Difference between revisions of "Applets:Graphical Convolution"

From LNTwww
(Created page with "{{LntAppletLink|convolution}} == Applet Description== <br> Dieses Applet verdeutlicht die Faltungsoperation im Zeitbereich *zwischen einem Eingangsimpuls  $x(t)$ &nbsp...")
 
 
(22 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{LntAppletLink|convolution}}  
+
{{LntAppletLinkEnDe|convolution_en|convolution}}
  
 
== Applet Description==
 
== Applet Description==
 
<br>
 
<br>
Dieses Applet verdeutlicht die Faltungsoperation im Zeitbereich
+
This applet illustrates the convolution operation in the time domain
*zwischen einem Eingangsimpuls &nbsp;$x(t)$ &nbsp; &rArr; &nbsp; Rechteck, Dreieck, Gauß, Exponentialfunktion
+
*between an input pulse &nbsp;$x(t)$ &nbsp; &rArr; &nbsp; rectangle, triangle, Gaussian, exponential function
*und der Impulsantwort &nbsp;$h(t)$&nbsp; eines LZI&ndash;Systems mit Tiefpass&ndash;Charakter&nbsp; &rArr; &nbsp; Spalt&ndash;Tiefpass, Tiefpass erster bzw. zweiter Ordnung, Gauß&ndash;Tiefpass.
+
*and the impulse response &nbsp;$h(t)$&nbsp; of an LTI system with low&ndash;pass character&nbsp; &rArr; &nbsp; slit low&ndash;pass, first or second order low&ndash;pass, Gaussian low&ndash;pass.
  
  
Für das Ausgangssignal &nbsp;$y(t)$&nbsp; entsprechend dem Blockschaltbild im &nbsp;$\text{Beispiel 1}$&nbsp; gilt dann, wie im Kapitel&nbsp; [[Applets:Zur_Verdeutlichung_der_grafischen_Faltung#Grafische_Faltung|Grafische Faltung]]&nbsp; dargelegt:
+
For the output signal &nbsp;$y(t)$&nbsp; corresponding to the block diagram in &nbsp;$\text{Example 1}$,&nbsp; then, as stated in the chapter&nbsp; [[Applets:Graphical_Convolution#Graphical_Convolution|"Graphical Convolution"]]:&nbsp;  
 
:$$y( t ) = x(t) * h( t ) = \int_{ - \infty }^{ + \infty } \hspace{-0.15cm}{x( \tau  )}  \cdot h( {t - \tau } )\hspace{0.1cm}{\rm d}\tau .$$
 
:$$y( t ) = x(t) * h( t ) = \int_{ - \infty }^{ + \infty } \hspace{-0.15cm}{x( \tau  )}  \cdot h( {t - \tau } )\hspace{0.1cm}{\rm d}\tau .$$
  
Bei kausalen Systemen &nbsp; &rArr; &nbsp; &nbsp;$h(t) \equiv 0$&nbsp; für &nbsp;$t < 0$&nbsp; (Beispiele: Spalt&ndash;Tiefpass sowie Tiefpass erster und zweiter Ordnung) &nbsp; kann hierfür auch geschrieben werden:  
+
For causal systems &nbsp; &rArr; &nbsp; &nbsp;$h(t) \equiv 0$&nbsp; for &nbsp;$t < 0$&nbsp; (examples: slit low&ndash;pass as well as first and second order low&ndash;pass) &nbsp; can be written for this also:
  
 
:$$y( t ) =  \int_{ - \infty }^{ t } \hspace{-0.15cm}{x( \tau  )}  \cdot h( {t - \tau } )\hspace{0.1cm}{\rm d}\tau .$$  
 
:$$y( t ) =  \int_{ - \infty }^{ t } \hspace{-0.15cm}{x( \tau  )}  \cdot h( {t - \tau } )\hspace{0.1cm}{\rm d}\tau .$$  
  
Bitte beachten Sie:
+
Please note:
*Alle Größen &ndash; auch die Zeit $t$ &ndash; sind normiert (dimensionslos) zu verstehen.  
+
*All quantities &ndash; also the time $t$ &ndash; are to be understood normalized (dimensionless).
*Die Zeitfunktionen &nbsp;$x(t)$,&nbsp; $h(t)$&nbsp; und &nbsp;$y(t)$&nbsp; können im Programm keine negativen Signalwerte annehmen.  
+
*The time functions &nbsp;$x(t)$,&nbsp; $h(t)$&nbsp; and &nbsp;$y(t)$&nbsp; cannot assume negative signal values in the program.
*Die ''absolute Dauer''&nbsp; eines Impulses &nbsp;$y(t)$&nbsp; ist der (zusammenhängende) Zeitbereich, für den &nbsp;$y(t) > 0$&nbsp; gilt.
+
*The ''absolute duration''&nbsp; of a pulse &nbsp;$y(t)$&nbsp; is the (continuous) time range for which &nbsp;$y(t) > 0$.&nbsp;  
*Die ''äquivalente Dauer''&nbsp; eines Impulses ist über das flächengleiche Rechteck berechenbar.
+
*The ''equivalent duration''&nbsp; of a pulse can be calculated by the rectangle of equal area.
 
   
 
   
 
==Theoretical Background==
 
==Theoretical Background==
  
===Faltung im Zeitbereich===
+
===Convolution in the time domain===
  
Der&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation|Faltungssatz]]&nbsp; ist mit das wichtigste Gesetz der Fouriertransformation. Wir betrachten zunächst den Faltungssatz im Zeitbereich und setzen voraus, dass die Spektren zweier Zeitfunktionen&nbsp; $x_1(t)$&nbsp; und&nbsp; $x_2(t)$&nbsp; bekannt sind:
+
The&nbsp; [[Signal_Representation/The_Convolution_Theorem_and_Operation|"convolution theorem"]]&nbsp; is one of the most important laws of the Fourier transform. We first consider the convolution theorem in the time domain and assume that the spectra of two time functions&nbsp; $x_1(t)$&nbsp; and&nbsp; $x_2(t)$&nbsp; are known:
 
   
 
   
 
:$$X_1 ( f )\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.15cm}x_1( t ),\quad X_2 ( f )\hspace{0.1cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.1cm}x_2 ( t ).$$
 
:$$X_1 ( f )\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.15cm}x_1( t ),\quad X_2 ( f )\hspace{0.1cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.1cm}x_2 ( t ).$$
  
Dann gilt für die Zeitfunktion des Produktes&nbsp; $X_1(f) \cdot X_2(f)$:
+
Then for the time function of the product&nbsp; $X_1(f) \cdot X_2(f)$ holds:
  
 
:$$X_1 ( f ) \cdot X_2 ( f )\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.15cm}\int_{ - \infty }^{ + \infty } {x_1 ( \tau  )}  \cdot x_2 ( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$
 
:$$X_1 ( f ) \cdot X_2 ( f )\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.15cm}\int_{ - \infty }^{ + \infty } {x_1 ( \tau  )}  \cdot x_2 ( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$
 
   
 
   
Hierbei ist&nbsp; $\tau$&nbsp; eine formale Integrationsvariable mit der Dimension einer Zeit.
+
Here&nbsp; $\tau$&nbsp; is a formal integration variable with the dimension of a time.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Die obige Verknüpfung der Zeitfunktion&nbsp; $x_1(t)$&nbsp; und&nbsp; $x_2(t)$&nbsp; bezeichnet man als&nbsp; '''Faltung'''&nbsp; und stellt diesen Funktionalzusammenhang mit einem Stern dar:
+
$\text{Definition:}$&nbsp; The above connection of the time function&nbsp; $x_1(t)$&nbsp; and&nbsp; $x_2(t)$&nbsp; is called&nbsp; '''convolution'''&nbsp; and represents this functional connection with a star:
 
   
 
   
 
:$$x_{\rm{1} } (t) * x_{\rm{2} } (t) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau  ) }  \cdot x_2 ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
 
:$$x_{\rm{1} } (t) * x_{\rm{2} } (t) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau  ) }  \cdot x_2 ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
  
Damit lässt sich obige Fourierkorrespondenz auch wie folgt schreiben:
+
Thus, above Fourier correspondence can also be written as follows:
  
 
:$$X_1 ( f ) \cdot X_2 ( f )\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.15cm}{ {x} }_{\rm{1} } ( t ) * { {x} }_{\rm{2} } (t ).$$
 
:$$X_1 ( f ) \cdot X_2 ( f )\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.15cm}{ {x} }_{\rm{1} } ( t ) * { {x} }_{\rm{2} } (t ).$$
  
[[Signal_Representation/The_Convolution_Theorem_and_Operation#Beweis_des_Faltungssatzes|$\text{Beweis}$]]}}
+
[[Signal_Representation/The_Convolution_Theorem_and_Operation#Proof_of_the_Convolution_Theorem|$\text{"Proof"}$]]}}
  
  
''Anmerkung'': &nbsp; Die Faltung ist&nbsp; '''kommutativ'''  &nbsp; ⇒  &nbsp; Die Reihenfolge der Operanden ist vertauschbar: &nbsp;  ${ {x}}_{\rm{1}} ( t ) * { {x}}_{\rm{2}} (t ) ={ {x}}_{\rm{2}} ( t ) * { {x}}_{\rm{1}} (t ) $.
+
''Note'': &nbsp; The convolution is&nbsp; '''commutative'''  &nbsp; ⇒  &nbsp; The order of the operands is interchangeable: &nbsp;  ${ {x}}_{\rm{1}} ( t ) * { {x}}_{\rm{2}} (t ) ={ {x}}_{\rm{2}} ( t ) * { {x}}_{\rm{1}} (t ) $.
  
  
[[File:P_ID579__Sig_T_3_4_S1_neu.png|right|frame|Zur Berechnung von Signal und Spektrum am LZI&ndash;Ausgang]]
+
[[File:EN_Sig_T_3_4_S1.png|right|frame|For the calculation of signal and spectrum at the LTI output]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 1:}$&nbsp; Ein jedes lineare zeitinvariante (LZI-) System kann sowohl durch den Frequenzgang&nbsp; $H(f)$&nbsp; als auch durch die Impulsantwort&nbsp; $h(t)$&nbsp; beschrieben werden, wobei der Zusammenhang zwischen diesen beiden Systemgrößen ebenfalls durch die Fouriertransformation gegeben ist.
+
$\text{Example 1:}$&nbsp; Any linear time-invariant (LTI) system can be described both by the frequency response&nbsp; $H(f)$&nbsp; and by the impulse response&nbsp; $h(t)$,&nbsp; the relationship between these two system quantities also being given by the Fourier transform.
  
Legt man an den Eingang ein Signal&nbsp; $x(t)$&nbsp; mit dem Spektrum&nbsp; $X(f)$&nbsp; an, so gilt für das Spektrum des Ausgangssignals:
+
If a signal&nbsp; $x(t)$&nbsp; with the spectrum&nbsp; $X(f)$&nbsp; is applied to the input, the following applies to the spectrum of the output signal:
 
   
 
   
 
:$$Y(f) = X(f) \cdot H(f)\hspace{0.05cm}.$$
 
:$$Y(f) = X(f) \cdot H(f)\hspace{0.05cm}.$$
  
Mit dem Faltungssatz ist es nun möglich, das Ausgangssignal auch direkt im Zeitbereich zu berechnen:
+
With the convolution theorem it is now possible to calculate the output signal also directly in the time domain:
 
   
 
   
 
:$$y( t ) = x(t) * h( t ) = \int_{ - \infty }^{ + \infty } \hspace{-0.15cm}{x( \tau  )}  \cdot h( {t - \tau } )\hspace{0.1cm}{\rm d}\tau =  \int_{ - \infty }^{ + \infty } \hspace{-0.15cm} {h( \tau  )}  \cdot x( {t - \tau } )\hspace{0.1cm}{\rm d}\tau = h(t) * x( t ).$$
 
:$$y( t ) = x(t) * h( t ) = \int_{ - \infty }^{ + \infty } \hspace{-0.15cm}{x( \tau  )}  \cdot h( {t - \tau } )\hspace{0.1cm}{\rm d}\tau =  \int_{ - \infty }^{ + \infty } \hspace{-0.15cm} {h( \tau  )}  \cdot x( {t - \tau } )\hspace{0.1cm}{\rm d}\tau = h(t) * x( t ).$$
  
Aus dieser Gleichung geht nochmals hervor, dass die Faltungsoperation&nbsp; ''kommutativ''&nbsp; ist.}}
+
From this equation, it is again clear that the convolution operation is&nbsp; ''commutative''.&nbsp; }}
  
  
===Faltung im Frequenzbereich===
+
===Convolution in the frequency domain===
  
Die Dualität zwischen Zeit– und Frequenzbereich erlaubt auch Aussagen hinsichtlich des Spektrums eines Produktsignals:
+
The duality between the time and frequency domains also allows us to make statements regarding the spectrum of a product signal:
 
   
 
   
 
:$$x_1 ( t ) \cdot x_2 ( t )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,X_1 (f) * X_2 (f) =  \int_{ - \infty }^{ + \infty } {X_1 ( \nu  )}  \cdot X_2 ( {f - \nu })\hspace{0.1cm}{\rm d}\nu.$$
 
:$$x_1 ( t ) \cdot x_2 ( t )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,X_1 (f) * X_2 (f) =  \int_{ - \infty }^{ + \infty } {X_1 ( \nu  )}  \cdot X_2 ( {f - \nu })\hspace{0.1cm}{\rm d}\nu.$$
  
Dieses Resultat lässt sich ähnlich wie der&nbsp; [[Applets:Zur_Verdeutlichung_der_grafischen_Faltung#Faltung_im_Zeitbereich|Faltungssatz im Zeitbereich]]&nbsp; beweisen. Die Integrationsvariable&nbsp; $\nu$&nbsp; hat aber nun die Dimension einer Frequenz.
+
This result can be proved similarly to the&nbsp; [[Applets:Graphical_Convolution#Convolution_in_the_time_domain|"convolution theorem in the time domain"]].&nbsp; However, the integration variable&nbsp; $\nu$&nbsp; now has the dimension of a frequency.
  
[[File:P_ID580__Sig_T_3_4_S2_neu.png|right|frame|Faltung im Frequenzbereich]]
+
[[File:EN_Sig_T_3_4_S2.png|right|frame|Convolution in the frequency domain]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp; Die&nbsp; [[Modulation_Methods/Zweiseitenband-Amplitudenmodulation#Beschreibung_im_Zeitbereich|Zweiseitenband-Amplitudenmodulation]]&nbsp; (ZSB-AM) ohne Träger wird durch das skizzierte Modell beschrieben.  
+
$\text{Example 2:}$&nbsp; The&nbsp; [[Modulation_Methods/Double-Sideband_Amplitude_Modulation#Description_in_the_time_domain|"double-sideband amplitude modulation"]]&nbsp; (DSB-AM) without carrier is described by the sketched model.
*Bei der Zeitbereichsdarstellung (blau) ergibt sich das modulierte Signal&nbsp; $s(t)$&nbsp; als das Produkt aus dem Nachrichtensignal&nbsp; $q(t)$&nbsp; und dem (normierten) Trägersignal&nbsp; $z(t)$.
+
*In the time domain representation (blue), the modulated signal&nbsp; $s(t)$&nbsp; is the product of the message signal&nbsp; $q(t)$&nbsp; and the (normalized) carrier signal&nbsp; $z(t)$.
*Nach dem Faltungssatz folgt daraus für den Frequenzbereich (rot), dass das Ausgangsspektrum&nbsp; $S(f)$&nbsp; gleich dem Faltungsprodukt aus&nbsp; $Q(f)$&nbsp; und&nbsp; $Z(f)$&nbsp; ist.}}
+
*According to the convolution theorem, it follows for the frequency domain (red) that the output spectrum&nbsp; $S(f)$&nbsp; is equal to the convolution product of&nbsp; $Q(f)$&nbsp; and&nbsp; $Z(f)$.&nbsp; }}
  
  
===Faltung einer Funktion mit einer Diracfunktion===
+
===Convolution of a function with a Dirac delta function===
  
Sehr einfach wird die Faltungsoperation, wenn einer der beiden Operanden eine&nbsp; [[Signal_Representation/Gleichsignal_-_Grenzfall_eines_periodischen_Signals#Diracfunktion_im_Frequenzbereich|Diracfunktion]]&nbsp; ist. Dies gilt für die Faltung im Zeit– und im Frequenzbereich gleichermaßen.
+
The convolution operation becomes very simple if one of the two operands is a&nbsp; [[Signal_Representation/Direct_Current_Signal_-_Limit_Case_of_a_Periodic_Signal#Dirac_.28delta.29_function_in_frequency_domain|"Dirac delta function"]].&nbsp; This is equally true for convolution in the time and frequency domain.
  
Wir betrachten beispielhaft die Faltung einer Funktion&nbsp; $x_1(t)$&nbsp; mit der Funktion
+
As an example, we consider the convolution of a function&nbsp; $x_1(t)$&nbsp; with the function
 
   
 
   
 
:$$x_2 ( t ) = \alpha  \cdot \delta ( {t - T} ) \quad \circ\,\!\!\!-\!\!\!-\!\!\!-\!\!\bullet \quad X_2 ( f )= \alpha \cdot  {\rm{e}}^{ - {\rm{j}}\hspace{0.03cm}2\hspace{0.03cm}{\rm{\pi }}\hspace{0.01cm}f\hspace{0.01cm}T}.$$
 
:$$x_2 ( t ) = \alpha  \cdot \delta ( {t - T} ) \quad \circ\,\!\!\!-\!\!\!-\!\!\!-\!\!\bullet \quad X_2 ( f )= \alpha \cdot  {\rm{e}}^{ - {\rm{j}}\hspace{0.03cm}2\hspace{0.03cm}{\rm{\pi }}\hspace{0.01cm}f\hspace{0.01cm}T}.$$
  
Für die Spektralfunktion des Signals&nbsp; $y(t) = x_1(t) \ast x_2(t)$&nbsp; gilt dann:
+
Then for the spectral function of the signal&nbsp; $y(t) = x_1(t) \ast x_2(t)$&nbsp; holds:
 
   
 
   
 
:$$Y( f ) = X_1 ( f ) \cdot X_2 ( f ) = X_1 ( f ) \cdot  \alpha  \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.03cm}2\hspace{0.03cm}{\rm{\pi }}\hspace{0.01cm}f\hspace{0.01cm}T} .$$
 
:$$Y( f ) = X_1 ( f ) \cdot X_2 ( f ) = X_1 ( f ) \cdot  \alpha  \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.03cm}2\hspace{0.03cm}{\rm{\pi }}\hspace{0.01cm}f\hspace{0.01cm}T} .$$
  
Die komplexe Exponentialfunktion führt zur Verschiebung um&nbsp; $T$ &nbsp; &rArr; &nbsp; [[Signal_Representation/Fourier_Transform_Laws#Verschiebungssatz|Verschiebungssatz]], der Faktor&nbsp; $\alpha$&nbsp; zu einer Dämpfung&nbsp; $(\alpha < 1)$&nbsp; bzw. einer Verstärkung &nbsp;$(\alpha > 1)$. Daraus folgt:
+
The complex exponential function leads to a shift by&nbsp; $T$ &nbsp; &rArr; &nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|"shifting theorem"]], the factor&nbsp; $\alpha$&nbsp; to an attenuation&nbsp; $(\alpha < 1)$&nbsp; or an amplification &nbsp;$(\alpha > 1)$. It follows that:
 
   
 
   
 
:$$x_1 (t) * x_2 (t) = \alpha  \cdot x_1 ( {t - T} ).$$
 
:$$x_1 (t) * x_2 (t) = \alpha  \cdot x_1 ( {t - T} ).$$
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{In Worten: }$&nbsp; Die Faltung einer beliebigen Funktion mit einer Diracfunktion bei&nbsp;  $t = T$&nbsp; ergibt die um&nbsp; $T$&nbsp; nach rechts verschobene Funktion, wobei noch die Gewichtung der Diracfunktion durch den Faktor&nbsp; $\alpha$&nbsp; zu berücksichtigen ist.}}
+
$\text{In words: }$&nbsp; The convolution of an arbitrary function with a Dirac delta function at&nbsp;  $t = T$&nbsp; results in the function shifted to the right by&nbsp; $T$,&nbsp; whereby the weighting of the Dirac delta function by the factor&nbsp; $\alpha$&nbsp; must still be taken into account.}}
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 3:}$&nbsp; Ein Rechtecksignal&nbsp; $x(t)$&nbsp; wird durch ein LZI-System um eine Laufzeit&nbsp; $\tau = 3\,\text{ ms}$&nbsp; verzögert und um den Faktor&nbsp; $\alpha = 0.5$&nbsp; gedämpft.
+
$\text{Example 3:}$&nbsp; A rectangular signal&nbsp; $x(t)$&nbsp; is delayed by a running time&nbsp; $\tau = 3\,\text{ ms}$&nbsp; and attenuated by a factor&nbsp; $\alpha = 0.5$&nbsp; by an LTI system.
  
[[File:P_ID522__Sig_T_3_4_S3_neu.png|center|frame|Faltung eines Rechtecks mit einer Diracfunktion]]
+
[[File:P_ID522__Sig_T_3_4_S3_neu.png|center|frame|Convolution of a rectangle with a Dirac delta function]]
  
Verschiebung und Dämpfung erkennt man sowohl am Ausgangssignal&nbsp; $y(t)$&nbsp; als auch an der Impulsantwort&nbsp; $h(t)$.}}
+
Shift and attenuation can be seen in the output signal&nbsp; $y(t)$&nbsp; as well as in the impulse response&nbsp; $h(t)$.}}
  
  
===Grafische Faltung===
+
===Graphical Convolution===
  
In diesem Applet wird von folgender Faltungsoperation ausgegangen:
+
This applet assumes the following convolution operation:
[[File:P_ID2723__Sig_T_3_4_programm.png|right|frame|Bildschirmabzug des Programms „Grafische Faltung” (frühere Version)]]
+
[[File:P_ID2723__Sig_T_3_4_programm.png|right|frame|Screen capture of the program "Graphical Convolution" (former version)]]
 
:$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {x ( \tau  )}  \cdot h ( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$
 
:$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {x ( \tau  )}  \cdot h ( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$
  
Die Lösung des Faltungsintegrals soll auf grafischem Wege erfolgen. Es wird vorausgesetzt, dass&nbsp; $x(t)$&nbsp; und&nbsp; $h(t)$&nbsp; zeitkontinuierliche Signale sind.  
+
The solution of the convolution integral is to be done graphically. It is assumed that&nbsp; $x(t)$&nbsp; and&nbsp; $h(t)$&nbsp; are continuous-time signals.
  
  
Dann sind die folgenden Schritte erforderlich:
+
Then the following steps are required:
#&nbsp; Die&nbsp; '''Zeitvariablen'''&nbsp; der beiden Funktionen&nbsp; '''ändern''': &nbsp; <br>&nbsp; &nbsp; $x(t) \to x(\tau)$, &nbsp; $h(t) \to h(\tau)$.
+
#&nbsp; &nbsp; '''Change''' the&nbsp; '''time variables'''&nbsp; of the two functions: &nbsp; <br>&nbsp; &nbsp; $x(t) \to x(\tau)$, &nbsp; $h(t) \to h(\tau)$.
#&nbsp; Zweite '''Funktion spiegeln''': &nbsp; $h(\tau) \to h(-\tau)$.
+
#&nbsp; '''Mirror''' second '''function''': &nbsp; $h(\tau) \to h(-\tau)$.
#&nbsp; Gespiegelte '''Funktion''' um&nbsp; $t$&nbsp; '''verschieben''': &nbsp; $h(-\tau) \to h(t-\tau)$.
+
#&nbsp; '''Shift''' mirrored '''function''' by&nbsp; $t$: &nbsp; $h(-\tau) \to h(t-\tau)$.
#&nbsp; '''Multiplikation''' der beiden Funktionen&nbsp; $x(\tau)$&nbsp; und&nbsp; $h(t-\tau)$.
+
#&nbsp; '''Multiplication''' of the two functions&nbsp; $x(\tau)$&nbsp; and&nbsp; $h(t-\tau)$.
#&nbsp; '''Integration'''&nbsp; über das Produkt bezüglich&nbsp; $\tau$&nbsp; in den Grenzen von&nbsp; $-\infty$&nbsp; bis&nbsp; $+\infty$.
+
#&nbsp; '''Integration'''&nbsp; over the product with respect to&nbsp; $\tau$&nbsp; in the limits from&nbsp; $-\infty$&nbsp; to&nbsp; $+\infty$.
  
  
Da die Faltung kommutativ ist, kann anstelle von&nbsp; $h(\tau)$&nbsp; auch&nbsp; $x(\tau)$&nbsp; gespiegelt werden.
+
Since the convolution is commutative,&nbsp; $h(\tau)$&nbsp; can be mirrored instead of&nbsp; $x(\tau)$.&nbsp;  
  
 
<br><br>
 
<br><br>
Nebenstehende Grafik zeigt einen Bildschirmabzug einer älteren Version des vorliegenden Applets.
+
The accompanying graphic shows a screen shot of an older version of this applet.
 
<br><br>
 
<br><br>
  
  
[[File:P_ID582__Sig_T_3_4_S4_neu.png|right|frame|Beispiel einer Faltungsoperation: <br>Sprungfunktion gefaltet mit Exponentialfunktion]]
+
[[File:P_ID582__Sig_T_3_4_S4_neu.png|right|frame|Example of a convolution operation: <br>Jump function convolved with exponential function]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 4:}$&nbsp;
+
$\text{Example 4:}$&nbsp;
Die Vorgehensweise bei der grafischen Faltung wird nun anhand eines ausführlichen Beispiels erklärt:  
+
The procedure of graphical convolution is now explained with a detailed example:
*Am Eingang eines Filters liege eine Sprungfunktion&nbsp; $x(t) = \gamma(t)$&nbsp; an.  
+
*Let a jump function&nbsp; $x(t) = \gamma(t)$&nbsp; be applied to the input of a filter.
*Die Impulsantwort des RC-Tiefpasses sei&nbsp; $h( t ) = {1}/{T} \cdot {\rm{e} }^{ - t/T}.$
+
*Let the impulse response of the RC low-pass filter be&nbsp; $h( t ) = {1}/{T} \cdot {\rm{e} }^{ - t/T}.$
  
  
Die Grafik zeigt rot das Eingangssignal&nbsp;  $x(\tau)$, blau die Impulsantwort&nbsp; $h(\tau)$ und grau das Ausgangssignal&nbsp; $y(\tau)$.  
+
The graph shows the input signal&nbsp;  $x(\tau)$ in red, the impulse response&nbsp; $h(\tau)$ in blue, and the output signal&nbsp; $y(\tau)$ in gray.
Die Zeitachse ist bereits in&nbsp; $\tau$&nbsp; umbenannt.
+
The time axis has already been renamed&nbsp; $\tau$.&nbsp;
  
Das Ausgangssignal kann zum Beispiel nach folgender Gleichung berechnet werden:
+
The output signal can be calculated, for example, according to the following equation:
 
   
 
   
 
:$$y(t) = h(t) * x(t) = \int_{ - \infty }^{ + \infty } {h( \tau  )}  \cdot x( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$
 
:$$y(t) = h(t) * x(t) = \int_{ - \infty }^{ + \infty } {h( \tau  )}  \cdot x( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$
  
Noch einige Anmerkungen zur grafischen Faltung:
+
A few more remarks on the graphical convolution:
*Der Ausgangswert bei&nbsp; $t = 0$&nbsp; ergibt sich, indem man das Eingangssignal&nbsp; $x(\tau)$&nbsp; spiegelt, dieses gespiegelte Signal&nbsp; $x(-\tau)$&nbsp; mit der Impulsantwort&nbsp; $h(\tau)$&nbsp; multipliziert und darüber integriert.
+
*The output value at&nbsp; $t = 0$&nbsp; is obtained by mirroring the input signal&nbsp; $x(\tau)$,&nbsp; multiplying this mirrored signal&nbsp; $x(-\tau)$&nbsp; by the impulse response&nbsp; $h(\tau)$,&nbsp; and integrating over it.
*Da es hier kein Zeitintervall gibt, bei dem sowohl die blaue Kurve&nbsp; $h(\tau)$&nbsp; und gleichzeitig auch die rot gestrichelte Spiegelung&nbsp; $x(-\tau)$&nbsp; ungleich Null ist, folgt daraus&nbsp; $y(t=0)=0$.
+
*Since there is no time interval here where both the blue curve&nbsp; $h(\tau)$&nbsp; and at the same time the red dashed mirroring&nbsp; $x(-\tau)$&nbsp; is not equal to zero, it follows that&nbsp; $y(t=0)=0$.
*Für jeden anderen Zeitpunkt&nbsp; $t$&nbsp; muss das Eingangssignal verschoben werden  &nbsp; ⇒  &nbsp; $x(t-\tau)$, beispielsweise entsprechend der grün gestrichelten Kurve für&nbsp; $t=T$.
+
*For any other time&nbsp; $t$,&nbsp; the input signal must be shifted &nbsp; ⇒  &nbsp; $x(t-\tau)$, for example corresponding to the green dashed curve for&nbsp; $t=T$.
*Da in diesem Beispiel auch&nbsp; $x(t-\tau)$&nbsp; nur die Werte&nbsp; $0$&nbsp; oder&nbsp; $1$&nbsp; annehmen kann, wird die Integration &nbsp;$($allgemein von&nbsp; $\tau_1$&nbsp; bis&nbsp; $\tau_2)$&nbsp; einfach und man erhält mit&nbsp; $\tau_1 = 0$&nbsp; und&nbsp; $\tau_2 = t$&nbsp;:
+
*Since in this example also&nbsp; $x(t-\tau)$&nbsp; can only take the values&nbsp; $0$&nbsp; or&nbsp; $1$,&nbsp; the integration &nbsp;$($generally from&nbsp; $\tau_1$&nbsp; to&nbsp; $\tau_2)$&nbsp; becomes simple and we obtain with&nbsp; $\tau_1 = 0$&nbsp; and&nbsp; $\tau_2 = t$&nbsp;:
 
:$$y( t) = \int_0^{\hspace{0.05cm} t} {h( \tau)}\hspace{0.1cm} {\rm d}\tau = \frac{1}{T}\cdot\int_0^{\hspace{0.05cm} t} {{\rm{e}}^{ - \tau /T } }\hspace{0.1cm} {\rm d}\tau = 1 - {{\rm{e}}^{ - t /T } }.$$
 
:$$y( t) = \int_0^{\hspace{0.05cm} t} {h( \tau)}\hspace{0.1cm} {\rm d}\tau = \frac{1}{T}\cdot\int_0^{\hspace{0.05cm} t} {{\rm{e}}^{ - \tau /T } }\hspace{0.1cm} {\rm d}\tau = 1 - {{\rm{e}}^{ - t /T } }.$$
  
Die Skizze gilt für&nbsp; $t=T$&nbsp; und führt zum Ausgangswert&nbsp; $y(t=T) = 1 – 1/\text{e} \approx 0.632$.}}  
+
The sketch is valid for&nbsp; $t=T$&nbsp; and leads to the initial value&nbsp; $y(t=T) = 1 – 1/\text{e} \approx 0.632$.}}  
  
 
   
 
   
 
==Exercises==
 
==Exercises==
  
*First, select the number&nbsp; $(1,\ 2,  \text{...} \ )$&nbsp; of the task to be processed.&nbsp; The number&nbsp; $0$&nbsp; corresponds to a "Reset":&nbsp; Same setting as at program start.
+
*First, select the number&nbsp; $(1,\ 2,  \text{...} \ )$&nbsp; of the exercise to be processed.&nbsp; The number&nbsp; $0$&nbsp; corresponds to a "Reset":&nbsp; Same setting as at program start.
*A task description is displayed.&nbsp; The parameter values are adjusted.&nbsp; Solution after pressing "Show Solution".
+
* An exercise description is displayed.&nbsp; The parameter values are adjusted.&nbsp; Solution after pressing "Show Solution".
 +
*Both the input signal&nbsp; $x(t)$&nbsp; and the impulse response&nbsp; $h(t)$&nbsp; of the filter are are normalized, dimensionless and energy-limited ("time-limited pulses").
  
  
{{BlaueBox|TEXT=
 
'''(1)''' &nbsp; Wählen Sie die Parameter gemäß Voreinstellung &nbsp;$\text{(Gaußimpuls: }A_x = 1, \ \Delta t_x= 1, \ \tau_x = 1;  \text{  Impulsantwort gemäß Tiefpass 2. Ordnung: }\Delta t_h= 1)$.
 
<br>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;  Interpretieren Sie die dargestellten Grafiken. Wie groß ist der maximale Ausgangswert &nbsp;$y_{\rm max}$? Zu welcher Zeit &nbsp;$t_{\rm max}$&nbsp;  tritt dieser auf? }}
 
  
::*&nbsp;Nach Umbenennung: &nbsp;Eingangssignal&nbsp; $x(\tau)$ &nbsp; &rArr; &nbsp; rote Kurve,  &nbsp;Impulsantwort&nbsp; $h(\tau)$ &nbsp; &rArr; &nbsp; blaue Kurve, nach Spiegelung&nbsp; $h(-\tau)$ &nbsp; &rArr; &nbsp; grüne Kurve.
+
{{BlueBox|TEXT=
::*&nbsp;Verschiebt man die grüne Kurve um&nbsp; $t$&nbsp; nach rechts, so erhält man $h(t-\tau)$. Das Ausgangssignal&nbsp; $y(t)$&nbsp; ergibt sich durch Multiplikation und Integration bzgl. $\tau$:
+
'''(1)''' &nbsp; Select the following parameters:&nbsp; $\text{Gaussian pulse: }A_x = 1, \ \Delta t_x= 1, \ \tau_x = 1; &nbsp; &nbsp; \text{ Impulse response according to 2nd order low-pass: } \Delta t_h= 1$.
 +
<br>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp; Interpret the displayed graphs.&nbsp; What is the maximum output value &nbsp;$y_{\rm max}$?&nbsp; At what time &nbsp;$t_{\rm max}$&nbsp; does &nbsp;$y_{\rm max}$&nbsp; occur? }}
  
:::$$y (t) = \int_{ - \infty }^{ +\infty } {x ( \tau ) }  \cdot h ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau = \int_{ - \infty }^{ t } {x ( \tau  ) }  \cdot h ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau .$$
+
*&nbsp;After renaming: &nbsp;Input signal&nbsp; $x(\tau)$ &nbsp; &rArr; &nbsp; red curve, &nbsp; impulse response&nbsp; $h(\tau)$ &nbsp; &rArr; &nbsp; blue curve,&nbsp; after mirroring&nbsp; $h(-\tau)$ &nbsp; &rArr; &nbsp; green curve.
::*&nbsp;Der Ausgangsimpuls &nbsp;$y_(t)$&nbsp; ist im vorliegenden Fall unsymmetrisch; der maximale Ausgangswert &nbsp;$y_{\rm max}\approx 0.67$&nbsp; tritt bei &nbsp;$t_{\rm max}\approx 1.5$&nbsp; auf.
+
*&nbsp;Shifting the green curve by&nbsp; $t$&nbsp; to the right, we get&nbsp; $h(t-\tau)$.&nbsp; The output signal&nbsp; $y(t)$&nbsp; is obtained by multiplication and integration with respect to&nbsp; $\tau$:
  
{{BlaueBox|TEXT=
+
:$$y (t) = \int_{ - \infty }^{ +\infty } {x ( \tau ) }  \cdot h ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau = \int_{ - \infty }^{ t } {x ( \tau ) }  \cdot h ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau .$$
'''(2)''' &nbsp; Was ändert sich, wenn man die äquivalente Impulsdauer von&nbsp; $h(t)$&nbsp; auf &nbsp;$\Delta t_h= 1.5$&nbsp; erhöht? }}
+
*&nbsp;The output pulse &nbsp;$y(t)$&nbsp; is asymmetric in the present case;&nbsp; the maximum output value &nbsp;$y_{\rm max}\approx 0.67$&nbsp; occurs at &nbsp;$t_{\rm max}\approx 1.5$.
  
::*&nbsp;$y_{\rm max}\approx 0.53$&nbsp; tritt nun bei &nbsp;$t_{\rm max}\approx 1.75$&nbsp; auf. Durch die ungünstigere (breitere)  Impulsantwort wird der Eingangsimpuls stärker verformt.
 
::*&nbsp;Bei einem digitalen Nachrichtenübertragungssystem hätte dies stärkere Impulsinterenzen (&bdquo;Intersymbol Interference&rdquo;) zur Folge.
 
  
{{BlaueBox|TEXT=
+
{{BlueBox|TEXT=
'''(3)''' &nbsp; Wählen Sie nun den symetrischen &nbsp;$\text{Rechteckimpuls: }A_x = 1, \ \Delta t_x= 1, \ \tau_x = 0$&nbsp; und die  &nbsp;$\text{Impulsantwort gemäß Spalt&ndash;Tiefpass: }\Delta t_h= 1$.  
+
'''(2)''' &nbsp; What changes if we increase the equivalent pulse duration of&nbsp; $h(t)$&nbsp; to &nbsp;$\Delta t_h= 1.5$? }}
<br>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;  Interpretieren Sie das Faltungsergebnis. Wie groß ist der maximale Ausgangswert &nbsp;$y_{\rm max}$? Zu welchen Zeiten ist &nbsp;$y(t)>0$? Beschreibt &nbsp;$h(t)$&nbsp; ein kausales System? }}  
 
  
::*&nbsp;Die Faltung zweier Rechtecke mit jeweiliger Dauer &nbsp;$1$&nbsp; ergibt ein Dreieck mit absoluter Dauer &nbsp;$2$&nbsp; &rArr; &nbsp; äquivalente Impulsdauer &nbsp;$\Delta t_y= 1$. 
+
*&nbsp;$y_{\rm max}\approx 0.53$&nbsp; now occurs at &nbsp;$t_{\rm max}\approx 1.75$.&nbsp; Due to the less favorable (wider) impulse response, the input pulse is more deformed.
::*&nbsp;$y(t)$&nbsp; ist im Bereich von &nbsp;$-0.5$&nbsp; bis &nbsp;$+1.5$&nbsp; von Null verschieden. Impulsmaximum &nbsp;$y_{\rm max} = 1$&nbsp; bei &nbsp;$t_{\rm max} = +0.5$.
+
*&nbsp;In a digital communication system, this would result in stronger&nbsp; "intersymbol interferences".
::*&nbsp;$h(t)$&nbsp; beschreibt ein kausales System, da &nbsp;$h(t) \equiv 0$&nbsp; für &nbsp;$t < 0$&nbsp; &rArr; &nbsp; die &bdquo;Wirkung&rdquo; &nbsp;$y(t)$&nbsp; kommt nicht vor der &bdquo;Ursache&rdquo; &nbsp;$x(t)$.
 
  
{{BlaueBox|TEXT=
 
'''(4)''' &nbsp; Was ändert sich, wenn man die äquivalente Impulsdauer von&nbsp; $h(t)$&nbsp; auf &nbsp;$\Delta t_h= 2$&nbsp; erhöht? }}
 
  
::*&nbsp;Die Faltung zweier unterschiedlich breiten Rechtecke ergibt ein Trapez, hier zwischen &nbsp;$-0.5$&nbsp; und &nbsp;$+2.5$ &rArr; &nbsp; äquivalente Impulsdauer &nbsp;$\Delta t_y= 2$.
+
{{BlueBox|TEXT=
::*&nbsp;Das Maximum &nbsp;$y_{\rm max} = 0.5$&nbsp; tritt im Bereich &nbsp;$0.5 \le t \le 1.5$ auf. Bezüglich der Kausalität ändert sich nichts.
+
'''(3)''' &nbsp; Now select the symmetric &nbsp;$\text{rectangular pulse: }A_x = 1, \ \Delta t_x= 1, \ \tau_x = 0$&nbsp; and the &nbsp;$\text{rectangular impulse response}$&nbsp; of the low-pass filter:&nbsp; $\Delta t_h= 1$.  
 +
<br>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp; Interpret the convolution result.&nbsp; What is the maximum output value &nbsp;$y_{\rm max}$?&nbsp; At what times is &nbsp;$y(t)>0$?&nbsp; Does &nbsp;$h(t)$&nbsp; describe a causal system? }}
  
{{BlaueBox|TEXT=
+
*&nbsp;The convolution of two rectangles with respective durations &nbsp;$1$&nbsp; yields a triangle with absolute duration &nbsp;$2$&nbsp; &rArr; &nbsp; equivalent pulse duration &nbsp;$\Delta t_y= 1$.  
'''(5)''' &nbsp; Wählen Sie nun den (unsymetrischen) &nbsp;$\text{Rechteckimpuls: }A_x = 1, \ \Delta t_x= 1, \ \tau_x = 0.5$&nbsp; und die  &nbsp;$\text{  Impulsantwort eines Tiefpasses 1. Ordnung: }\Delta t_h= 1$.  
+
*&nbsp;$y(t)$&nbsp; is different from zero in the range from &nbsp;$-0.5$&nbsp; to &nbsp;$+1.5$&nbsp;.&nbsp; The pulse maximum &nbsp;$y_{\rm max} = 1$&nbsp; is at &nbsp;$t_{\rm max} = +0.5$.
<br>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp; Interpretieren Sie die Ergebnisse. Wie groß ist &nbsp;$y_{\rm max}$? Zu welchen Zeiten ist &nbsp;$y(t)>0$&nbsp;? Beschreibt &nbsp;$h(t)$&nbsp; ein kausales System? }}
+
*&nbsp;$h(t)$&nbsp; describes a causal system, since &nbsp;$h(t) \equiv 0$&nbsp; for &nbsp;$t < 0$.&nbsp; That means:&nbsp; The "effect" &nbsp;$y(t)$&nbsp; does not come before the "cause" &nbsp;$x(t)$.
  
::*&nbsp;$h(t)$&nbsp; hat für &nbsp;$t > 0$&nbsp; einen exponentiell abfallenden Verlauf. Für &nbsp;$t > 0$&nbsp; gilt stets &nbsp;$y(t) > 0$, aber die Signalwerte können sehr klein werden.
 
::*&nbsp;$y_{\rm max} = 0.63$&nbsp; tritt bei &nbsp;$t_{\rm max} = +1$ auf. Für &nbsp;$ t < t_{\rm max}$ ist der Verlauf exponentiell ansteigend, für &nbsp;$ t > t_{\rm max}$&nbsp; exponentiell abfallend.
 
::*&nbsp;Der Tiefpass 1. Ordnung kann mit einem Widerstand und einer Kapazität realisiert werden. Jedes realisierbare System  ist per se kausal.
 
  
{{BlaueBox|TEXT=
+
{{BlueBox|TEXT=
'''(6)''' &nbsp; Wählen Sie wie in &nbsp;'''(3)'''&nbsp; die rechteckförmige Impulsantwort &nbsp;$\text{(Spalt&ndash;Tiefpass; }\Delta t_h= 1)$. Mit welchem &nbsp;$x(t)$&nbsp; ergibt sich das gleiche &nbsp;$y(t)$&nbsp; wie bei&nbsp; '''(5)'''?}}  
+
'''(4)''' &nbsp; What changes if we increase the equivalent pulse duration of&nbsp; $h(t)$&nbsp; to &nbsp;$\Delta t_h= 2$&nbsp;? }}
  
::*&nbsp;Das Signal &nbsp;$y(t)$&nbsp; in &nbsp;'''(5)'''&nbsp; ergab sich als Faltung zwischen dem rechteckigen Eingang &nbsp;$x(t)$&nbsp; und der Exponentialfunktion &nbsp;$h(t)$.
+
*&nbsp;The convolution of two rectangles of different widths results in a trapezoid, here between &nbsp;$-0.5$&nbsp; and &nbsp;$+2.5$ &rArr; &nbsp; equivalent pulse duration &nbsp;$\Delta t_y= 2$.
::*&nbsp;Da die Faltungsoperation kommutativ ist, ergibt sich das gleiche Ergebnis mit der Exponentialfunktion &nbsp;$x(t)$ und der Rechteckfunktion &nbsp;$h(t)$.
+
*&nbsp;The maximum &nbsp;$y_{\rm max} = 0.5$&nbsp; occurs in the range &nbsp;$0.5 \le t \le 1.5$.&nbsp; Nothing changes with respect to causality.
::*&nbsp;Die richtige Einstellung für das Eingangssignal &nbsp;$x(t)$&nbsp; ist somit &nbsp;$\text{Exponentialimpuls: }A_x = 1, \ \Delta t_x= 1, \ \tau_x = 0$&nbsp;.
 
  
{{BlaueBox|TEXT=
 
'''(7)''' &nbsp; Für den Rest dieser Versuchsdurchführung betrachten wir stets den Gauß&ndash;Tiefpass. Die äquivalente Dauer der Impulsantwort &nbsp;$h(t)$&nbsp; sei zunächst  &nbsp;$\Delta t_h= 0.8$. 
 
<br>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;  Analsyieren und interpretieren Sie dieses &bdquo;System&rdquo; im Hinblick auf Kausalität und die entstehenden Verzerrungen für ein Rechtecksignal. }}
 
  
::*&nbsp;Der Tiefpass ist nicht kausal (realisierbar): für &nbsp;$t < 0$&nbsp; gilt nicht &nbsp;$h(t) \equiv 0$&nbsp; gilt. Geeignetes Modell, wenn man die unendliche Laufzeit außer Acht lässt. 
+
{{BlueBox|TEXT=
::*&nbsp;Je größer &nbsp;$\Delta t_h$&nbsp; ist, desto breiter wird der Ausgangsimpuls und um so stärker die Degradation eines Digitalsystems durch Impulsinterferenzen.
+
'''(5)''' &nbsp; Now select the (unsymmetrical) &nbsp;$\text{rectangular pulse: }A_x = 1, \ \Delta t_x= 1, \ \tau_x = 0.5$&nbsp; and the &nbsp;$\text{impulse response of a 1st order low-pass: }\Delta t_h= 1$.
::*&nbsp;Der Tiefpass&ndash;Frequenzgang &nbsp;$H(f)$&nbsp; ist die Fouriertransformierte von &nbsp;$h(t)$. Je größer &nbsp;$\Delta t_h$&nbsp; ist, desto kleiner ist &nbsp;$\Delta f_h = 1/\Delta t_h$ &nbsp; &rArr; &nbsp; System schmalbandiger.
+
<br>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp; Interpret the results.&nbsp; What is the value of &nbsp;$y_{\rm max}$?&nbsp; At what times is &nbsp;$y(t)>0$&nbsp;?&nbsp; Does &nbsp;$h(t)$&nbsp; describe a causal system? }}
  
{{BlaueBox|TEXT=
+
*&nbsp;$h(t)$&nbsp; has an exponentially decreasing curve for &nbsp;$t > 0$.&nbsp; It always applies:&nbsp; &nbsp;$y(t>0) > 0$,&nbsp; but the signal values can become very small.
'''(8)''' &nbsp; Wählen Sie nun den &nbsp;$\text{Gaußimpuls: }A_x = 1, \ \Delta t_x= 1.5, \ \tau_x = 0$&nbsp; und den &nbsp;$\text{Gauß&ndash;Tiefpass: }\Delta t_h= 2$. Welche Form hat der Ausgangsimpuls &nbsp;$y(t)$?
+
*&nbsp;$y_{\rm max} = 0.63$&nbsp; occurs for &nbsp;$t_{\rm max} = +1$.&nbsp; For &nbsp;$ t < t_{\rm max}$ the progression is exponentially increasing, for &nbsp;$ t > t_{\rm max}$&nbsp; exponentially decreasing.
<br>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp; Wie groß ist die äquivalente Dauer &nbsp;$\Delta t_y$&nbsp; des Ausgangsimpulses und der maximale Ausgangswert &nbsp;$y_{\rm max}$? Zu welcher Zeit &nbsp;$t_{\rm max}$&nbsp; tritt dieser auf? }}
+
*&nbsp;The 1st order low-pass can be realized with a resistor and a capacitor.&nbsp; Any realizable system is causal per se.
  
::*&nbsp;$y(t)$&nbsp; ist ebenfalls (exakt) gaußförmig. Merksatz:&nbsp; '''Gauß gefaltet mit Gauß ergibt immer Gauß'''.
 
::*&nbsp;Äquivalente Dauer: &nbsp;$\Delta t_y =\sqrt{\Delta t_x^2+ \Delta t_h^2} = 2.5$.  Impulsmaximum $($bei $t=0)$: &nbsp;$y_{\rm max} = A_x \cdot \Delta t_x/\Delta t_y = 1 \cdot 1.5/2.5 = 0.6$.
 
  
{{BlaueBox|TEXT=
+
{{BlueBox|TEXT=
'''(9)''' &nbsp; Wählen Sie nun den &nbsp;$\text{Dreieckimpuls: }A_x = 1, \ \Delta t_x= 1.5, \ \tau_x = 0$&nbsp; und den &nbsp;$\text{Gauß&ndash;Tiefpass: }\Delta t_h= 2$. Welche Form hat der Ausgangsimpuls &nbsp;$y(t)$?
+
'''(6)''' &nbsp; Select as in &nbsp;$(3)$&nbsp; the &nbsp;$\text{rectangular impulse response}$&nbsp; of the low-pass filter:&nbsp; $\Delta t_h= 1$.&nbsp; With which &nbsp;$x(t)$&nbsp; results the same &nbsp;$y(t)$&nbsp; as for&nbsp; $(5)$?}}  
<br>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp; Wie groß ist die äquivalente Dauer &nbsp;$\Delta t_y$&nbsp; des Ausgangsimpulses und der maximale Ausgangswert &nbsp;$y_{\rm max}$? Zu welcher Zeit &nbsp;$t_{\rm max}$&nbsp;  tritt dieser auf? }}
 
  
::*&nbsp;$y(t)$&nbsp; ist gaußähnlich, aber nicht exakt gaußförmig. Merksatz:&nbsp; '''Gauß gefaltet mit Nicht&ndash;Gauß ergibt niemals exakt Gauß'''.
+
*&nbsp;The signal &nbsp;$y(t)$&nbsp; in &nbsp;$(5)$&nbsp; resulted as a convolution between the rectangular input &nbsp;$x(t)$&nbsp; and the exponential function &nbsp;$h(t)$.
::*&nbsp;Die abgefragten Kenngrößen des Ausgangsimpules &nbsp;$y(t)$&nbsp; unterscheiden sich nur geringfügig gegenüber &nbsp;'''(8)''': &nbsp;$\Delta t_y \approx 2.551$, &nbsp;$y_{\rm max} \approx 0.588$.  
+
*&nbsp;Since the convolution operation is commutative, the same result is obtained with the exponential function &nbsp;$x(t)$&nbsp; and the rectangular function &nbsp;$h(t)$.
 +
*&nbsp;Thus, the correct setting for the input signal &nbsp;$x(t)$&nbsp; is the &nbsp;$\text{exponential pulse }$with&nbsp; $ A_x = 1, \ \Delta t_x= 1, \ \tau_x = 0$&nbsp;.
 +
 
 +
 
 +
{{BlueBox|TEXT=
 +
'''(7)''' &nbsp; For the remainder of the exercises, we  consider the Gaussian low-pass.&nbsp; The equivalent duration of the impulse response &nbsp;$h(t)$&nbsp; should first be &nbsp;$\Delta t_h= 0.8$. 
 +
<br>&nbsp; &nbsp; &nbsp;&nbsp; Analyze and interpret this&nbsp; "system"&nbsp; in terms of causality and the resulting distortions for the rectangular pulse. }}
 +
 
 +
*&nbsp;The low-pass is not causal (and therefore non&ndash;realizable):&nbsp; For &nbsp;$t < 0$:&nbsp; $h(t) \equiv 0$&nbsp; does not hold. Suitable model if infinite delay is ignored. 
 +
*&nbsp;The larger &nbsp;$\Delta t_h$&nbsp; is, the wider the output pulse and the stronger the degradation of a digital system due to intersymbol interference.
 +
*&nbsp;The frequency response &nbsp;$H(f)$&nbsp; is the Fourier transform of &nbsp;$h(t)$. The larger &nbsp;$\Delta t_h$&nbsp; is, the smaller &nbsp;$\Delta f_h = 1/\Delta t_h$ &nbsp; &rArr; &nbsp; The system is more narrowband.
 +
 
 +
 
 +
{{BlueBox|TEXT=
 +
'''(8)''' &nbsp; Now select &nbsp;$\text{Gaussian pulse: }A_x = 1, \ \Delta t_x= 1.5, \ \tau_x = 0$&nbsp; and &nbsp;$\text{Gaussian low-pass: }\Delta t_h= 2$.&nbsp; What is the course of the output pulse &nbsp;$y(t)$?
 +
<br>&nbsp; &nbsp; &nbsp; &nbsp;&nbsp; What are the equivalent duration &nbsp;$\Delta t_y$&nbsp; of the output pulse and the maximum output value &nbsp;$y_{\rm max}$?&nbsp; At what time &nbsp;$t_{\rm max}$&nbsp; does &nbsp;$y_{\rm max}$&nbsp; occur? }}
 +
 
 +
*&nbsp;$y(t)$&nbsp; is (exactly) Gaussian, too. &nbsp; Mnemonic:&nbsp; $\text{"Gaussian convolved with Gaussian gives always Gaussian"}$.
 +
*&nbsp;Equivalent duration: &nbsp;$\Delta t_y =\sqrt{\Delta t_x^2+ \Delta t_h^2} = 2.5$.&nbsp;  Pulse maximum&nbsp; $($at&nbsp; $t=0)$: &nbsp;$y_{\rm max} = A_x \cdot \Delta t_x/\Delta t_y = 1 \cdot 1.5/2.5 = 0.6$.
 +
 
 +
 
 +
{{BlueBox|TEXT=
 +
'''(9)''' &nbsp; Now select &nbsp;$\text{Triangular pulse: }A_x = 1, \ \Delta t_x= 1.5, \ \tau_x = 0$&nbsp; and &nbsp;$\text{Gaussian low&ndash;pass: }\Delta t_h= 2$.&nbsp; What is the course of the output pulse &nbsp;$y(t)$?
 +
<br>&nbsp; &nbsp; &nbsp;&nbsp; What is the equivalent duration &nbsp;$\Delta t_y$&nbsp; of the output pulse and the maximum output value &nbsp;$y_{\rm max}$?&nbsp; At what time &nbsp;$t_{\rm max}$&nbsp; does &nbsp;$y_{\rm max}$&nbsp; occur?}}
 +
 
 +
*&nbsp;$y(t)$&nbsp; is nearly Gaussian, but not exactly.&nbsp; Mnemonic:&nbsp; $\text{"Gaussian convolved with non&ndash;Gaussian never gives exactly Gaussian"}$.
 +
*&nbsp;The characteristics of the output pulse &nbsp;$y(t)$&nbsp; differ only slightly from &nbsp;$(8)$: &nbsp;$\Delta t_y \approx 2.551$, &nbsp;$y_{\rm max} \approx 0.588$.
 +
 
 +
  
 
==Applet Manual==
 
==Applet Manual==
 
<br>
 
<br>
[[File:Anleitung_Faltung_2.png|right]]
+
[[File:Anleitung_Faltung_2.png|right|frame|Screen shot&nbsp; (German version)]]
  
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Auswahl: &nbsp; Form des Eingangsimpulses&nbsp; $x(t)$
+
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Selection: &nbsp; Shape of the input pulse&nbsp; $x(t)$
  
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Parametereingabe für den Eingangsimpuls&nbsp; $x(t)$
+
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Parameter input for the input pulse&nbsp; $x(t)$
  
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Auswahl: &nbsp; Form der Impulsantwort&nbsp; $h(t)$&nbsp; des Tiefpass&ndash;Systems
+
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Selection: &nbsp; Shape of the impulse response&nbsp; $h(t)$&nbsp; of the low-pass system
  
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Parametereingabe für die Impulsantwort&nbsp; $h(t)$
+
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Parameter input for the impulse response&nbsp; $h(t)$
  
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Bedienfeld (Start; &nbsp; Pause/Weiter &nbsp; ;&nbsp; Step > &nbsp; ;&nbsp; Step <&nbsp; ;&nbsp; Reset)
+
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Control panel&nbsp; (Start; &nbsp; Pause/Continue &nbsp; ;&nbsp; Step > &nbsp; ;&nbsp; Step <&nbsp; ;&nbsp; Reset)
  
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Ausgabe des Ausgangswertes&nbsp; $y(t)$&nbsp; zur fortlaufenden Zeit&nbsp; $t$  
+
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Output the initial value&nbsp; $y(t)$&nbsp; at the continuous time&nbsp; $t$  
  
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Maximalwert&nbsp; $y_{\rm max} = y(t_{\rm max})$&nbsp; und äquivalente Breite $\Delta\hspace{0.03cm} t_y$
+
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Maximum value&nbsp; $y_{\rm max} = y(t_{\rm max})$&nbsp; and equivalent width $\Delta\hspace{0.03cm} t_y$
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Nach Umbenennung der Abszisse: &nbsp; $t \ \to \ \tau$:
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;After renaming the abscissa: &nbsp; $t \ \to \ \tau$:
  
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Darstellung von &nbsp;$x(\tau)$&nbsp; &rArr; &nbsp; rote statische Kurve
+
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Representation of &nbsp;$x(\tau)$&nbsp; &rArr; &nbsp; red static curve.
  
&nbsp; &nbsp; '''(I)''' &nbsp; &nbsp; &nbsp; Darstellung von&nbsp; $h(\tau)$&nbsp; &rArr; &nbsp;blaue Kurve&nbsp; und &nbsp; $h(t-\tau)$&nbsp; &rArr; &nbsp; grüne Kurve <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (diese wird mit dem Bewegungsparameter &nbsp; $t$&nbsp; nach rechts verschoben)
+
&nbsp; &nbsp; '''(I)''' &nbsp; &nbsp; &nbsp; Representation of&nbsp; $h(\tau)$&nbsp; &rArr; &nbsp;blue curve&nbsp; and &nbsp; $h(t-\tau)$&nbsp; &rArr; &nbsp; green curve<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; $($this is shifted to the right with the motion parameter &nbsp; $t$ $)$
  
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; &nbsp; Darstellung von&nbsp; $x(\tau) \cdot h(t - \tau)$&nbsp; &rArr; &nbsp; violette Kurve, dynamisch mit&nbsp; $t$
+
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; &nbsp; Plot of&nbsp; $x(\tau) \cdot h(t - \tau)$&nbsp; &rArr; &nbsp; purple curve, dynamic with&nbsp; $t$
  
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; &nbsp;Sukzessive Darstellung des Ausgangssignals &nbsp;$y(t)$&nbsp; &rArr; &nbsp; braune Kurve
+
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; &nbsp;Successive representation of the output signal &nbsp;$y(t)$&nbsp; &rArr; &nbsp; brown curve
  
&nbsp; &nbsp; '''(L)''' &nbsp; &nbsp; &nbsp;Bereich für die Versuchsdurchführung: &nbsp; Aufgabenauswahl
+
&nbsp; &nbsp; '''(L)''' &nbsp; &nbsp; &nbsp;Area for exercise execution: &nbsp; Exercise selection.
  
&nbsp; &nbsp; '''(M)''' &nbsp; &nbsp; Versuchsdurchführung: &nbsp; Bereich für die Aufgabenstellung
+
&nbsp; &nbsp; '''(M)''' &nbsp; &nbsp; &nbsp;Exercise execution: &nbsp; Area for exercise description
  
&nbsp; &nbsp; '''(N)''' &nbsp; &nbsp; Versuchsdurchführung: &nbsp; Bereich für die Musterlösung
+
&nbsp; &nbsp; '''(N)''' &nbsp; &nbsp; &nbsp;Exercise execution: &nbsp; Area for the sample solution
 
<br clear=all>
 
<br clear=all>
 
==About the Authors==
 
==About the Authors==
Dieses interaktive Applet  wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.  
+
This interactive calculation tool was designed and implemented at the&nbsp; [https://www.ei.tum.de/en/lnt/home/ Institute for Communications Engineering]&nbsp; at the&nbsp; [https://www.tum.de/en Technical University of Munich].  
*Die erste Version wurde 2006 von&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Markus_Elsberger_.28Diplomarbeit_LB_2006.29|Markus Elsberger]]&nbsp; im Rahmen seiner Bachelorarbeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).  
+
*The first version was created in 2006 by [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Markus_Elsberger_.28Diplomarbeit_LB_2006.29|Markus Elsberger]]&nbsp; as part of his bachelor thesis with “FlashMX – Actionscript” (Supervisor: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).  
*2019 wurde das Programm  von&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; im Rahmen einer Werkstudententätigkeit auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet (Betreuer: [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]).
+
 
 +
*Last revision and English version 2020/2021 by&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; in the context of a working student activity.&nbsp;  
 +
 
 +
 
 +
The conversion of this applet to HTML 5 was financially supported by&nbsp; [https://www.ei.tum.de/studium/studienzuschuesse/ Studienzuschüsse]&nbsp; ("study grants")&nbsp; of the TUM Faculty EI.&nbsp; Many thanks.
  
  
Die Umsetzung dieses Applets auf HTML 5 wurde durch&nbsp; [https://www.ei.tum.de/studium/studienzuschuesse/ Studienzuschüsse]&nbsp; der Fakultät EI der TU München finanziell unterstützt. Wir bedanken uns.
 
  
 
==Once again:&nbsp; Open Applet in new Tab==
 
==Once again:&nbsp; Open Applet in new Tab==
 
+
{{LntAppletLinkEnDe|convolution_en|convolution}}
{{LntAppletLink|convolution}}
 

Latest revision as of 16:30, 10 April 2023

Open Applet in new Tab   Deutsche Version Öffnen

Applet Description


This applet illustrates the convolution operation in the time domain

  • between an input pulse  $x(t)$   ⇒   rectangle, triangle, Gaussian, exponential function
  • and the impulse response  $h(t)$  of an LTI system with low–pass character  ⇒   slit low–pass, first or second order low–pass, Gaussian low–pass.


For the output signal  $y(t)$  corresponding to the block diagram in  $\text{Example 1}$,  then, as stated in the chapter  "Graphical Convolution"

$$y( t ) = x(t) * h( t ) = \int_{ - \infty }^{ + \infty } \hspace{-0.15cm}{x( \tau )} \cdot h( {t - \tau } )\hspace{0.1cm}{\rm d}\tau .$$

For causal systems   ⇒    $h(t) \equiv 0$  for  $t < 0$  (examples: slit low–pass as well as first and second order low–pass)   can be written for this also:

$$y( t ) = \int_{ - \infty }^{ t } \hspace{-0.15cm}{x( \tau )} \cdot h( {t - \tau } )\hspace{0.1cm}{\rm d}\tau .$$

Please note:

  • All quantities – also the time $t$ – are to be understood normalized (dimensionless).
  • The time functions  $x(t)$,  $h(t)$  and  $y(t)$  cannot assume negative signal values in the program.
  • The absolute duration  of a pulse  $y(t)$  is the (continuous) time range for which  $y(t) > 0$. 
  • The equivalent duration  of a pulse can be calculated by the rectangle of equal area.

Theoretical Background

Convolution in the time domain

The  "convolution theorem"  is one of the most important laws of the Fourier transform. We first consider the convolution theorem in the time domain and assume that the spectra of two time functions  $x_1(t)$  and  $x_2(t)$  are known:

$$X_1 ( f )\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.15cm}x_1( t ),\quad X_2 ( f )\hspace{0.1cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.1cm}x_2 ( t ).$$

Then for the time function of the product  $X_1(f) \cdot X_2(f)$ holds:

$$X_1 ( f ) \cdot X_2 ( f )\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.15cm}\int_{ - \infty }^{ + \infty } {x_1 ( \tau )} \cdot x_2 ( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$

Here  $\tau$  is a formal integration variable with the dimension of a time.

$\text{Definition:}$  The above connection of the time function  $x_1(t)$  and  $x_2(t)$  is called  convolution  and represents this functional connection with a star:

$$x_{\rm{1} } (t) * x_{\rm{2} } (t) = \int_{ - \infty }^{ + \infty } {x_1 ( \tau ) } \cdot x_2 ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$

Thus, above Fourier correspondence can also be written as follows:

$$X_1 ( f ) \cdot X_2 ( f )\hspace{0.15cm}\bullet\!\!\!-\!\!\!-\!\!\!-\!\!\circ\hspace{0.15cm}{ {x} }_{\rm{1} } ( t ) * { {x} }_{\rm{2} } (t ).$$

$\text{"Proof"}$


Note:   The convolution is  commutative   ⇒   The order of the operands is interchangeable:   ${ {x}}_{\rm{1}} ( t ) * { {x}}_{\rm{2}} (t ) ={ {x}}_{\rm{2}} ( t ) * { {x}}_{\rm{1}} (t ) $.


For the calculation of signal and spectrum at the LTI output

$\text{Example 1:}$  Any linear time-invariant (LTI) system can be described both by the frequency response  $H(f)$  and by the impulse response  $h(t)$,  the relationship between these two system quantities also being given by the Fourier transform.

If a signal  $x(t)$  with the spectrum  $X(f)$  is applied to the input, the following applies to the spectrum of the output signal:

$$Y(f) = X(f) \cdot H(f)\hspace{0.05cm}.$$

With the convolution theorem it is now possible to calculate the output signal also directly in the time domain:

$$y( t ) = x(t) * h( t ) = \int_{ - \infty }^{ + \infty } \hspace{-0.15cm}{x( \tau )} \cdot h( {t - \tau } )\hspace{0.1cm}{\rm d}\tau = \int_{ - \infty }^{ + \infty } \hspace{-0.15cm} {h( \tau )} \cdot x( {t - \tau } )\hspace{0.1cm}{\rm d}\tau = h(t) * x( t ).$$

From this equation, it is again clear that the convolution operation is  commutative


Convolution in the frequency domain

The duality between the time and frequency domains also allows us to make statements regarding the spectrum of a product signal:

$$x_1 ( t ) \cdot x_2 ( t )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,X_1 (f) * X_2 (f) = \int_{ - \infty }^{ + \infty } {X_1 ( \nu )} \cdot X_2 ( {f - \nu })\hspace{0.1cm}{\rm d}\nu.$$

This result can be proved similarly to the  "convolution theorem in the time domain".  However, the integration variable  $\nu$  now has the dimension of a frequency.

Convolution in the frequency domain

$\text{Example 2:}$  The  "double-sideband amplitude modulation"  (DSB-AM) without carrier is described by the sketched model.

  • In the time domain representation (blue), the modulated signal  $s(t)$  is the product of the message signal  $q(t)$  and the (normalized) carrier signal  $z(t)$.
  • According to the convolution theorem, it follows for the frequency domain (red) that the output spectrum  $S(f)$  is equal to the convolution product of  $Q(f)$  and  $Z(f)$. 


Convolution of a function with a Dirac delta function

The convolution operation becomes very simple if one of the two operands is a  "Dirac delta function".  This is equally true for convolution in the time and frequency domain.

As an example, we consider the convolution of a function  $x_1(t)$  with the function

$$x_2 ( t ) = \alpha \cdot \delta ( {t - T} ) \quad \circ\,\!\!\!-\!\!\!-\!\!\!-\!\!\bullet \quad X_2 ( f )= \alpha \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.03cm}2\hspace{0.03cm}{\rm{\pi }}\hspace{0.01cm}f\hspace{0.01cm}T}.$$

Then for the spectral function of the signal  $y(t) = x_1(t) \ast x_2(t)$  holds:

$$Y( f ) = X_1 ( f ) \cdot X_2 ( f ) = X_1 ( f ) \cdot \alpha \cdot {\rm{e}}^{ - {\rm{j}}\hspace{0.03cm}2\hspace{0.03cm}{\rm{\pi }}\hspace{0.01cm}f\hspace{0.01cm}T} .$$

The complex exponential function leads to a shift by  $T$   ⇒   "shifting theorem", the factor  $\alpha$  to an attenuation  $(\alpha < 1)$  or an amplification  $(\alpha > 1)$. It follows that:

$$x_1 (t) * x_2 (t) = \alpha \cdot x_1 ( {t - T} ).$$

$\text{In words: }$  The convolution of an arbitrary function with a Dirac delta function at  $t = T$  results in the function shifted to the right by  $T$,  whereby the weighting of the Dirac delta function by the factor  $\alpha$  must still be taken into account.


$\text{Example 3:}$  A rectangular signal  $x(t)$  is delayed by a running time  $\tau = 3\,\text{ ms}$  and attenuated by a factor  $\alpha = 0.5$  by an LTI system.

Convolution of a rectangle with a Dirac delta function

Shift and attenuation can be seen in the output signal  $y(t)$  as well as in the impulse response  $h(t)$.


Graphical Convolution

This applet assumes the following convolution operation:

Screen capture of the program "Graphical Convolution" (former version)
$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {x ( \tau )} \cdot h ( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$

The solution of the convolution integral is to be done graphically. It is assumed that  $x(t)$  and  $h(t)$  are continuous-time signals.


Then the following steps are required:

  1.     Change the  time variables  of the two functions:  
        $x(t) \to x(\tau)$,   $h(t) \to h(\tau)$.
  2.   Mirror second function:   $h(\tau) \to h(-\tau)$.
  3.   Shift mirrored function by  $t$:   $h(-\tau) \to h(t-\tau)$.
  4.   Multiplication of the two functions  $x(\tau)$  and  $h(t-\tau)$.
  5.   Integration  over the product with respect to  $\tau$  in the limits from  $-\infty$  to  $+\infty$.


Since the convolution is commutative,  $h(\tau)$  can be mirrored instead of  $x(\tau)$. 



The accompanying graphic shows a screen shot of an older version of this applet.


Example of a convolution operation:
Jump function convolved with exponential function

$\text{Example 4:}$  The procedure of graphical convolution is now explained with a detailed example:

  • Let a jump function  $x(t) = \gamma(t)$  be applied to the input of a filter.
  • Let the impulse response of the RC low-pass filter be  $h( t ) = {1}/{T} \cdot {\rm{e} }^{ - t/T}.$


The graph shows the input signal  $x(\tau)$ in red, the impulse response  $h(\tau)$ in blue, and the output signal  $y(\tau)$ in gray. The time axis has already been renamed  $\tau$. 

The output signal can be calculated, for example, according to the following equation:

$$y(t) = h(t) * x(t) = \int_{ - \infty }^{ + \infty } {h( \tau )} \cdot x( {t - \tau } )\hspace{0.1cm}{\rm d}\tau.$$

A few more remarks on the graphical convolution:

  • The output value at  $t = 0$  is obtained by mirroring the input signal  $x(\tau)$,  multiplying this mirrored signal  $x(-\tau)$  by the impulse response  $h(\tau)$,  and integrating over it.
  • Since there is no time interval here where both the blue curve  $h(\tau)$  and at the same time the red dashed mirroring  $x(-\tau)$  is not equal to zero, it follows that  $y(t=0)=0$.
  • For any other time  $t$,  the input signal must be shifted   ⇒   $x(t-\tau)$, for example corresponding to the green dashed curve for  $t=T$.
  • Since in this example also  $x(t-\tau)$  can only take the values  $0$  or  $1$,  the integration  $($generally from  $\tau_1$  to  $\tau_2)$  becomes simple and we obtain with  $\tau_1 = 0$  and  $\tau_2 = t$ :
$$y( t) = \int_0^{\hspace{0.05cm} t} {h( \tau)}\hspace{0.1cm} {\rm d}\tau = \frac{1}{T}\cdot\int_0^{\hspace{0.05cm} t} {{\rm{e}}^{ - \tau /T } }\hspace{0.1cm} {\rm d}\tau = 1 - {{\rm{e}}^{ - t /T } }.$$

The sketch is valid for  $t=T$  and leads to the initial value  $y(t=T) = 1 – 1/\text{e} \approx 0.632$.


Exercises

  • First, select the number  $(1,\ 2, \text{...} \ )$  of the exercise to be processed.  The number  $0$  corresponds to a "Reset":  Same setting as at program start.
  • An exercise description is displayed.  The parameter values are adjusted.  Solution after pressing "Show Solution".
  • Both the input signal  $x(t)$  and the impulse response  $h(t)$  of the filter are are normalized, dimensionless and energy-limited ("time-limited pulses").


(1)   Select the following parameters:  $\text{Gaussian pulse: }A_x = 1, \ \Delta t_x= 1, \ \tau_x = 1;     \text{ Impulse response according to 2nd order low-pass: } \Delta t_h= 1$.
         Interpret the displayed graphs.  What is the maximum output value  $y_{\rm max}$?  At what time  $t_{\rm max}$  does  $y_{\rm max}$  occur?

  •  After renaming:  Input signal  $x(\tau)$   ⇒   red curve,   impulse response  $h(\tau)$   ⇒   blue curve,  after mirroring  $h(-\tau)$   ⇒   green curve.
  •  Shifting the green curve by  $t$  to the right, we get  $h(t-\tau)$.  The output signal  $y(t)$  is obtained by multiplication and integration with respect to  $\tau$:
$$y (t) = \int_{ - \infty }^{ +\infty } {x ( \tau ) } \cdot h ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau = \int_{ - \infty }^{ t } {x ( \tau ) } \cdot h ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau .$$
  •  The output pulse  $y(t)$  is asymmetric in the present case;  the maximum output value  $y_{\rm max}\approx 0.67$  occurs at  $t_{\rm max}\approx 1.5$.


(2)   What changes if we increase the equivalent pulse duration of  $h(t)$  to  $\Delta t_h= 1.5$?

  •  $y_{\rm max}\approx 0.53$  now occurs at  $t_{\rm max}\approx 1.75$.  Due to the less favorable (wider) impulse response, the input pulse is more deformed.
  •  In a digital communication system, this would result in stronger  "intersymbol interferences".


(3)   Now select the symmetric  $\text{rectangular pulse: }A_x = 1, \ \Delta t_x= 1, \ \tau_x = 0$  and the  $\text{rectangular impulse response}$  of the low-pass filter:  $\Delta t_h= 1$.
         Interpret the convolution result.  What is the maximum output value  $y_{\rm max}$?  At what times is  $y(t)>0$?  Does  $h(t)$  describe a causal system?

  •  The convolution of two rectangles with respective durations  $1$  yields a triangle with absolute duration  $2$  ⇒   equivalent pulse duration  $\Delta t_y= 1$.
  •  $y(t)$  is different from zero in the range from  $-0.5$  to  $+1.5$ .  The pulse maximum  $y_{\rm max} = 1$  is at  $t_{\rm max} = +0.5$.
  •  $h(t)$  describes a causal system, since  $h(t) \equiv 0$  for  $t < 0$.  That means:  The "effect"  $y(t)$  does not come before the "cause"  $x(t)$.


(4)   What changes if we increase the equivalent pulse duration of  $h(t)$  to  $\Delta t_h= 2$ ?

  •  The convolution of two rectangles of different widths results in a trapezoid, here between  $-0.5$  and  $+2.5$ ⇒   equivalent pulse duration  $\Delta t_y= 2$.
  •  The maximum  $y_{\rm max} = 0.5$  occurs in the range  $0.5 \le t \le 1.5$.  Nothing changes with respect to causality.


(5)   Now select the (unsymmetrical)  $\text{rectangular pulse: }A_x = 1, \ \Delta t_x= 1, \ \tau_x = 0.5$  and the  $\text{impulse response of a 1st order low-pass: }\Delta t_h= 1$.
         Interpret the results.  What is the value of  $y_{\rm max}$?  At what times is  $y(t)>0$ ?  Does  $h(t)$  describe a causal system?

  •  $h(t)$  has an exponentially decreasing curve for  $t > 0$.  It always applies:   $y(t>0) > 0$,  but the signal values can become very small.
  •  $y_{\rm max} = 0.63$  occurs for  $t_{\rm max} = +1$.  For  $ t < t_{\rm max}$ the progression is exponentially increasing, for  $ t > t_{\rm max}$  exponentially decreasing.
  •  The 1st order low-pass can be realized with a resistor and a capacitor.  Any realizable system is causal per se.


(6)   Select as in  $(3)$  the  $\text{rectangular impulse response}$  of the low-pass filter:  $\Delta t_h= 1$.  With which  $x(t)$  results the same  $y(t)$  as for  $(5)$?

  •  The signal  $y(t)$  in  $(5)$  resulted as a convolution between the rectangular input  $x(t)$  and the exponential function  $h(t)$.
  •  Since the convolution operation is commutative, the same result is obtained with the exponential function  $x(t)$  and the rectangular function  $h(t)$.
  •  Thus, the correct setting for the input signal  $x(t)$  is the  $\text{exponential pulse }$with  $ A_x = 1, \ \Delta t_x= 1, \ \tau_x = 0$ .


(7)   For the remainder of the exercises, we consider the Gaussian low-pass.  The equivalent duration of the impulse response  $h(t)$  should first be  $\Delta t_h= 0.8$.
       Analyze and interpret this  "system"  in terms of causality and the resulting distortions for the rectangular pulse.

  •  The low-pass is not causal (and therefore non–realizable):  For  $t < 0$:  $h(t) \equiv 0$  does not hold. Suitable model if infinite delay is ignored.
  •  The larger  $\Delta t_h$  is, the wider the output pulse and the stronger the degradation of a digital system due to intersymbol interference.
  •  The frequency response  $H(f)$  is the Fourier transform of  $h(t)$. The larger  $\Delta t_h$  is, the smaller  $\Delta f_h = 1/\Delta t_h$   ⇒   The system is more narrowband.


(8)   Now select  $\text{Gaussian pulse: }A_x = 1, \ \Delta t_x= 1.5, \ \tau_x = 0$  and  $\text{Gaussian low-pass: }\Delta t_h= 2$.  What is the course of the output pulse  $y(t)$?
         What are the equivalent duration  $\Delta t_y$  of the output pulse and the maximum output value  $y_{\rm max}$?  At what time  $t_{\rm max}$  does  $y_{\rm max}$  occur?

  •  $y(t)$  is (exactly) Gaussian, too.   Mnemonic:  $\text{"Gaussian convolved with Gaussian gives always Gaussian"}$.
  •  Equivalent duration:  $\Delta t_y =\sqrt{\Delta t_x^2+ \Delta t_h^2} = 2.5$.  Pulse maximum  $($at  $t=0)$:  $y_{\rm max} = A_x \cdot \Delta t_x/\Delta t_y = 1 \cdot 1.5/2.5 = 0.6$.


(9)   Now select  $\text{Triangular pulse: }A_x = 1, \ \Delta t_x= 1.5, \ \tau_x = 0$  and  $\text{Gaussian low–pass: }\Delta t_h= 2$.  What is the course of the output pulse  $y(t)$?
       What is the equivalent duration  $\Delta t_y$  of the output pulse and the maximum output value  $y_{\rm max}$?  At what time  $t_{\rm max}$  does  $y_{\rm max}$  occur?

  •  $y(t)$  is nearly Gaussian, but not exactly.  Mnemonic:  $\text{"Gaussian convolved with non–Gaussian never gives exactly Gaussian"}$.
  •  The characteristics of the output pulse  $y(t)$  differ only slightly from  $(8)$:  $\Delta t_y \approx 2.551$,  $y_{\rm max} \approx 0.588$.


Applet Manual


Screen shot  (German version)

    (A)     Selection:   Shape of the input pulse  $x(t)$

    (B)     Parameter input for the input pulse  $x(t)$

    (C)     Selection:   Shape of the impulse response  $h(t)$  of the low-pass system

    (D)     Parameter input for the impulse response  $h(t)$

    (E)     Control panel  (Start;   Pause/Continue   ;  Step >   ;  Step <  ;  Reset)

    (F)     Output the initial value  $y(t)$  at the continuous time  $t$

    (G)     Maximum value  $y_{\rm max} = y(t_{\rm max})$  and equivalent width $\Delta\hspace{0.03cm} t_y$

                 After renaming the abscissa:   $t \ \to \ \tau$:

    (H)     Representation of  $x(\tau)$  ⇒   red static curve.

    (I)       Representation of  $h(\tau)$  ⇒  blue curve  and   $h(t-\tau)$  ⇒   green curve
                $($this is shifted to the right with the motion parameter   $t$ $)$

    (J)       Plot of  $x(\tau) \cdot h(t - \tau)$  ⇒   purple curve, dynamic with  $t$

    (K)      Successive representation of the output signal  $y(t)$  ⇒   brown curve

    (L)      Area for exercise execution:   Exercise selection.

    (M)      Exercise execution:   Area for exercise description

    (N)      Exercise execution:   Area for the sample solution

About the Authors

This interactive calculation tool was designed and implemented at the  Institute for Communications Engineering  at the  Technical University of Munich.

  • The first version was created in 2006 by Markus Elsberger  as part of his bachelor thesis with “FlashMX – Actionscript” (Supervisor: Günter Söder).
  • Last revision and English version 2020/2021 by  Carolin Mirschina  in the context of a working student activity. 


The conversion of this applet to HTML 5 was financially supported by  Studienzuschüsse  ("study grants")  of the TUM Faculty EI.  Many thanks.


Once again:  Open Applet in new Tab

Open Applet in new Tab   Deutsche Version Öffnen