Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.12: Trellis Diagram for Two Precursors"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Digitalsignalübertragung" to "Category:Digital Signal Transmission: Exercises")
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Viterbi–Empfänger}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Viterbi_Receiver}}
  
[[File:P_ID1478__Dig_A_3_12.png|right|frame|Trellisdiagramm für zwei Vorläufer]]
+
[[File:P_ID1478__Dig_A_3_12.png|right|frame|Trellis diagram for two precursors]]
Wir gehen von den Grundimpulswerten  g0,  g_{\rm –1}  und  g_{\rm –2}  aus:
+
We assume the basic pulse values   $g_0\ne 0, g_{\rm –1}\ne 0$  and  $g_{\rm –2}\ne 0$:   
*Das bedeutet, dass die Entscheidung über das Symbol  aν  auch durch die nachfolgenden Koeffizienten  aν+1  und  aν+2  beeinflusst wird.
+
*This means that the decision on the symbol  aν  is also influenced by the subsequent coefficients  aν+1  and  aν+2. 
*Damit sind für jeden Zeitpunkt  ν  genau acht Fehlergrößen  εν  zu bestimmen, aus denen die minimalen Gesamtfehlergrößen  Γν(00),  Γν(01),  Γν(10)  und  Γν(11)  berechnet werden können.  
+
*Hierbei liefert beispielsweise  Γν(01)  Information über das Symbol  aν  unter der Annahme, dass  aν+1=0  und  aν+2=1  sein werden.  
+
*Thus,  for each time point   ν,  exactly eight  '''metrics'''   εν  have to be determined, from which the  '''minimum accumulated metrics'''   Γν(00),  Γν(01),  Γν(10)  and  Γν(11)  can be calculated.
*Die minimale Gesamtfehlergröße  Γν(01)  ist hierbei der kleinere Wert aus dem Vergleich von
+
 
:$$\big[{\it \Gamma}_{\nu-1}(00) + \varepsilon_{\nu}(001)\big] \hspace{0.15cm}{\rm und}
+
*For example,   Γν(01)  provides information about the symbol  aν  under the assumption that  aν+1=0  and  aν+2=1  will be.
 +
 
 +
*Here, the minimum accumulated metric   Γν(01)  is the smaller value obtained from the comparison of
 +
:$$\big[{\it \Gamma}_{\nu-1}(00) + \varepsilon_{\nu}(001)\big] \hspace{0.15cm}{\rm and}
 
  \hspace{0.15cm}\big[{\it \Gamma}_{\nu-1}(10) + \varepsilon_{\nu}(101)\big].$$
 
  \hspace{0.15cm}\big[{\it \Gamma}_{\nu-1}(10) + \varepsilon_{\nu}(101)\big].$$
  
Zur Berechnung der minimalen Gesamtfehlergröße  Γ2(10)  in den Teilaufgaben '''(1)''' und '''(2)''' soll von folgenden Zahlenwerten ausgegangen werden:
+
To calculate the minimum accumulated metric   Γ2(10)  in subtasks '''(1)''' and '''(2)''',  assume the following numerical values:
* unipolare Amplitudenkoeffizienten:  a_{\rm \nu} ∈ \{0, 1\},
+
* unipolar amplitude coefficients:  a_{\rm \nu} ∈ \{0, 1\},
* Grundimpulswerte  g0=0.5,  g_{\rm –1} = 0.3,  g_{\rm –2} = 0.2,
+
 
* anliegender Detektionsabtastwert:  d2=0.2,  
+
* basic pulse values   g0=0.5,  g_{\rm –1} = 0.3,  g_{\rm –2} = 0.2,
* Minimale Gesamtfehlergrößen zum Zeitpunkt  ν=1:
+
 
 +
* applied noisy detection sample:  d2=0.2,
 +
 +
* minimum accumulated metric at time  ν=1:
 
:$${\it \Gamma}_{1}(00) = 0.0,\hspace{0.2cm}{\it \Gamma}_{1}(01) = 0.2, \hspace{0.2cm} {\it \Gamma}_{1}(10) = 0.6,\hspace{0.2cm}{\it \Gamma}_{1}(11) =
 
:$${\it \Gamma}_{1}(00) = 0.0,\hspace{0.2cm}{\it \Gamma}_{1}(01) = 0.2, \hspace{0.2cm} {\it \Gamma}_{1}(10) = 0.6,\hspace{0.2cm}{\it \Gamma}_{1}(11) =
 
  1.2
 
  1.2
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In der Grafik ist das vereinfachte Trellisdiagramm für die Zeitpunkte  ν=1  bis  ν=8  dargestellt.
+
The graph shows the simplified trellis diagram for time points   ν=1  to   ν=8.   
*Blaue Zweige kommen entweder von  {\it \Gamma}_{\rm \nu –1}(00)  oder von  {\it \Gamma}_{\rm \nu –1}(01)  und kennzeichnen eine hypothetische „0”.  
+
*Blue branches come from either   {\it \Gamma}_{\rm \nu –1}(00)   or   {\it \Gamma}_{\rm \nu –1}(01)   and denote a hypothetical  "0".
*Dagegen weisen alle roten Zweige – ausgehend von den Zuständen  {\it \Gamma}_{\rm \nu –1}(10)  bzw.  {\it \Gamma}_{\rm \nu –1}(11)  – auf das Symbol „1” hin.
+
 
+
*In contrast,  all red branches – starting from the   {\it \Gamma}_{\rm \nu –1}(10)  or   {\it \Gamma}_{\rm \nu –1}(11)  states – indicate the symbol  "1".
  
  
  
 +
Notes:
 +
*The exercise belongs to the chapter    [[Digital_Signal_Transmission/Viterbi_Receiver|"Viterbi Receiver"]].
 +
 +
* All quantities here are to be understood normalized.
  
''Hinweise:''
+
* Also, assume unipolar and equal probability amplitude coefficients:   Pr(aν=0)=Pr(aν=1)=0.5.
*Die Aufgabe gehört zum  Kapitel   [[Digitalsignal%C3%BCbertragung/Viterbi%E2%80%93Empf%C3%A4nger|Viterbi–Empfänger]].
 
 
* Alle Größen sind hier normiert zu verstehen.
 
*Gehen Sie zudem von unipolaren und gleichwahrscheinlichen Amplitudenkoeffizienten aus:   Pr(aν=0)=Pr(aν=1)=0.5.
 
* Die Thematik wird auch im interaktiven Applet   [[Applets:Viterbi|Eigenschaften des Viterbi–Empfängers]]  behandelt.
 
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die folgenden Fehlergrößen:
+
{Calculate the following metrics:
 
|type="{}"}
 
|type="{}"}
 
ε2(010) =  { 0.01 3% }
 
ε2(010) =  { 0.01 3% }
Line 46: Line 51:
 
ε2(111) =  { 0.64 3% }
 
ε2(111) =  { 0.64 3% }
  
{Berechnen Sie die folgenden minimalen Gesamtfehlergrößen:
+
{Calculate the following minimum accumulated metrics:
 
|type="{}"}
 
|type="{}"}
 
Γ2(10) =  { 0.21 3% }
 
Γ2(10) =  { 0.21 3% }
 
Γ2(11) =  { 0.29 3% }
 
Γ2(11) =  { 0.29 3% }
  
{Wie lauten die vom Viterbi&ndash;Empfänger ausgegebene Symbole?
+
{What are the symbols output by the Viterbi receiver?
 
|type="[]"}
 
|type="[]"}
+ Die ersten sieben Symbole sind &nbsp;1011010.
+
+ The first seven symbols are &nbsp; "1011010".
- Die ersten sieben Symbole sind &nbsp;1101101.
+
- The first seven symbols are &nbsp; "1101101".
- Das letzte Symbol &nbsp;a8=1&nbsp; ist sicher.
+
- The last symbol &nbsp;a8=1&nbsp; is safe.
+ Über das Symbol &nbsp;a8&nbsp; ist noch keine endgültige Aussage möglich.
+
+ No definite statement can be made about the symbol &nbsp;a8.&nbsp;  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die erste Fehlergröße wird wie folgt berechnet:
+
'''(1)'''&nbsp; The first metric is calculated as follows:
 
:$$\varepsilon_{2}(010)  = [d_0 - 0 \cdot g_0 - 1 \cdot g_{-1}- 0 \cdot g_{-2}]^2= [0.2 -0.3]^2\hspace{0.15cm}\underline {=0.01}
 
:$$\varepsilon_{2}(010)  = [d_0 - 0 \cdot g_0 - 1 \cdot g_{-1}- 0 \cdot g_{-2}]^2= [0.2 -0.3]^2\hspace{0.15cm}\underline {=0.01}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Entsprechend gilt für die weiteren Fehlergrößen:
+
Correspondingly,&nbsp; for the other metrics:
 
:ε2(011) = [0.20.30.2]2=0.09_,
 
:ε2(011) = [0.20.30.2]2=0.09_,
 
:ε2(110) = [0.20.50.3]2=0.36_,
 
:ε2(110) = [0.20.50.3]2=0.36_,
Line 72: Line 77:
  
  
'''(2)'''&nbsp; Die Aufgabe ist, jeweils den minimalen Wert von zwei Vergleichswerten zu finden:
+
'''(2)'''&nbsp; The task is to find the minimum value of each of two comparison values:
 
:$${\it \Gamma}_{2}(10) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(01) + \varepsilon_{2}(010),
 
:$${\it \Gamma}_{2}(10) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(01) + \varepsilon_{2}(010),
 
  \hspace{0.2cm}{\it \Gamma}_{1}(11) + \varepsilon_{2}(110)\right] =  {\rm Min}\left[0.2+ 0.01, 1.2 + 0.36\right]\hspace{0.15cm}\underline {= 0.21}
 
  \hspace{0.2cm}{\it \Gamma}_{1}(11) + \varepsilon_{2}(110)\right] =  {\rm Min}\left[0.2+ 0.01, 1.2 + 0.36\right]\hspace{0.15cm}\underline {= 0.21}
Line 81: Line 86:
  
  
'''(3)'''&nbsp; Richtig sind der <u>erste und der letzte Lösungsvorschlag</u>:  
+
'''(3)'''&nbsp; The&nbsp; <u>first and last solutions</u>&nbsp; are correct:  
*Die Folge 1011010 erkennt man aus dem durchgehenden Pfad:  &nbsp; &nbsp; &bdquo;Rot &ndash; Blau &ndash; Rot &ndash; Rot &ndash; Blau &ndash; Rot &ndash; Blau&rdquo;.
+
*The sequence&nbsp; "1011010"&nbsp; can be recognized from the continuous path: &nbsp; &nbsp; "red &ndash; blue &ndash; red &ndash; red &ndash; blue &ndash; red &ndash; blue".
*Dagegen kann über das Symbol a8 zum Zeitpunkt ν=8 noch keine endgültige Aussage gemacht werden:  
+
 
*Nur unter der Hypothese a9=1 <u>und</u> a10=1 würde man sich für a8=0 entscheiden, bei anderen Hypothesen für a8=1.
+
*On the other hand,&nbsp; no final statement can be made about the symbol&nbsp; a8&nbsp; at time&nbsp; ν=8:
 +
 
 +
*Only under the hypothesis&nbsp; a9=1&nbsp; <u>and</u>&nbsp; a10=1&nbsp; one would decide for&nbsp; a8=0,&nbsp; under other hypotheses for&nbsp; a8=1.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Digital Signal Transmission: Exercises|^3.8 Viterbi-Empfänger^]]
+
[[Category:Digital Signal Transmission: Exercises|^3.8 Viterbi Receiver^]]

Latest revision as of 17:34, 4 July 2022

Trellis diagram for two precursors

We assume the basic pulse values   g00g_{\rm –1}\ne 0  and  g_{\rm –2}\ne 0

  • This means that the decision on the symbol  a_{\rm \nu}  is also influenced by the subsequent coefficients  a_{\rm \nu +1}  and  a_{\rm \nu +2}
  • Thus,  for each time point   \nu,  exactly eight  metrics   \varepsilon_{\rm \nu}  have to be determined, from which the  minimum accumulated metrics   {\it \Gamma}_{\rm \nu}(00){\it \Gamma}_{\rm \nu}(01){\it \Gamma}_{\rm \nu}(10)  and  {\it \Gamma}_{\rm \nu}(11)  can be calculated.
  • For example,   {\it \Gamma}_{\rm \nu}(01)  provides information about the symbol  a_{\rm \nu}  under the assumption that  a_{\rm \nu +1} = 0  and  a_{\rm \nu +2} = 1  will be.
  • Here, the minimum accumulated metric   {\it \Gamma}_{\rm \nu}(01)  is the smaller value obtained from the comparison of
\big[{\it \Gamma}_{\nu-1}(00) + \varepsilon_{\nu}(001)\big] \hspace{0.15cm}{\rm and} \hspace{0.15cm}\big[{\it \Gamma}_{\nu-1}(10) + \varepsilon_{\nu}(101)\big].

To calculate the minimum accumulated metric   {\it \Gamma}_2(10)  in subtasks (1) and (2),  assume the following numerical values:

  • unipolar amplitude coefficients:  a_{\rm \nu} ∈ \{0, 1\},
  • basic pulse values   g_0 = 0.5g_{\rm –1} = 0.3g_{\rm –2} = 0.2,
  • applied noisy detection sample:  d_2 = 0.2,
  • minimum accumulated metric at time  \nu = 1:
{\it \Gamma}_{1}(00) = 0.0,\hspace{0.2cm}{\it \Gamma}_{1}(01) = 0.2, \hspace{0.2cm} {\it \Gamma}_{1}(10) = 0.6,\hspace{0.2cm}{\it \Gamma}_{1}(11) = 1.2 \hspace{0.05cm}.

The graph shows the simplified trellis diagram for time points   \nu = 1  to   \nu = 8

  • Blue branches come from either   {\it \Gamma}_{\rm \nu –1}(00)   or   {\it \Gamma}_{\rm \nu –1}(01)   and denote a hypothetical  "0".
  • In contrast,  all red branches – starting from the   {\it \Gamma}_{\rm \nu –1}(10)  or   {\it \Gamma}_{\rm \nu –1}(11)  states – indicate the symbol  "1".


Notes:

  • All quantities here are to be understood normalized.
  • Also, assume unipolar and equal probability amplitude coefficients:   {\rm Pr} (a_\nu = 0) = {\rm Pr} (a_\nu = 1)= 0.5.


Questions

1

Calculate the following metrics:

\varepsilon_2(010) \ = \

\varepsilon_2(011) \ = \

\varepsilon_2(110) \ = \

\varepsilon_2(111) \ = \

2

Calculate the following minimum accumulated metrics:

{\it \Gamma}_2(10) \ = \

{\it \Gamma}_2(11) \ = \

3

What are the symbols output by the Viterbi receiver?

The first seven symbols are   "1011010".
The first seven symbols are   "1101101".
The last symbol  a_8 = 1  is safe.
No definite statement can be made about the symbol  a_8


Solution

(1)  The first metric is calculated as follows:

\varepsilon_{2}(010) = [d_0 - 0 \cdot g_0 - 1 \cdot g_{-1}- 0 \cdot g_{-2}]^2= [0.2 -0.3]^2\hspace{0.15cm}\underline {=0.01} \hspace{0.05cm}.

Correspondingly,  for the other metrics:

\varepsilon_{2}(011) \ = \ [0.2 -0.3- 0.2]^2\hspace{0.15cm}\underline {=0.09}\hspace{0.05cm},
\varepsilon_{2}(110) \ = \ [0.2 -0.5- 0.3]^2\hspace{0.15cm}\underline {=0.36}\hspace{0.05cm},
\varepsilon_{2}(111) \ = \ [0.2 -0.5- 0.3-0.2]^2\hspace{0.15cm}\underline {=0.64} \hspace{0.05cm}.


(2)  The task is to find the minimum value of each of two comparison values:

{\it \Gamma}_{2}(10) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(01) + \varepsilon_{2}(010), \hspace{0.2cm}{\it \Gamma}_{1}(11) + \varepsilon_{2}(110)\right] = {\rm Min}\left[0.2+ 0.01, 1.2 + 0.36\right]\hspace{0.15cm}\underline {= 0.21} \hspace{0.05cm},
{\it \Gamma}_{2}(11) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(01) + \varepsilon_{2}(011), \hspace{0.2cm}{\it \Gamma}_{1}(11) + \varepsilon_{2}(111)\right] = {\rm Min}\left[0.2+ 0.09, 1.2 + 0.64\right]\hspace{0.15cm}\underline {= 0.29} \hspace{0.05cm}.


(3)  The  first and last solutions  are correct:

  • The sequence  "1011010"  can be recognized from the continuous path:     "red – blue – red – red – blue – red – blue".
  • On the other hand,  no final statement can be made about the symbol  a_8  at time  \nu = 8:
  • Only under the hypothesis  a_9 = 1  and  a_{\rm 10} = 1  one would decide for  a_8 = 0,  under other hypotheses for  a_8 = 1.