l'Hospital's rule.

We proceed a little more pragmatically.

  • For example, if we set  fT=0.01, we obtain:

U(fT=0.01)=jAuT0.02π[si(0.01π)cos(0.01π)]=jAuT0.02π(0.9998360.999507)j5106V/Hz.

  • For even smaller frequency values, the result also becomes smaller and smaller.
  • You get to the result  U(f=0)=0_  more quickly if you take into account that the integral over  u(t)  disappears.
  • So you don't have to calculate at all.


(3)  The signal  x(t)  can be divided into an even and an odd part, which lead to the even real part and the odd imaginary part of  X(f) :

  • The even part is equal to the function  g(t)  with  Ag=3V.  From this follows for the real part of the spectral value at  fT=0.5:
Re[X(fT=0.5)]=AgTsi(π/2)=1.91mV/Hz_.
  • The imaginary part results from the spectral function  U(f)  with Au=1V.  This was already calculated in subtask  (1):
Im[X(fT=0.5)]0.2mV/Hz_.