Difference between revisions of "Aufgaben:Exercise 3.12: Path Weighting Function"

From LNTwww
m (Text replacement - "„" to """)
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken}}
+
{{quiz-Header|Buchseite=Channel_Coding/Distance_Characteristics_and_Error_Probability_Barriers}}
  
[[File:P_ID2698__KC_A_3_12.png|right|frame|Faltungscodierer mit  $m = 1$  und Zustandsübergangsdiagramm]]
+
[[File:EN_KC_A_3_12.png|right|frame|$m = 1$  convolutional encoder and state transition diagram]]
In  [[Aufgaben:Aufgabe_3.6:_Zustandsübergangsdiagramm|Aufgabe 3.6]]  wurde das Zustandsübergangsdiagramm für den gezeichneten Faltungscodierer mit den Eigenschaften
+
In  [[Aufgaben:Exercise_3.6:_State_Transition_Diagram|$\text{Exercise 3.6}$]]  the state transition diagram for the drawn convolutional encoder with properties
 
* Rate  $R = 1/2$,
 
* Rate  $R = 1/2$,
* Gedächtnis  $m = 1$,
 
* Übertragungsfunktionsmatrix  $\mathbf{G}(D) = (1, \, D)$
 
  
 +
* memory  $m = 1$,
  
ermittelt, das rechts dargestellt ist.
+
* transfer function matrix  $\mathbf{G}(D) = (1, \, D)$
  
Aus diesem Zustandsübergangsdiagramm soll nun
 
* die Pfadgewichtsfunktion  $T(X)$, und
 
* die erweiterte Pfadgewichtsfunktion  $T_{\rm enh}(X, \, U)$
 
  
 +
was constructed  which is shown on the right.
  
bestimmt werden, wobei  $X$  und  $U$  Dummy–Variablen sind.
+
Now,  from this state transition diagram
 +
* the path weighting enumerator function  $T(X)$,  and
  
Die Vorgehensweise ist im  [[Channel_Coding/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Pfadgewichtsfunktion_aus_Zustands.C3.BCbergangsdiagramm|Theorieteil]]  zu diesem Kapitel eingehend erläutert. Schließlich ist aus  $T(X)$  noch die  [[Channel_Coding/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Freie_Distanz_vs._Minimale_Distanz|freie Distanz]]  $d_{\rm F}$  zu bestimmen.
+
* the extended path weighting enumerator function  $T_{\rm enh}(X, \, U)$
  
  
 +
can be determined, where  $X$  and  $U$  are dummy variables.  The method is explained in detail in the  [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Bounds#Path_weighting_enumerator_function_from_state_transition_diagram|"Theory part"]].
  
 +
Finally, from  $T(X)$  the  [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Bounds#Free_distance_vs._minimum_distance|"free distance"]]  $d_{\rm F}$  has to be determined.
  
  
  
  
 +
Hints:
 +
* This exercise belongs to the chapter  [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Boundss| "Distance Characteristics and Error Probability Bounds"]].
  
''Hinweise:''
+
* Consider the series expansion in the solution
* Die Aufgabe gehört zum Kapitel  [[Channel_Coding/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken| Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken]].
 
* Berücksichtigen Sie bei der Lösung die Reihenentwicklung
 
 
:$$\frac{1}{1-x} = 1 + x + x^2 +  x^3 + \hspace{0.05cm}\text{...}\hspace{0.1cm}.$$
 
:$$\frac{1}{1-x} = 1 + x + x^2 +  x^3 + \hspace{0.05cm}\text{...}\hspace{0.1cm}.$$
 
   
 
   
Line 34: Line 34:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Was ist bei der Modifizierung des Übergangsdiagramms zu beachten?
+
{What should be considered when modifying the transition diagram?
 
|type="[]"}
 
|type="[]"}
+ Der Zustand&nbsp; $S_0$&nbsp; muss in&nbsp; $S_0$&nbsp; und&nbsp; $S_0\hspace{0.01cm}'$ aufgespalten werden.
+
+ The state&nbsp; $S_0$&nbsp; must be split into&nbsp; $S_0$&nbsp; and&nbsp; $S_0\hspace{0.01cm}'$.
- Der Zustand &nbsp; $S_1$&nbsp; muss in &nbsp; $S_0$&nbsp; und $S_0\hspace{0.01cm}'$ aufgespalten werden.
+
- The state &nbsp; $S_1$&nbsp; must be split into &nbsp; $S_0$&nbsp; and&nbsp; $S_0\hspace{0.01cm}'$.
+ Der Übergang von&nbsp; $S_0$&nbsp; nach&nbsp; $S_1$&nbsp; ist mit $U\hspace{-0.05cm}X^2$ zu beschriften.
+
+ The transition from&nbsp; $S_0$&nbsp; to&nbsp; $S_1$&nbsp; must be labeled&nbsp; $U\hspace{-0.05cm}X^2$.
+ Der Übergang von&nbsp; $S_1$&nbsp; nach&nbsp; $S_1$&nbsp; ist mit $U\hspace{-0.05cm}X$ zu beschriften.
+
+ The transition from&nbsp; $S_1$&nbsp; to&nbsp; $S_1$&nbsp; is to be labeled&nbsp; $U\hspace{-0.05cm}X$.
+ Der Übergang von&nbsp; $S_1$&nbsp; nach&nbsp; $S_0\hspace{0.01cm}'$ ist mit $X$ zu beschriften.
+
+ The transition from&nbsp; $S_1$&nbsp; to&nbsp; $S_0\hspace{0.01cm}'$ shall be labeled&nbsp; $X$.
  
{Welche Gleichungen gelten für die erweiterte Pfadgewichtsfunktion&nbsp; $T_{\rm enh}(X, \, U)$?
+
{What equations apply to the extended path weighting enumerator function&nbsp; $T_{\rm enh}(X, \, U)$?
 
|type="[]"}
 
|type="[]"}
 
- $T_{\rm enh}(X, \, U) = U^2X^3$
 
- $T_{\rm enh}(X, \, U) = U^2X^3$
Line 50: Line 50:
 
+ $T_{\rm enh}(X, \, U) = UX^3 + U^2X^4 + U^3X^5 + \hspace{0.05cm}\text{...}\hspace{0.1cm}$
 
+ $T_{\rm enh}(X, \, U) = UX^3 + U^2X^4 + U^3X^5 + \hspace{0.05cm}\text{...}\hspace{0.1cm}$
  
{Welche Gleichungen gelten für die "einfache&rdquo; Pfadgewichtsfunktion&nbsp; $T(X)$?
+
{What equations apply to the&nbsp; "simple path weighting enumerator function"&nbsp; $T(X)$?
 
|type="[]"}
 
|type="[]"}
 
+ $T(X) = X^3/(1 \, &ndash;X)$,
 
+ $T(X) = X^3/(1 \, &ndash;X)$,
 
+ $T(X) = X^3 + X^4 + X^5 +\hspace{0.05cm}\text{...}\hspace{0.1cm}$
 
+ $T(X) = X^3 + X^4 + X^5 +\hspace{0.05cm}\text{...}\hspace{0.1cm}$
  
{Wie groß ist die freie Distanz des betrachteten Codes?
+
{What is the free distance of the considered code?
 
|type="{}"}
 
|type="{}"}
 
$d_{\rm F} \ = \ ${ 3 }
 
$d_{\rm F} \ = \ ${ 3 }
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[File:P_ID2703__KC_A_3_12a.png|right|frame|Zustandsübergangsdiagramm nach Modifikationen]]  
+
[[File:EN_KC_A_3_12a.png|right|frame|State transition diagram <br>after modifications]]  
'''(1)'''&nbsp; Aus der nebenstehenden Grafik erkennt man, dass die <u>Lösungsvorschläge 1, 3, 4 und 5</u> richtig sind:  
+
'''(1)'''&nbsp; From the adjacent graph,&nbsp; one can see that&nbsp; <u>proposed solutions 1, 3, 4, and 5</u>&nbsp; are correct:  
*Der Zustand $S_0$ muss in einen Startzustand $S_0$ und einen Endzustand ${S_0}'$ aufgespalten werden.  
+
*The state&nbsp; $S_0$&nbsp; must be split into a start state&nbsp; $S_0$&nbsp; and a final state&nbsp; ${S_0}'$.
*Der Grund hierfür ist, dass für die folgende Berechnung der Pfadgewichtsfunktion $T(X, \, U)$ alle Übergänge von $S_0$ nach $S_0$ ausgeschlossen werden müssen.
+
*Jedes Codesymbol $x &#8712; \{0, \, 1\}$ wird durch $X^x$ dargestellt, wobei $X$ eine Dummy&ndash;Variable hinsichtlich der Ausgangssequenz ist: $x = 0 \ \Rightarrow \ X^0 = 1, \ x = 1 \ \Rightarrow \ X^1 = X.$ Daraus folgt weiter $(00) \ \Rightarrow \ 1, \ (01) \ \Rightarrow \ X, \ (10) \ \Rightarrow \ X, \ (11) \ \Rightarrow \ X^2$.
+
*The reason for this is that for the following calculation of the path weighting enumerator function&nbsp; $T(X, \, U)$&nbsp; all transitions from&nbsp; $S_0$&nbsp; to&nbsp; $S_0$&nbsp; must be excluded.
*Bei einem blauen Übergang im ursprünglichen Diagramm &ndash; dies steht für $u_i = 1$ &ndash; ist im modifizierten Diagramm der Faktor $U$ hinzuzufügen.  
+
 
 +
*Each encoded symbol&nbsp; $x &#8712; \{0, \, 1\}$&nbsp; is represented by&nbsp; $X^x$,&nbsp; where&nbsp; $X$&nbsp; is a dummy variable with respect to the output sequence:&nbsp; $x = 0 \ \Rightarrow \ X^0 = 1, \ x = 1 \ \Rightarrow \ X^1 = X.&nbsp; $ It further follows&nbsp;
 +
:$$(00) \ \Rightarrow \ 1, \ (01) \ \Rightarrow \ X, \ (10) \ \Rightarrow \ X, \ (11) \ \Rightarrow \ X^2.$$
 +
 
 +
*For a blue transition in the original diagram&nbsp; $($this represents&nbsp; $u_i = 1)$&nbsp; add the factor&nbsp; $U$&nbsp; in the modified diagram.  
 +
 
  
  
'''(2)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:
+
'''(2)'''&nbsp; Correct are the&nbsp; <u>proposed solutions 2 und 3</u>:
*Das reduzierte Diagramm ist entsprechend der Auflistung im [[Channel_Coding/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Regeln_zur_Manipulation_des_Zustands.C3.BCbergangsdiagramms|Theorieteil]] ein "Ring&rdquo;. Daraus folgt:  
+
*The reduced diagram is a&nbsp; "ring"&nbsp; according to the listing in the [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Barriers#Rules_for_manipulating_the_state_transition_diagram|"Theory section"]].&nbsp; It follows:  
 
:$$T_{\rm enh}(X, U) =  \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)}  
 
:$$T_{\rm enh}(X, U) =  \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)}  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
*Mit $A(X, \, U) = UX^2, \ B(X, \, U) = X, \ C(X, \, U) = UX$ erhält man mit der angegebenen Reihenentwicklung:
+
*With&nbsp; $A(X, \, U) = UX^2, \ B(X, \, U) = X, \ C(X, \, U) = UX$,&nbsp; one obtains with the given series expansion:
 
:$$T_{\rm enh}(X, U) =  \frac{U \hspace{0.05cm} X^3}{1- U  \hspace{0.05cm}  X}  = U \hspace{0.05cm} X^3 \cdot \left [ 1 + (U  \hspace{0.05cm}  X) + (U  \hspace{0.05cm}  X)^2 +\text{...} \hspace{0.10cm} \right ]  
 
:$$T_{\rm enh}(X, U) =  \frac{U \hspace{0.05cm} X^3}{1- U  \hspace{0.05cm}  X}  = U \hspace{0.05cm} X^3 \cdot \left [ 1 + (U  \hspace{0.05cm}  X) + (U  \hspace{0.05cm}  X)^2 +\text{...} \hspace{0.10cm} \right ]  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Line 80: Line 85:
  
  
'''(3)'''&nbsp; Man kommt von der erweiterten Pfadgewichtsfunktion zu $T(X)$, indem der Formalparameter $U = 1$ gesetzt wird. Richtig sind also <u>beide Lösungsvorschläge</u>.
+
'''(3)'''&nbsp; One gets from the extended path weighting enumerator function to&nbsp; $T(X)$&nbsp; by setting the formal parameter&nbsp; $U = 1$.
 +
* So&nbsp; <u>both proposed solutions</u>&nbsp; are correct.
  
  
'''(4)'''&nbsp; Die freie Distanz $d_{\rm F}$ lässt sich aus der Pfadgewichtsfunktion $T(X)$ als der niedrigste Exponent der Dummy&ndash;Variablen $X$ ablesen &nbsp; &rArr; &nbsp; $d_{\rm F} \ \underline{= 3}$.
+
'''(4)'''&nbsp; The free distance&nbsp; $d_{\rm F}$&nbsp; can be read from the path weighting enumerator function&nbsp; $T(X)$&nbsp; as the lowest exponent of the dummy variable&nbsp; $X$ &nbsp; &rArr; &nbsp; $d_{\rm F} \ \underline{= 3}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Channel Coding: Exercises|^3.5 Distanzeigenschaften^]]
+
[[Category:Channel Coding: Exercises|^3.5 Distance Properties^]]

Latest revision as of 17:08, 22 November 2022

$m = 1$  convolutional encoder and state transition diagram

In  $\text{Exercise 3.6}$  the state transition diagram for the drawn convolutional encoder with properties

  • Rate  $R = 1/2$,
  • memory  $m = 1$,
  • transfer function matrix  $\mathbf{G}(D) = (1, \, D)$


was constructed which is shown on the right.

Now,  from this state transition diagram

  • the path weighting enumerator function  $T(X)$,  and
  • the extended path weighting enumerator function  $T_{\rm enh}(X, \, U)$


can be determined, where  $X$  and  $U$  are dummy variables.  The method is explained in detail in the  "Theory part".

Finally, from  $T(X)$  the  "free distance"  $d_{\rm F}$  has to be determined.



Hints:

  • Consider the series expansion in the solution
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \hspace{0.05cm}\text{...}\hspace{0.1cm}.$$



Questions

1

What should be considered when modifying the transition diagram?

The state  $S_0$  must be split into  $S_0$  and  $S_0\hspace{0.01cm}'$.
The state   $S_1$  must be split into   $S_0$  and  $S_0\hspace{0.01cm}'$.
The transition from  $S_0$  to  $S_1$  must be labeled  $U\hspace{-0.05cm}X^2$.
The transition from  $S_1$  to  $S_1$  is to be labeled  $U\hspace{-0.05cm}X$.
The transition from  $S_1$  to  $S_0\hspace{0.01cm}'$ shall be labeled  $X$.

2

What equations apply to the extended path weighting enumerator function  $T_{\rm enh}(X, \, U)$?

$T_{\rm enh}(X, \, U) = U^2X^3$
$T_{\rm enh}(X, \, U) = UX^3/(1 \, –UX)$
$T_{\rm enh}(X, \, U) = UX^3 + U^2X^4 + U^3X^5 + \hspace{0.05cm}\text{...}\hspace{0.1cm}$

3

What equations apply to the  "simple path weighting enumerator function"  $T(X)$?

$T(X) = X^3/(1 \, –X)$,
$T(X) = X^3 + X^4 + X^5 +\hspace{0.05cm}\text{...}\hspace{0.1cm}$

4

What is the free distance of the considered code?

$d_{\rm F} \ = \ $


Solution

State transition diagram
after modifications

(1)  From the adjacent graph,  one can see that  proposed solutions 1, 3, 4, and 5  are correct:

  • The state  $S_0$  must be split into a start state  $S_0$  and a final state  ${S_0}'$.
  • The reason for this is that for the following calculation of the path weighting enumerator function  $T(X, \, U)$  all transitions from  $S_0$  to  $S_0$  must be excluded.
  • Each encoded symbol  $x ∈ \{0, \, 1\}$  is represented by  $X^x$,  where  $X$  is a dummy variable with respect to the output sequence:  $x = 0 \ \Rightarrow \ X^0 = 1, \ x = 1 \ \Rightarrow \ X^1 = X.  $ It further follows 
$$(00) \ \Rightarrow \ 1, \ (01) \ \Rightarrow \ X, \ (10) \ \Rightarrow \ X, \ (11) \ \Rightarrow \ X^2.$$
  • For a blue transition in the original diagram  $($this represents  $u_i = 1)$  add the factor  $U$  in the modified diagram.


(2)  Correct are the  proposed solutions 2 und 3:

  • The reduced diagram is a  "ring"  according to the listing in the "Theory section".  It follows:
$$T_{\rm enh}(X, U) = \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)} \hspace{0.05cm}.$$
  • With  $A(X, \, U) = UX^2, \ B(X, \, U) = X, \ C(X, \, U) = UX$,  one obtains with the given series expansion:
$$T_{\rm enh}(X, U) = \frac{U \hspace{0.05cm} X^3}{1- U \hspace{0.05cm} X} = U \hspace{0.05cm} X^3 \cdot \left [ 1 + (U \hspace{0.05cm} X) + (U \hspace{0.05cm} X)^2 +\text{...} \hspace{0.10cm} \right ] \hspace{0.05cm}.$$


(3)  One gets from the extended path weighting enumerator function to  $T(X)$  by setting the formal parameter  $U = 1$.

  • So  both proposed solutions  are correct.


(4)  The free distance  $d_{\rm F}$  can be read from the path weighting enumerator function  $T(X)$  as the lowest exponent of the dummy variable  $X$   ⇒   $d_{\rm F} \ \underline{= 3}$.