Difference between revisions of "Aufgaben:Exercise 4.09: Cyclo-Ergodicity"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Stochastische Signaltheorie" to "Category:Theory of Stochastic Signals: Exercises")
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Autokorrelationsfunktion (AKF)
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Auto-Correlation_Function
 
}}
 
}}
  
[[File:P_ID379__Sto_A_4_9.png|right|frame|Zur Verdeutlichung der Eigenschaft „Zykloergodizität”]]
+
[[File:P_ID379__Sto_A_4_9.png|right|frame|"Cyclo–ergodicity property"]]
Wir betrachten zwei unterschiedliche Zufallsprozesse, deren Musterfunktionen harmonische Schwingungen mit jeweils gleicher Frequenz  f0=1/T0  sind.  T0  bezeichnet die Periodendauer.
+
We consider two different random processes whose pattern functions are harmonic oscillations,  each with the same frequency  f0=1/T0,  where  T0  denotes the period duration.
  
*Beim oben dargestellten Zufallsprozess  {xi(t)}  ist die stochastische Komponente die Amplitude, wobei der Zufallsparameter  Ci  alle Werte zwischen  1V  und  2V  mit gleicher Wahrscheinlichkeit annehmen kann:
+
*In the random process  {xi(t)}  shown above,  the stochastic component is the amplitude, where the random parameter  Ci  can take all values between  1V  and  2V  with equal probability:
:$$\{ x_i(t) \} = \{ C_i \cdot \cos (2 \pi f_{\rm 0} t)\}. $$
+
:{xi(t)}={Cicos(2πf0t)}.
  
*Beim Prozess  {yi(t)}  weisen alle Musterfunktionen die gleiche Amplitude auf:   x0=2V.  Hier variiert die Phase  φi, die über alle Musterfunktionen gemittelt gleichverteilt zwischen  0  und  2π  ist:
+
*In the process  {yi(t)},  all pattern functions have the same amplitude:   x0=2V.  Here the phase  φi varies, which averaged over all pattern functions is uniformly distributed between  0  and  2π
:$$\{ y_i(t) \} = \{ x_{\rm 0} \cdot \cos (2 \pi f_{\rm 0} t - \varphi_i)\}. $$
+
:{yi(t)}={x0cos(2πf0tφi)}.
  
Die Eigenschaften  „zyklostationär”  und  „zykloergodisch”  sagen aus,  
+
The properties  "cyclo-stationary"  and  "cyclo-ergodic"  state,  
*dass die Prozesse zwar im strengen Sinne nicht als stationär und ergodisch zu bezeichnen sind,  
+
*that although the processes cannot be described as stationary and ergodic in the strict sense,  
*alle statistischen Kennwerte aber für Vielfache der Periondauer  T0  jeweils gleich sind.  
+
*but all statistical characteristics are the same for multiples of the period duration  T0  in each case.  
  
  
In diesen Fällen sind auch die meisten der Berechnungsregeln anwendbar, die eigentlich nur für ergodische Prozesse gelten.
+
In these cases,  most of the calculation rules,  which actually apply only to ergodic processes,  are also applicable.
  
  
 
+
'''Hint''':  This exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Auto-Correlation_Function|Auto-Correlation Function]].
 
 
 
 
 
 
 
 
 
 
''Hinweis:''  
 
*Die Aufgabe gehört zum  Kapitel  [[Theory_of_Stochastic_Signals/Autokorrelationsfunktion_(AKF)|Autokorrelationsfunktion]].
 
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der folgenden Aussagen sind zutreffend?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- Der Prozess&nbsp; {xi(t)}&nbsp; ist station&auml;r.
+
- The process&nbsp; {xi(t)}&nbsp; is stationary.
- Der Prozess&nbsp; {xi(t)}&nbsp; ist ergodisch.
+
- The process&nbsp; {xi(t)}&nbsp; is ergodic.
+ Der Prozess&nbsp; {yi(t)}&nbsp; ist station&auml;r.
+
+ The process&nbsp; {yi(t)}&nbsp; is stationary.
+ Der Prozess&nbsp; {yi(t)}&nbsp; ist ergodisch.
+
+ The process&nbsp; {yi(t)}&nbsp; is ergodic.
  
  
{Berechnen Sie die Autokorrelationsfunktion&nbsp; φy(τ)&nbsp; für verschiedene&nbsp; τ-Werte.
+
{Calculate the auto-correlation function&nbsp; φy(τ)&nbsp; for different&nbsp; τ&nbsp; values.
 
|type="{}"}
 
|type="{}"}
 
φy(τ=0) =  { 2 3% }  V2
 
φy(τ=0) =  { 2 3% }  V2
$\varphi_y(\tau=0.25 \cdot T_0)\ = \ 0.\ \rm V^2$
+
φy(τ=0.25T0) =  { 0. }  V2
$\varphi_y(\tau=1.50 \cdot T_0)\ = \ 2.061.94\ \rm V^2$
+
φy(τ=1.50T0) =  { -2.06--1.94 } V2
  
  
{Welche der folgenden Aussagen sind bez&uuml;glich&nbsp; {yi(t)}&nbsp; zutreffend?
+
{Which of the following statements are true regarding&nbsp; {yi(t)}&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Alle Mustersignale sind gleichsignalfrei.
+
+ All pattern signals are free of DC signals.
+ Alle Mustersignale besitzen den Effektivwert&nbsp; 2V.
+
+ All pattern signals have the rms value&nbsp; 2V.
- Die AKF hat die doppelte Periodendauer&nbsp; (2T0)&nbsp; wie die Mustersignale&nbsp; (T0).
+
- The ACF has twice the period&nbsp; (2T0)&nbsp; as the pattern signals&nbsp; (T0).
 
 
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind <u>die Lösungsvorschläge 3 und 4</u>:
+
'''(1)'''&nbsp; Correct are the&nbsp; <u>proposed solutions 3 and 4</u>:
*Zum Zeitpunkt&nbsp; t=0&nbsp; (und allen Vielfachen der Periodendauer&nbsp; T0)&nbsp; hat jedes Mustersignal&nbsp; xi(t)&nbsp; einen Wert zwischen&nbsp; 1V&nbsp; und&nbsp; 2V.&nbsp; Der Mittelwert ist&nbsp; 1.5V.  
+
*At time&nbsp; t=0&nbsp; (and all multiples of the period&nbsp; T0)&nbsp; each pattern signal&nbsp; xi(t)&nbsp; has a value between&nbsp; 1V&nbsp; and&nbsp; 2V.&nbsp; The mean value is&nbsp; 1.5V.  
*Dagegen ist bei&nbsp; t=T0/4&nbsp; der Signalwert des gesamten Ensembles identisch Null.&nbsp; Das hei&szlig;t:  
+
*In contrast,&nbsp; for&nbsp; t=T0/4&nbsp; the signal value of the entire ensemble is identically zero.&nbsp; That is: <br> &nbsp; Even the linear mean does not satisfy the stationarity condition:&nbsp; The process&nbsp; {xi(t)}&nbsp; is not stationary and therefore cannot be ergodic.
*Bereits der lineare Mittelwert erf&uuml;llt die Bedingung der Stationarit&auml;t nicht:&nbsp; Der Prozess&nbsp; {xi(t)}&nbsp; ist nicht station&auml;r und kann deshalb auch nicht ergodisch sein.
+
*In contrast,&nbsp; for the process&nbsp; {yi(t)}&nbsp; the same moments are expected at all times due to the uniformly distributed phase &nbsp; &rArr; &nbsp; the process is stationary.  
*Dagegen sind beim Prozess&nbsp; {yi(t)}&nbsp; aufgrund der gleichverteilten Phase zu allen Zeitpunkten die gleichen Momente zu erwarten &nbsp; &rArr; &nbsp; der Prozess ist station&auml;r.  
+
*Since the phase relations are lost in the ACF calculation,&nbsp; each individual pattern function is representative of the entire process. &nbsp; Therefore,&nbsp; ergodicity can be hypothetically assumed here.  
*Da bei der AKF-Berechnung die Phasenbeziehungen verloren gehen, steht jede einzelne Musterfunktion stellvertretend f&uuml;r den gesamten Prozess.&nbsp; Deshalb kann hier hypothetisch von Ergodizit&auml;t ausgegangen werden.  
+
*At the end of the exercise,&nbsp; check whether this assumption is justified.  
*Am Ende der Aufgabe ist zu &uuml;berpr&uuml;fen, ob diese Annahme gerechtfertigt ist.  
 
  
  
  
 
+
'''(2)'''&nbsp; Due to ergodicity,&nbsp; any pattern function can be used for ACF calculation.&nbsp; We arbitrarily use here the phase&nbsp; φi=0.  
'''(2)'''&nbsp; Aufgrund der Ergodizit&auml;t kann jede Musterfunktion zur AKF&ndash;Berechung herangezogen werden.&nbsp; Wir benutzen hier willk&uuml;rlich die Phase&nbsp; φi=0.  
+
*Because of the periodicity,&nbsp; it is sufficient to report only one period&nbsp; T0.&nbsp; Then holds:
*Aufgrund der Periodizit&auml;t gen&uuml;gt die Mitteilung &uuml;ber nur eine Periodendauer&nbsp; T0.&nbsp; Dann gilt:
 
 
:φy(τ)=1T0T00y(t)y(t+τ)dt=x20T0T00cos(2πf0t)cos(2πf0(t+τ))dt.
 
:φy(τ)=1T0T00y(t)y(t+τ)dt=x20T0T00cos(2πf0t)cos(2πf0(t+τ))dt.
 
+
*Using the trigonometric relation &nbsp; cos(α)cos(β)=1/2cos(α+β)+1/2cos(αβ) &nbsp; it further follows:
*Mit der trigonometrischen Beziehung &nbsp; cos(α)cos(β)=1/2cos(α+β)+1/2cos(αβ) &nbsp; folgt daraus weiter:
 
 
:φy(τ)=x202T0T00cos(4πf0t+2πf0τ)dt + x202T0T00cos(2πf0τ)dt.
 
:φy(τ)=x202T0T00cos(4πf0t+2πf0τ)dt + x202T0T00cos(2πf0τ)dt.
 
+
*The first integral is zero&nbsp; (integration over two periods of the cosine function).&nbsp; The second integrand is independent of the integration variable&nbsp; t.&nbsp; It follows: &nbsp;  
*Das erste Integral ist Null&nbsp; (Integration &uuml;ber zwei Perioden der Cosinusfunktion).  
+
:$$\varphi_y (\tau) ={{ x}_0^2}/{\rm 2} \cdot \cos (2 \pi {f_{\rm 0} \tau}). $$  
*Der zweite Integrand ist unabh&auml;ngig von der Integrationsvariablen&nbsp; t.&nbsp; Daraus folgt: &nbsp; φy(τ)=x20/2cos(2πf0τ).  
+
*For the given time points, with&nbsp; x0=2V:
*F&uuml;r die angegebenen Zeitpunkte gilt mit&nbsp; x0=2V:
 
 
:φy(0)=2V2_,φy(0.25T0)=0_,φy(1.5T0)=2V2_.
 
:φy(0)=2V2_,φy(0.25T0)=0_,φy(1.5T0)=2V2_.
  
  
  
'''(3)'''&nbsp; Richtig sind <u>beiden ersten Lösungsvorschläge</u>:
+
'''(3)'''&nbsp; Correct are&nbsp; <u>both first proposed solutions</u>:
*Der Mittelwert&nbsp; my&nbsp; kann aus dem Grenzwert der AKF f&uuml;r&nbsp; τ&nbsp; ermittelt werden, wenn man die periodischen Anteile ausschlie&szlig;t.&nbsp; Daraus folgt&nbsp; my=0.
+
*The mean&nbsp; my&nbsp; can be obtained from the limit of the ACF for&nbsp; τ&nbsp; if one excludes the periodic parts.&nbsp; It follows&nbsp; my=0.
*Die Varianz (Leistung) ist gleich dem AKF&ndash;Wert an der Stelle&nbsp; τ=0, also&nbsp; 2V2.&nbsp; Der Effektivwert ist die Quadratwurzel daraus: &nbsp; σy1.414V.
+
*The variance&nbsp; (power)&nbsp; is equal to the ACF value at the point&nbsp; τ=0 &nbsp; &rArr; &nbsp; $\sigma_y^2 =2\hspace{0.05cm}\rm V^2$.&nbsp; The rms value is the square root of it: &nbsp; σy1.414V.
*Die Periodendauer eines periodischen Zufallsprozesses bleibt in der AKF erhalten, das hei&szlig;t, auch die Periodendauer der AKF betr&auml;gt&nbsp; T0.  
+
*The period of a periodic random process is preserved in the ACF,&nbsp; that is,&nbsp; the period of the ACF is also&nbsp; T0.  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Theory of Stochastic Signals: Exercises|^4.4 Autokorrelationsfunktion (AKF)^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^4.4 Auto-Correlation Function^]]

Latest revision as of 18:00, 19 March 2022

"Cyclo–ergodicity property"

We consider two different random processes whose pattern functions are harmonic oscillations,  each with the same frequency  f0=1/T0,  where  T0  denotes the period duration.

  • In the random process  {xi(t)}  shown above,  the stochastic component is the amplitude, where the random parameter  Ci  can take all values between  1V  and  2V  with equal probability:
{xi(t)}={Cicos(2πf0t)}.
  • In the process  {yi(t)},  all pattern functions have the same amplitude:   x0=2V.  Here the phase  φi varies, which averaged over all pattern functions is uniformly distributed between  0  and  2π
{yi(t)}={x0cos(2πf0tφi)}.

The properties  "cyclo-stationary"  and  "cyclo-ergodic"  state,

  • that although the processes cannot be described as stationary and ergodic in the strict sense,
  • but all statistical characteristics are the same for multiples of the period duration  T0  in each case.


In these cases,  most of the calculation rules,  which actually apply only to ergodic processes,  are also applicable.


Hint:  This exercise belongs to the chapter  Auto-Correlation Function.


Questions

1

Which of the following statements are true?

The process  {xi(t)}  is stationary.
The process  {xi(t)}  is ergodic.
The process  {yi(t)}  is stationary.
The process  {yi(t)}  is ergodic.

2

Calculate the auto-correlation function  φy(τ)  for different  τ  values.

φy(τ=0) = 

 V2
φy(τ=0.25T0) = 

 V2
φy(τ=1.50T0) = 

 V2

3

Which of the following statements are true regarding  {yi(t)} ?

All pattern signals are free of DC signals.
All pattern signals have the rms value  2V.
The ACF has twice the period  (2T0)  as the pattern signals  (T0).


Solution

(1)  Correct are the  proposed solutions 3 and 4:

  • At time  t=0  (and all multiples of the period  T0)  each pattern signal  xi(t)  has a value between  1V  and  2V.  The mean value is  1.5V.
  • In contrast,  for  t=T0/4  the signal value of the entire ensemble is identically zero.  That is:
      Even the linear mean does not satisfy the stationarity condition:  The process  {xi(t)}  is not stationary and therefore cannot be ergodic.
  • In contrast,  for the process  {yi(t)}  the same moments are expected at all times due to the uniformly distributed phase   ⇒   the process is stationary.
  • Since the phase relations are lost in the ACF calculation,  each individual pattern function is representative of the entire process.   Therefore,  ergodicity can be hypothetically assumed here.
  • At the end of the exercise,  check whether this assumption is justified.


(2)  Due to ergodicity,  any pattern function can be used for ACF calculation.  We arbitrarily use here the phase  φi=0.

  • Because of the periodicity,  it is sufficient to report only one period  T0.  Then holds:
φy(τ)=1T0T00y(t)y(t+τ)dt=x20T0T00cos(2πf0t)cos(2πf0(t+τ))dt.
  • Using the trigonometric relation   cos(α)cos(β)=1/2cos(α+β)+1/2cos(αβ)   it further follows:
φy(τ)=x202T0T00cos(4πf0t+2πf0τ)dt + x202T0T00cos(2πf0τ)dt.
  • The first integral is zero  (integration over two periods of the cosine function).  The second integrand is independent of the integration variable  t.  It follows:  
φy(τ)=x20/2cos(2πf0τ).
  • For the given time points, with  x0=2V:
φy(0)=2V2_,φy(0.25T0)=0_,φy(1.5T0)=2V2_.


(3)  Correct are  both first proposed solutions:

  • The mean  my  can be obtained from the limit of the ACF for  τ  if one excludes the periodic parts.  It follows  my=0.
  • The variance  (power)  is equal to the ACF value at the point  τ=0   ⇒   σ2y=2V2.  The rms value is the square root of it:   σy1.414V.
  • The period of a periodic random process is preserved in the ACF,  that is,  the period of the ACF is also  T0.