Difference between revisions of "Aufgaben:Exercise 2.2: Multi-Level Signals"
From LNTwww
m (Text replacement - "Category:Aufgaben zu Stochastische Signaltheorie" to "Category:Theory of Stochastic Signals: Exercises") |
|||
(13 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/From_Random_Experiment_to_Random_Variable |
}} | }} | ||
− | |||
− | |||
+ | [[File:P_ID85__Sto_A_2_2.png|right|frame|Two similar multi-level signals]] | ||
+ | Let the rectangular signal x(t) be dimensionless and can only have the current values 0, 1, 2, ... , M−2, M−1 with equal probability. The upper graph shows this signal for the special case M=5. | ||
− | |||
+ | The rectangular zero mean signal y(t) can also assume M different values. | ||
+ | *It is restricted to the range from −y0≤y≤+y0. | ||
+ | *In the graph below you can see the signal y(t), again for the level number M=5. | ||
− | |||
Line 16: | Line 17: | ||
+ | Hints: | ||
+ | *The exercise belongs to the chapter [[Theory_of_Stochastic_Signals/Momente_einer_diskreten_Zufallsgröße|Moments of a Discrete Random Variable]]. | ||
+ | *Fur numerical calculations, use y0=2V. | ||
+ | *The topic of this chapter is illustrated with examples in the (German language) learning video<br> [[Momentenberechnung_bei_diskreten_Zufallsgrößen_(Lernvideo)|"Momentenberechnung bei diskreten Zufallsgrößen"]] ⇒ "Calculating Moments for Discrete-Valued Random Variables" | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ===Questions=== | |
− | === | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What is the linear mean mx of the random variable x for M=5? |
|type="{}"} | |type="{}"} | ||
− | mx = | + | mx = { 2 3% } |
− | { | + | {What is the variance σ2x of the random variable x in general and for M=5? |
|type="{}"} | |type="{}"} | ||
σ2x = { 2 3% } | σ2x = { 2 3% } | ||
− | { | + | {Calculate the mean my of the random variable y for M=5. |
|type="{}"} | |type="{}"} | ||
my = { 0. } V | my = { 0. } V | ||
− | { | + | {What is the variance σ2y of the random variable y in general and for $M= 5$? Consider the result from '''(2)'''. |
|type="{}"} | |type="{}"} | ||
σ2y = { 2 3% } V2 | σ2y = { 2 3% } V2 | ||
Line 54: | Line 53: | ||
</quiz> | </quiz> | ||
− | === | + | |
+ | ===Solution=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | |
+ | '''(1)''' One obtains by averaging over all possible signal values for the linear mean: | ||
:mx=M−1∑μ=0pμ⋅xμ=1M⋅M−1∑μ=0μ=1M⋅(M−1)⋅M2=M−12. | :mx=M−1∑μ=0pμ⋅xμ=1M⋅M−1∑μ=0μ=1M⋅(M−1)⋅M2=M−12. | ||
− | * | + | *In the special case M=5 the linear mean results in mx=2_. |
− | '''(2)''' | + | '''(2)''' Analogously to '''(1)''' one obtains for the second moment (second order moment): |
− | :$$m_{\rm 2\it x}= \rm \sum_{\mu=0}^{\it M -\rm 1}\it p_\mu\cdot x_{\mu}^{\rm 2}=\frac{\rm 1}{\it M}\cdot \sum_{\mu=\rm 0}^{\rm M-1}\mu^{\rm 2} = | + | : m2x=M−1∑μ=0pμ⋅x2μ=1M⋅M−1∑μ=0μ2=1M⋅(M−1)⋅M⋅(2M−1)6=(M−1)⋅(2M−1)6. |
− | * | + | *In the special case M=5 the second moment m2x=6. |
− | * | + | *From this, the variance can be calculated using Steiner's theorem: |
:σ2x=m2x−m2x=(M−1)⋅(2M−1)6−(M−1)24=M2−112. | :σ2x=m2x−m2x=(M−1)⋅(2M−1)6−(M−1)24=M2−112. | ||
− | * | + | *In the special case M=5 the result for the variance σ2x=2_. |
− | |||
− | |||
− | |||
+ | '''(3)''' Because of the symmetry of y, it holds independently of M: | ||
+ | :my=0_. | ||
− | '''(4)''' | + | '''(4)''' The following relation holds between x(t) and y(t): |
− | :$$y(t)=\frac{2\cdot | + | :y(t)=2⋅y0M−1⋅[x(t)−mx]. |
− | * | + | *From this it follows for the variances: |
− | :σ2y=4⋅y20(M−1)2⋅σ2x=y20⋅(M2−1)3⋅(M−1)2=y20⋅(M+1)3⋅(M−1). | + | : σ2y=4⋅y20(M−1)2⋅σ2x=y20⋅(M2−1)3⋅(M−1)2=y20⋅(M+1)3⋅(M−1). |
− | * | + | *In the special case M=5 this results in: |
:σ2y=y20⋅63⋅4=2V2_. | :σ2y=y20⋅63⋅4=2V2_. | ||
− | |||
− | [[Category:Theory of Stochastic Signals: Exercises|^2.2 | + | [[Category:Theory of Stochastic Signals: Exercises|^2.2 Moments of Discrete Random Variables^]] |
Latest revision as of 14:20, 18 January 2023
Let the rectangular signal x(t) be dimensionless and can only have the current values 0, 1, 2, ... , M−2, M−1 with equal probability. The upper graph shows this signal for the special case M=5.
The rectangular zero mean signal y(t) can also assume M different values.
- It is restricted to the range from −y0≤y≤+y0.
- In the graph below you can see the signal y(t), again for the level number M=5.
Hints:
- The exercise belongs to the chapter Moments of a Discrete Random Variable.
- Fur numerical calculations, use y0=2V.
- The topic of this chapter is illustrated with examples in the (German language) learning video
"Momentenberechnung bei diskreten Zufallsgrößen" ⇒ "Calculating Moments for Discrete-Valued Random Variables"
Questions
Solution
(1) One obtains by averaging over all possible signal values for the linear mean:
- mx=M−1∑μ=0pμ⋅xμ=1M⋅M−1∑μ=0μ=1M⋅(M−1)⋅M2=M−12.
- In the special case M=5 the linear mean results in mx=2_.
(2) Analogously to (1) one obtains for the second moment (second order moment):
- m2x=M−1∑μ=0pμ⋅x2μ=1M⋅M−1∑μ=0μ2=1M⋅(M−1)⋅M⋅(2M−1)6=(M−1)⋅(2M−1)6.
- In the special case M=5 the second moment m2x=6.
- From this, the variance can be calculated using Steiner's theorem:
- σ2x=m2x−m2x=(M−1)⋅(2M−1)6−(M−1)24=M2−112.
- In the special case M=5 the result for the variance σ2x=2_.
(3) Because of the symmetry of y, it holds independently of M:
- my=0_.
(4) The following relation holds between x(t) and y(t):
- y(t)=2⋅y0M−1⋅[x(t)−mx].
- From this it follows for the variances:
- σ2y=4⋅y20(M−1)2⋅σ2x=y20⋅(M2−1)3⋅(M−1)2=y20⋅(M+1)3⋅(M−1).
- In the special case M=5 this results in:
- σ2y=y20⋅63⋅4=2V2_.