Difference between revisions of "Aufgaben:Exercise 4.11: C Program "acf1""

From LNTwww
m (Text replacement - "Category:Aufgaben zu Stochastische Signaltheorie" to "Category:Theory of Stochastic Signals: Exercises")
 
(16 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Autokorrelationsfunktion (AKF)
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Auto-Correlation_Function
 
}}
 
}}
  
[[File:P_ID391__Sto_A_4_11.png|right|frame|C-Programm  $1$  zur AKF–Berechnung]]
+
[[File:EN_Sto_A_4_11_neu2.png|right|frame|C program  $1$  for the ACF calculation]]
Sie sehen nebenstehend das C–Programm „akf1” zur Berechnung der diskreten AKF-Werte  $\varphi_x(k)$  mit dem Index  $k = 0$, ... , $l$.  Hierzu ist Folgendes zu bemerken:
+
See the C–program "acf1" for calculating the discrete ACF values  $\varphi_x(k)$  with index  $k = 0$, ... , $l$.  The following should be noted about this:
  
* Der an das Programm übergebene Long–Wert sei  $l = 10$.  Die AKF-Werte  $\varphi_x(0)$, ... , $\varphi_x(10)$  werden mit dem Float-Feld  $\rm AKF\big[ \ \big]$  an das aufrufende Programm zurückgegeben. In den  Zeilen 7 und  8 des rechts anggebenen Programms wird dieses Feld mit Nullen vorbelegt.
+
* The long–value passed to the program is  $l = 10$.  The ACF values  $\varphi_x(0)$, ... , $\varphi_x(10)$  are returned to the calling program with the float field  $\rm ACF\big[ \ \big]$.  In lines 7 and 8 of the program given on the right,  this field is pre-populated with zeros.
  
* Die zu analysierenden Zufallsgrößen  $x_\nu$  werden mit der Float-Funktion  $x( \ )$  erzeugt (siehe Zeile 4).  Diese Funktion wird insgesamt  $N + l + 1 = 10011$  mal aufgerufen (Zeile 9 und 18).
+
* The random variables  $x_\nu$  to be analyzed are generated with the float function  $x( \ )$,  see line 4.  This function is called a total of  $N + l + 1 = 10011$  times  $x_\nu$  (lines 9 and 18).
  
* Im Gegensatz zu dem im  [[Theory_of_Stochastic_Signals/Autokorrelationsfunktion_(AKF)#Numerische_AKF-Ermittlung|Theorieteil]]  angegebenen Algorithmus, der im Programm  „akf2”  von  [[Aufgaben:4.11Z_C-Programm_„akf2”|Aufgabe 4.11Z]]  direkt umgesetzt ist, benötigt man hier ein Hilfsfeld  ${\rm H}\big[ \ \big]$  mit nur  $l + 1 = 11$  Speicherelementen.
+
* In contrast to the algorithm given in the  [[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Numerical_ACF_determination|Theory section]]  directly implemented in the program  "acf2"  of  [[Aufgaben:Exercise_4.11Z:_C_Program_"acf2"|Task 4.11Z]],  one needs here an auxiliary field  ${\rm H}\big[ \ \big]$  with only  $l + 1 = 11$  memory elements.
  
* Vor Beginn des eigentlichen Berechnungsalgorithmus (Zeile 11 bis 21) stehen in den elf Speicherzellen von  ${\rm H}\big[ \ \big]$  die Zufallswerte  $x_1$, ... ,  $x_{11}$.
+
* Before starting the actual calculation algorithm (lines 11 to 21),  the eleven memory cells of  ${\rm H}\big[ \ \big]$  contain the random values  $x_1$, ... ,  $x_{11}$.  The outer loop with the index  $z$   (marked in red)  is run  $N$  times.
 +
*In the inner loop   (marked white)  with the index  $k = 0$, ... ,  $l$  all memory cells of the field  ${\rm ACF}\big[\hspace{0.03cm} k \hspace{0.03cm} \big]$  are increased by the contribution  $x_\nu \cdot x_{\nu+k}$.
  
* Die äußere Schleife mit der Laufvariablen  $z$  (rot markiert) wird  $N$-mal durchlaufen.
+
* Finally,  in lines 22 and 23,  all ACF values are divided by the number  $N$  of analyzed  data.  
*In der inneren Schleife  (weiß markiert)  werden mit dem Laufindex  $k = 0$, ... ,  $l$  alle Speicherzellen des Feldes  ${\rm AKF}\big[\hspace{0.03cm} k \hspace{0.03cm} \big]$  um den Beitrag  $x_\nu \cdot x_{\nu+k}$  erhöht.
 
  
* In den Zeilen 22 und 23 werden schließlich alle AKF–Werte durch die Anzahl  $N$  der analysierten Daten  dividiert.
 
  
  
Line 23: Line 22:
  
  
 
+
Hint:
''Hinweise:''
+
*This exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Auto-Correlation_Function|Auto-Correlation Function]].
*Die Aufgabe gehört zum  Kapitel  [[Theory_of_Stochastic_Signals/Autokorrelationsfunktion_(AKF)|Autokorrelationsfunktion]].
+
*Reference is made in particular to the page  [[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Numerical_ACF_determination|Numerical ACF determination]].
*Bezug genommen wird insbesondere auf die Seite  [[Theory_of_Stochastic_Signals/Autokorrelationsfunktion_(AKF)#Numerische_AKF-Ermittlung|Numerische AKF-Ermittlung]].
 
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Elemente&nbsp; $i$&nbsp; und&nbsp; $j$&nbsp; des Hilfsfeldes&nbsp; ${\rm H}\big[ \ \big]$&nbsp; werden <u>beim ersten Durchlauf</u>&nbsp; $(z=0)$&nbsp; zur Berechnung des AKF&ndash;Wertes&nbsp; $\varphi(k=6)$&nbsp; verwendet? <br>Welche Zufallswerte&nbsp; $x_\nu$&nbsp; stehen in diesen Speicherzellen?
+
{Which elements&nbsp; $i$&nbsp; and&nbsp; $j$&nbsp; of the auxiliary field&nbsp; ${\rm H}\big[ \ \big]$&nbsp; are used&nbsp; <u>on the first loop pass</u> &nbsp; $(z=0)$&nbsp; to calculate the ACF&ndash;value&nbsp; $\varphi(k=6)$&nbsp;? <br>What random values&nbsp; $x_\nu$&nbsp; are in these memory cells?
 
|type="{}"}
 
|type="{}"}
$i \ = \ $   { 0. }
+
$i \ = \ $ { 0. }
 
$j \ = \ $ { 6 }
 
$j \ = \ $ { 6 }
  
  
{Welche Speicherzelle&nbsp; ${\rm H}\big[\hspace{0.03cm} i \hspace{0.03cm} \big]$&nbsp; wird <u>nach dem ersten Schleifendurchgang</u>&nbsp; $(z=0)$&nbsp; mit einer neuen Zufallsgr&ouml;&szlig;e&nbsp; $x_\nu$&nbsp; belegt? <br>Welcher Index&nbsp; $\nu$&nbsp; wird dabei eingetragen?
+
{Which memory cell&nbsp; ${\rm H}\big[\hspace{0.03cm} i \hspace{0.03cm} \big]$&nbsp; will be occupied&nbsp; <u>after the first loop pass</u> &nbsp; $(z=0)$&nbsp; with a new random variable&nbsp; $x_\nu$&nbsp;? <br> Which index &nbsp; $\nu$&nbsp; is entered in the process?  
 
|type="{}"}
 
|type="{}"}
 
$i \ = \ $  { 0. }
 
$i \ = \ $  { 0. }
Line 46: Line 44:
  
  
{Welche Speicherelemente&nbsp; ${\rm H}\big[\hspace{0.03cm} i \hspace{0.03cm} \big]$&nbsp; und&nbsp; ${\rm H}\big[\hspace{0.03cm} j \hspace{0.03cm} \big]$&nbsp; werden beim Schleifendurchlauf&nbsp; $z=83$&nbsp; zur Berechnung des AKF-Wertes&nbsp; $\varphi(k=6)$&nbsp; verwendet? <br>Welche Zufallswerte stehen in diesen Speicherzellen?
+
{Which memory elements&nbsp; ${\rm H}\big[\hspace{0.03cm} i \hspace{0.03cm} \big]$&nbsp; and&nbsp; ${\rm H}\big[\hspace{0.03cm} j \hspace{0.03cm} \big]$&nbsp; are used in the loop pass&nbsp; $z=83$&nbsp; to calculate the ACF value&nbsp; $\varphi(k=6)$&nbsp;? <br>What random values are in these memory cells?
 
|type="{}"}
 
|type="{}"}
 
$i \ = \ $  { 6 }
 
$i \ = \ $  { 6 }
Line 56: Line 54:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[File:P_ID417__Sto_A_4_11_b.png|right|frame|Zur numerischen AKF-Berechnung]]
+
[[File:P_ID417__Sto_A_4_11_b.png|right|frame|For the exemplary numerical ACF calculation]]
 
<br>
 
<br>
'''(1)'''&nbsp; Mit&nbsp; $z= 0$&nbsp; und&nbsp; $k=6$&nbsp; ergibt sich gem&auml;&szlig; dem Programm: &nbsp; $\underline{i= 0}$&nbsp; und&nbsp; $\underline{j= 6}$.
+
'''(1)'''&nbsp; With&nbsp; $z= 0$&nbsp; and&nbsp; $k=6$&nbsp; results according to the program: &nbsp; $\underline{i= 0}$&nbsp; and&nbsp; $\underline{j= 6}$.
*Die entsprechenden Speicherinhalte sind&nbsp; ${\rm H}\big[\hspace{0.03cm} 0 \hspace{0.03cm}\big] = x_1$&nbsp; und&nbsp; ${\rm H}\big[\hspace{0.03cm} 6 \hspace{0.03cm}\big] = x_7$.
+
*The corresponding memory contents are&nbsp; ${\rm H}\big[\hspace{0.03cm} 0 \hspace{0.03cm}\big] = x_1$&nbsp; and&nbsp; ${\rm H}\big[\hspace{0.03cm} 6 \hspace{0.03cm}\big] = x_7$.
  
  
  
  
'''(2)'''&nbsp; In das Feld&nbsp; ${\rm H}\big[\hspace{0.03cm} 0 \hspace{0.03cm}\big]$&nbsp; wird nun die Zufallsgr&ouml;&szlig;e&nbsp; $x_{12}$&nbsp; eingetragen:
+
'''(2)'''&nbsp; In the field&nbsp; ${\rm H}\big[\hspace{0.03cm} 0 \hspace{0.03cm}\big]$&nbsp; the random variable&nbsp; $x_{12}$&nbsp; is now entered:
:$$\text{Speicherzelle  }\underline{i= 0},\hspace{1cm}\text{Folgenindex  }\underline{\nu= 12}.$$
+
:$$\text{memory cell }\underline{i= 0},\hspace{1cm}\text{sequence index }\underline{\nu= 12}.$$
  
  
  
'''(3)'''&nbsp; Die Grafik zeigt die Belegung des Hilfsfeldes mit den Zufallswerten&nbsp; $x_\nu$.  
+
'''(3)'''&nbsp; The graph shows the allocation of the auxiliary field with the random values&nbsp; $x_\nu$.  
  
*Jeweils gr&uuml;n hinterlegt ist die Speicherzelle&nbsp; ${\rm H}\big[\hspace{0.03cm} i \hspace{0.03cm}\big]$.&nbsp; In diesen Speicherplatz wird jeweils am Ende der Schleife (Zeile 18) die neue Zufallsgr&ouml;&szlig;e eingetragen.
+
*In each case,&nbsp; the memory cell&nbsp; ${\rm H}\big[\hspace{0.03cm} i \hspace{0.03cm}\big]$&nbsp; is highlighted in green.&nbsp; The new random variable is entered into this memory location at the end of each loop&nbsp; (line 18).
*F&uuml;r&nbsp; $z= 83$&nbsp; und&nbsp; $K=6$&nbsp; ergibt sich
+
*For&nbsp; $z= 83$&nbsp; and&nbsp; $K=6$&nbsp; this results in
 
:$$\underline{i= 83 \hspace{-0.2cm}\mod \hspace{-0.15cm} \ 11 = 6},\hspace{1cm} \underline{j= (i+k)\hspace{-0.2cm}\mod \hspace{-0.15cm} \ 11 = 1}.$$
 
:$$\underline{i= 83 \hspace{-0.2cm}\mod \hspace{-0.15cm} \ 11 = 6},\hspace{1cm} \underline{j= (i+k)\hspace{-0.2cm}\mod \hspace{-0.15cm} \ 11 = 1}.$$
*Schleifendurchlauf&nbsp; $z= 83$: &nbsp; In der Speicherzelle&nbsp; ${\rm H}\big[\hspace{0.03cm} 6 \hspace{0.03cm}\big]$&nbsp; steht die Zufallsgr&ouml;&szlig;e&nbsp; $x_{84}$&nbsp; und in der Speicherzelle&nbsp; ${\rm H}\big[\hspace{0.03cm} 1 \hspace{0.03cm}\big]$&nbsp; die Zufallsgr&ouml;&szlig;e&nbsp; $x_{90}$.  
+
*Loop pass&nbsp; $z= 83$: &nbsp; In memory cell&nbsp; ${\rm H}\big[\hspace{0.03cm} 6 \hspace{0.03cm}\big]$&nbsp; is the random variable&nbsp; $x_{84}$&nbsp; and in the memory cell&nbsp; ${\rm H}\big[\hspace{0.03cm} 1 \hspace{0.03cm}\big]$&nbsp; is the random variable&nbsp; $x_{90}$.  
*Am Ende des Schleifendurchlaufs&nbsp; $z= 83$&nbsp; wird in&nbsp; ${\rm H}\big[\hspace{0.03cm} 6 \hspace{0.03cm}\big]$&nbsp; der Inhalt&nbsp; $x_{84}$&nbsp; durch&nbsp; $x_{95}$&nbsp; ersetzt.
+
*At the end of loop pass&nbsp; $z= 83$&nbsp; in&nbsp; ${\rm H}\big[\hspace{0.03cm} 6 \hspace{0.03cm}\big]$:&nbsp; The content&nbsp; $x_{84}$&nbsp; is replaced by&nbsp; $x_{95}$&nbsp;.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Theory of Stochastic Signals: Exercises|^4.4 Autokorrelationsfunktion (AKF)^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^4.4 Auto-Correlation Function^]]

Latest revision as of 16:28, 28 April 2022

C program  $1$  for the ACF calculation

See the C–program "acf1" for calculating the discrete ACF values  $\varphi_x(k)$  with index  $k = 0$, ... , $l$.  The following should be noted about this:

  • The long–value passed to the program is  $l = 10$.  The ACF values  $\varphi_x(0)$, ... , $\varphi_x(10)$  are returned to the calling program with the float field  $\rm ACF\big[ \ \big]$.  In lines 7 and 8 of the program given on the right,  this field is pre-populated with zeros.
  • The random variables  $x_\nu$  to be analyzed are generated with the float function  $x( \ )$,  see line 4.  This function is called a total of  $N + l + 1 = 10011$  times  $x_\nu$  (lines 9 and 18).
  • In contrast to the algorithm given in the  Theory section  directly implemented in the program  "acf2"  of  Task 4.11Z,  one needs here an auxiliary field  ${\rm H}\big[ \ \big]$  with only  $l + 1 = 11$  memory elements.
  • Before starting the actual calculation algorithm (lines 11 to 21),  the eleven memory cells of  ${\rm H}\big[ \ \big]$  contain the random values  $x_1$, ... ,  $x_{11}$.  The outer loop with the index  $z$   (marked in red)  is run  $N$  times.
  • In the inner loop   (marked white)  with the index  $k = 0$, ... ,  $l$  all memory cells of the field  ${\rm ACF}\big[\hspace{0.03cm} k \hspace{0.03cm} \big]$  are increased by the contribution  $x_\nu \cdot x_{\nu+k}$.
  • Finally,  in lines 22 and 23,  all ACF values are divided by the number  $N$  of analyzed data.




Hint:



Questions

1

Which elements  $i$  and  $j$  of the auxiliary field  ${\rm H}\big[ \ \big]$  are used  on the first loop pass   $(z=0)$  to calculate the ACF–value  $\varphi(k=6)$ ?
What random values  $x_\nu$  are in these memory cells?

$i \ = \ $

$j \ = \ $

2

Which memory cell  ${\rm H}\big[\hspace{0.03cm} i \hspace{0.03cm} \big]$  will be occupied  after the first loop pass   $(z=0)$  with a new random variable  $x_\nu$ ?
Which index   $\nu$  is entered in the process?

$i \ = \ $

$\nu\ =\ $

3

Which memory elements  ${\rm H}\big[\hspace{0.03cm} i \hspace{0.03cm} \big]$  and  ${\rm H}\big[\hspace{0.03cm} j \hspace{0.03cm} \big]$  are used in the loop pass  $z=83$  to calculate the ACF value  $\varphi(k=6)$ ?
What random values are in these memory cells?

$i \ = \ $

$j \ = \ $


Solution

For the exemplary numerical ACF calculation


(1)  With  $z= 0$  and  $k=6$  results according to the program:   $\underline{i= 0}$  and  $\underline{j= 6}$.

  • The corresponding memory contents are  ${\rm H}\big[\hspace{0.03cm} 0 \hspace{0.03cm}\big] = x_1$  and  ${\rm H}\big[\hspace{0.03cm} 6 \hspace{0.03cm}\big] = x_7$.



(2)  In the field  ${\rm H}\big[\hspace{0.03cm} 0 \hspace{0.03cm}\big]$  the random variable  $x_{12}$  is now entered:

$$\text{memory cell }\underline{i= 0},\hspace{1cm}\text{sequence index }\underline{\nu= 12}.$$


(3)  The graph shows the allocation of the auxiliary field with the random values  $x_\nu$.

  • In each case,  the memory cell  ${\rm H}\big[\hspace{0.03cm} i \hspace{0.03cm}\big]$  is highlighted in green.  The new random variable is entered into this memory location at the end of each loop  (line 18).
  • For  $z= 83$  and  $K=6$  this results in
$$\underline{i= 83 \hspace{-0.2cm}\mod \hspace{-0.15cm} \ 11 = 6},\hspace{1cm} \underline{j= (i+k)\hspace{-0.2cm}\mod \hspace{-0.15cm} \ 11 = 1}.$$
  • Loop pass  $z= 83$:   In memory cell  ${\rm H}\big[\hspace{0.03cm} 6 \hspace{0.03cm}\big]$  is the random variable  $x_{84}$  and in the memory cell  ${\rm H}\big[\hspace{0.03cm} 1 \hspace{0.03cm}\big]$  is the random variable  $x_{90}$.
  • At the end of loop pass  $z= 83$  in  ${\rm H}\big[\hspace{0.03cm} 6 \hspace{0.03cm}\big]$:  The content  $x_{84}$  is replaced by  $x_{95}$ .