Difference between revisions of "Aufgaben:Exercise 3.1Z: Spectrum of the Triangular Pulse"

From LNTwww
 
(2 intermediate revisions by the same user not shown)
Line 4: Line 4:
  
 
[[File:P_ID493__Sig_Z_3_1_neu.png|right|frame|Triangular pulse]]
 
[[File:P_ID493__Sig_Z_3_1_neu.png|right|frame|Triangular pulse]]
A triangular pulses  ${x(t)}$, is considered, which is described in the range  $–T ≤ t ≤ T$  by the following equation:
+
A triangular pulse  ${x(t)}$  is considered, which is described in the range  $–T ≤ t ≤ T$  by the following equation:
 
:$$x(t) = A \cdot \left( {1 - {\left| \hspace{0.05cm}t \hspace{0.05cm}\right|}/{T}} \right).$$
 
:$$x(t) = A \cdot \left( {1 - {\left| \hspace{0.05cm}t \hspace{0.05cm}\right|}/{T}} \right).$$
Let the pulse amplitude be  $A = 1\, \text{V}$, the time parameter  $T = 1 \text{ ms}$. For all times  $|\hspace{0.05cm} t \hspace{0.05cm} | > T$  ist  ${x(t)} = 0$.
+
Let the pulse amplitude be  $A = 1\, \text{V}$  and the time parameter  $T = 1 \text{ ms}$.  For all times  $|\hspace{0.05cm} t \hspace{0.05cm} | > T$  ⇒   ${x(t)} = 0$.
  
 
To calculate the spectral function  ${X(f)}$  you can exploit the following properties:
 
To calculate the spectral function  ${X(f)}$  you can exploit the following properties:
  
 
* The time function is even and thus the spectral function is real:
 
* The time function is even and thus the spectral function is real:
:$$X\left( f \right) = \int_{ - \infty }^{ + \infty } {x(t)}  \cdot {\rm e}^{{\rm j}2\pi ft} {\rm d}t = 2 \cdot \int_0^{  \infty } {x(t)}  \cdot \cos \left( {2\pi ft} \right){\rm d}t.$$
+
:$$X\left( f \right) = \int_{ - \infty }^{ + \infty } {x(t)}  \cdot {\rm e}^{{\rm j}2\pi ft} {\rm d}t = 2 \cdot \int_0^{  \infty } {x(t)}  \cdot \cos \left( {2\pi ft} \right)\ {\rm d}t.$$
* For  $|\hspace{0.05cm} t \hspace{0.05cm} | > T$, ${x(t)}$  has no components:
+
* For  $|\hspace{0.05cm} t \hspace{0.05cm} | > T$   ⇒   ${x(t)}$  has no components:
  
:$$X\left( f \right) = 2 \cdot \int_0^T {x(t)}  \cdot \cos \left( {2\pi ft} \right){\rm d}t.$$
+
:$$X\left( f \right) = 2 \cdot \int_0^T {x(t)}  \cdot \cos \left( {2\pi ft} \right)\ {\rm d}t.$$
  
  
Line 24: Line 24:
  
 
''Hints:''  
 
''Hints:''  
*This exercise belongs to the chapter  [[Signal_Representation/Fourier_Transform_and_Its_Inverse|Fourier Transform and Its Inverse]].
+
*This exercise belongs to the chapter  [[Signal_Representation/Fourier_Transform_and_Its_Inverse|Fourier Transform and its Inverse]].
*Further information on this topic can be found in the learning video  [[Kontinuierliche_und_diskrete_Spektren_(Lernvideo)|Continuous and discrete spectra]].
+
*Further information on this topic can be found in the (German language) learning video  [[Kontinuierliche_und_diskrete_Spektren_(Lernvideo)|Kontinuierliche und diskrete Spektren]]   ⇒   "Continuous and discrete spectra".
 
   
 
   
 
*You can use the following formulas to solve this task:
 
*You can use the following formulas to solve this task:
:$$\int {t \cdot \cos \left( {\omega _0 t} \right)\ {\rm d}t = \frac{{\cos \left( {\omega _0 t} \right)}}{\omega _0 ^2 }}  + \frac{{t \cdot \sin \left( {\omega _0 t} \right)}}{\omega _0 }, \hspace{0.5cm} \sin ^2 \left( \alpha  \right) = {1}/{2} \cdot \left( {1 - \cos \left( {2\alpha } \right)} \right).$$
+
:$$\sin ^2 \left( \alpha  \right) = {1}/{2} \cdot \left( {1 - \cos \left( {2\alpha } \right)} \right),$$
 
+
:$$\int {t \cdot \cos \left( {\omega _0 t} \right)\ {\rm d}t = \frac{{\cos \left( {\omega _0 t} \right)}}{\omega _0 ^2 }}  + \frac{{t \cdot \sin \left( {\omega _0 t} \right)}}{\omega _0 }.$$
  
 
===Questions===
 
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Calculate the spectral function&nbsp; ${X(f)}$. What spectral value results at the frequency &nbsp; $f = 500 \,\text{Hz}$?
+
{Calculate the spectral function&nbsp; ${X(f)}$.&nbsp; What spectral value results at the frequency $f = 500 \,\text{Hz}$?
 
|type="{}"}
 
|type="{}"}
 
$X(f = 500 \,\text{Hz}) \ = \ $ { 0.405 3% } &nbsp;$\text{mV/Hz}$
 
$X(f = 500 \,\text{Hz}) \ = \ $ { 0.405 3% } &nbsp;$\text{mV/Hz}$
  
  
{Give the spectral function&nbsp; ${X(f)}$&nbsp; using the slit function&nbsp; $\text{si}(x) = \sin(x)/x$&nbsp;. What value results for&nbsp; $f = 0$?
+
{Give the spectral function&nbsp; ${X(f)}$&nbsp; using the&nbsp; "slitting function"&nbsp; $\text{si}(x) = \sin(x)/x$.&nbsp; What value results for&nbsp; $f = 0$?
 
|type="{}"}
 
|type="{}"}
 
$X(f = 0) \ = \ $ { 1 3% } &nbsp;$\text{mV/Hz}$
 
$X(f = 0) \ = \ $ { 1 3% } &nbsp;$\text{mV/Hz}$
  
  
{At what frequency&nbsp; $f = f_0$&nbsp; does the spectrum&nbsp; ${X(f)}$&nbsp; have the first zero?
+
{At what frequency $f = f_0$&nbsp; does the spectrum&nbsp; ${X(f)}$&nbsp; have the first zero?
 
|type="{}"}
 
|type="{}"}
 
$f_0 \ = \ $ { 1 3% } &nbsp;$\text{kHz}$
 
$f_0 \ = \ $ { 1 3% } &nbsp;$\text{kHz}$
Line 58: Line 58:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Taking advantage of the above symmetry properties, the abbreviation&nbsp; $\omega = 2\pi f$ holds:
+
'''(1)'''&nbsp; We use the abbreviation&nbsp; $\omega = 2\pi f$.&nbsp; Then taking advantage of the above symmetry properties:
 
:$$X(f) = 2A \cdot \int_0^T {\left( {1 -{t}/{T}} \right)}  \cdot \cos \left( {\omega t} \right)\hspace{0.1cm}{\rm d}t.$$
 
:$$X(f) = 2A \cdot \int_0^T {\left( {1 -{t}/{T}} \right)}  \cdot \cos \left( {\omega t} \right)\hspace{0.1cm}{\rm d}t.$$
 
*This integral is composed of two parts:
 
*This integral is composed of two parts:
Line 67: Line 67:
 
*Adding the two parts, we get:
 
*Adding the two parts, we get:
 
:$$X(f) = \frac{2A}{\omega ^2  \cdot T}\cdot \big[ {1 - \cos \left( {\omega T} \right)} \big] = \frac{A}{2\pi ^2 f^2 T} \cdot \big[ {1 - \cos \left( {2\pi fT} \right)} \big].$$
 
:$$X(f) = \frac{2A}{\omega ^2  \cdot T}\cdot \big[ {1 - \cos \left( {\omega T} \right)} \big] = \frac{A}{2\pi ^2 f^2 T} \cdot \big[ {1 - \cos \left( {2\pi fT} \right)} \big].$$
*At frequency&nbsp; $f = 1/(2T) = 500 \,\text{Hz}$&nbsp; the argument of the cosine function is equal to&nbsp; $\pi$&nbsp; and the cosine function itself is equal to&nbsp; $-1$. It follows:
+
*At frequency&nbsp; $f = 1/(2T) = 500 \,\text{Hz}$&nbsp; the argument of the cosine function is equal to&nbsp; $\pi$&nbsp; and the cosine function itself is equal to&nbsp; $-1$.&nbsp; It follows:
 
:$$X( {f ={1}/{2T} = 500\;{\rm Hz}} ) = \frac{4}{\pi^2} \cdot A \cdot T  = \frac{4}{\pi^2} \cdot 1\;{\rm V} \cdot 10^{ - 3}\;{\rm s}\hspace{0.15 cm}\underline{= 0.405 \,{\rm mV/Hz}}.$$
 
:$$X( {f ={1}/{2T} = 500\;{\rm Hz}} ) = \frac{4}{\pi^2} \cdot A \cdot T  = \frac{4}{\pi^2} \cdot 1\;{\rm V} \cdot 10^{ - 3}\;{\rm s}\hspace{0.15 cm}\underline{= 0.405 \,{\rm mV/Hz}}.$$
  
Line 73: Line 73:
  
 
'''(2)'''&nbsp; With the trigonometric transformation&nbsp; ${1}/{2} \cdot (1 - \cos (2 \alpha)) = \sin^2(\alpha)$&nbsp; one obtains for the spectral function:
 
'''(2)'''&nbsp; With the trigonometric transformation&nbsp; ${1}/{2} \cdot (1 - \cos (2 \alpha)) = \sin^2(\alpha)$&nbsp; one obtains for the spectral function:
[[File:P_ID497__Sig_Z_3_1_d_neu.png|right|frame|$\rm si$-squared spectrum]]
+
[[File:P_ID497__Sig_Z_3_1_d_neu.png|right|frame|Normalized spectrum&nbsp; $X(f)$]]
 
:$$X(f) = A \cdot T \cdot \frac{\sin^2(\pi f T)}{\pi^2 \cdot {f^2  \cdot T^2}} = A \cdot T \cdot {{{\rm si}^2(\pi f T)}}.$$
 
:$$X(f) = A \cdot T \cdot \frac{\sin^2(\pi f T)}{\pi^2 \cdot {f^2  \cdot T^2}} = A \cdot T \cdot {{{\rm si}^2(\pi f T)}}.$$
 
*At the frequency&nbsp; $f = 0$&nbsp; the&nbsp; $\rm si$-function is equal to&nbsp; $1$. From this follows:
 
*At the frequency&nbsp; $f = 0$&nbsp; the&nbsp; $\rm si$-function is equal to&nbsp; $1$. From this follows:
Line 79: Line 79:
  
  
 
+
'''(3)'''&nbsp; The first zero occurs when the argument of the &nbsp; $\rm si$-function is equal to&nbsp; $\pi$.
'''(3)'''&nbsp; The first zero occurs when the argument of the si function is equal to&nbsp; $\pi$&nbsp;.
+
*From this follows:&nbsp; $f_0 \cdot T = 1$&nbsp; bzw.&nbsp; $f_0 = 1/T \hspace{0.15 cm}\underline{= 1 \ \text{kHz}}$.
*From this follows&nbsp; $f_0 \cdot T = 1$&nbsp; bzw.&nbsp; $f_0 = 1/T \hspace{0.15 cm}\underline{= 1 \ \text{kHz}}$.
 
  
  
  
 
'''(4)'''&nbsp; The <u>first statement</u> is correct:
 
'''(4)'''&nbsp; The <u>first statement</u> is correct:
*The spectrum&nbsp; ${X(f)}$&nbsp; is equal to&nbsp; ${\rm si}^2(n \cdot \pi) = 0$ at multiples of&nbsp; $f_0$&nbsp; $(f = n \cdot f_0)$&nbsp;.  
+
*The spectrum&nbsp; ${X(f)}$&nbsp; is equal to&nbsp; ${\rm si}^2(n \cdot \pi) = 0$&nbsp; at multiples of&nbsp; $f_0$&nbsp; $(f = n \cdot f_0)$.  
*The second statement is false:&nbsp; At no frequency&nbsp; $f$&nbsp; is&nbsp; ${X(f)} < 0$&nbsp; (see sketch).
+
*The second statement is false:&nbsp; At no frequency $f$&nbsp; holds:&nbsp; ${X(f)} < 0$&nbsp; (see sketch).
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 14:39, 21 April 2021

Triangular pulse

A triangular pulse  ${x(t)}$  is considered, which is described in the range  $–T ≤ t ≤ T$  by the following equation:

$$x(t) = A \cdot \left( {1 - {\left| \hspace{0.05cm}t \hspace{0.05cm}\right|}/{T}} \right).$$

Let the pulse amplitude be  $A = 1\, \text{V}$  and the time parameter  $T = 1 \text{ ms}$.  For all times  $|\hspace{0.05cm} t \hspace{0.05cm} | > T$  ⇒   ${x(t)} = 0$.

To calculate the spectral function  ${X(f)}$  you can exploit the following properties:

  • The time function is even and thus the spectral function is real:
$$X\left( f \right) = \int_{ - \infty }^{ + \infty } {x(t)} \cdot {\rm e}^{{\rm j}2\pi ft} {\rm d}t = 2 \cdot \int_0^{ \infty } {x(t)} \cdot \cos \left( {2\pi ft} \right)\ {\rm d}t.$$
  • For  $|\hspace{0.05cm} t \hspace{0.05cm} | > T$   ⇒   ${x(t)}$  has no components:
$$X\left( f \right) = 2 \cdot \int_0^T {x(t)} \cdot \cos \left( {2\pi ft} \right)\ {\rm d}t.$$





Hints:

  • You can use the following formulas to solve this task:
$$\sin ^2 \left( \alpha \right) = {1}/{2} \cdot \left( {1 - \cos \left( {2\alpha } \right)} \right),$$
$$\int {t \cdot \cos \left( {\omega _0 t} \right)\ {\rm d}t = \frac{{\cos \left( {\omega _0 t} \right)}}{\omega _0 ^2 }} + \frac{{t \cdot \sin \left( {\omega _0 t} \right)}}{\omega _0 }.$$

Questions

1

Calculate the spectral function  ${X(f)}$.  What spectral value results at the frequency $f = 500 \,\text{Hz}$?

$X(f = 500 \,\text{Hz}) \ = \ $

 $\text{mV/Hz}$

2

Give the spectral function  ${X(f)}$  using the  "slitting function"  $\text{si}(x) = \sin(x)/x$.  What value results for  $f = 0$?

$X(f = 0) \ = \ $

 $\text{mV/Hz}$

3

At what frequency $f = f_0$  does the spectrum  ${X(f)}$  have the first zero?

$f_0 \ = \ $

 $\text{kHz}$

4

Which of the two statements is true?

At all multiples of  $f_0$  the spectrum has zeros.
At the frequency  $f = 1.5 \cdot f_0$  the spectral function is negative.


Solution

(1)  We use the abbreviation  $\omega = 2\pi f$.  Then taking advantage of the above symmetry properties:

$$X(f) = 2A \cdot \int_0^T {\left( {1 -{t}/{T}} \right)} \cdot \cos \left( {\omega t} \right)\hspace{0.1cm}{\rm d}t.$$
  • This integral is composed of two parts:
$$X_1 (f) = 2A \cdot \int_0^T {\cos } \left( {\omega t} \right)\hspace{0.1cm}{\rm d}t = \frac{2A}{\omega } \cdot \sin \left( {\omega T} \right),$$
$$X_2 (f) = - \frac{2A}{T} \cdot \int_0^T {t \cdot \cos } \left( {\omega t} \right)\hspace{0.1cm}{\rm d}t = - \frac{2A}{T} \cdot \left. {\left[ {\frac{{\cos \left( {\omega t} \right)}}{\omega ^2 } + \frac{{t \cdot \sin \left( {\omega t} \right)}}{\omega }} \right]} \right|_0^T .$$
  • Taking into account the upper and lower limits, one obtains:
$$X_2 \left( f \right) = - \frac{2A}{T} \cdot \left[ {\frac{{\cos \left( {\omega T} \right)}}{\omega ^2 } - \frac{1}{\omega ^2 } + \frac{{T \cdot \sin \left( {\omega T} \right)}}{\omega }} \right].$$
  • Adding the two parts, we get:
$$X(f) = \frac{2A}{\omega ^2 \cdot T}\cdot \big[ {1 - \cos \left( {\omega T} \right)} \big] = \frac{A}{2\pi ^2 f^2 T} \cdot \big[ {1 - \cos \left( {2\pi fT} \right)} \big].$$
  • At frequency  $f = 1/(2T) = 500 \,\text{Hz}$  the argument of the cosine function is equal to  $\pi$  and the cosine function itself is equal to  $-1$.  It follows:
$$X( {f ={1}/{2T} = 500\;{\rm Hz}} ) = \frac{4}{\pi^2} \cdot A \cdot T = \frac{4}{\pi^2} \cdot 1\;{\rm V} \cdot 10^{ - 3}\;{\rm s}\hspace{0.15 cm}\underline{= 0.405 \,{\rm mV/Hz}}.$$


(2)  With the trigonometric transformation  ${1}/{2} \cdot (1 - \cos (2 \alpha)) = \sin^2(\alpha)$  one obtains for the spectral function:

Normalized spectrum  $X(f)$
$$X(f) = A \cdot T \cdot \frac{\sin^2(\pi f T)}{\pi^2 \cdot {f^2 \cdot T^2}} = A \cdot T \cdot {{{\rm si}^2(\pi f T)}}.$$
  • At the frequency  $f = 0$  the  $\rm si$-function is equal to  $1$. From this follows:
$$X( {f = 0} ) = A \cdot T \hspace{0.15 cm}\underline{= 1\,{\rm mV/Hz}}.$$


(3)  The first zero occurs when the argument of the   $\rm si$-function is equal to  $\pi$.

  • From this follows:  $f_0 \cdot T = 1$  bzw.  $f_0 = 1/T \hspace{0.15 cm}\underline{= 1 \ \text{kHz}}$.


(4)  The first statement is correct:

  • The spectrum  ${X(f)}$  is equal to  ${\rm si}^2(n \cdot \pi) = 0$  at multiples of  $f_0$  $(f = n \cdot f_0)$.
  • The second statement is false:  At no frequency $f$  holds:  ${X(f)} < 0$  (see sketch).