Difference between revisions of "Aufgaben:Exercise 4.09: Cyclo-Ergodicity"

From LNTwww
m (Text replacement - "”" to """)
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Autokorrelationsfunktion (AKF)
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Auto-Correlation_Function
 
}}
 
}}
  
[[File:P_ID379__Sto_A_4_9.png|right|frame|Zur Verdeutlichung der Eigenschaft „Zykloergodizität"]]
+
[[File:P_ID379__Sto_A_4_9.png|right|frame|"Cyclo–ergodicity property"]]
Wir betrachten zwei unterschiedliche Zufallsprozesse, deren Musterfunktionen harmonische Schwingungen mit jeweils gleicher Frequenz  $f_0 = 1/T_0$  sind.  $T_0$  bezeichnet die Periodendauer.
+
We consider two different random processes whose pattern functions are harmonic oscillations,  each with the same frequency  $f_0 = 1/T_0$,  where  $T_0$  denotes the period duration.
  
*Beim oben dargestellten Zufallsprozess  $\{x_i(t)\}$  ist die stochastische Komponente die Amplitude, wobei der Zufallsparameter  $C_i$  alle Werte zwischen  $1\hspace{0.05cm}\rm V$  und  $2\hspace{0.05cm}\rm V$  mit gleicher Wahrscheinlichkeit annehmen kann:
+
*In the random process  $\{x_i(t)\}$  shown above,  the stochastic component is the amplitude, where the random parameter  $C_i$  can take all values between  $1\hspace{0.05cm}\rm V$  and  $2\hspace{0.05cm}\rm V$  with equal probability:
:$$\{ x_i(t) \} = \{ C_i \cdot \cos (2 \pi f_{\rm 0} t)\}. $$
+
:$$\{ x_i(t) \} = \{ C_i \cdot \cos (2 \pi f_{\rm 0} t)\}. $$
  
*Beim Prozess  $\{y_i(t)\}$  weisen alle Musterfunktionen die gleiche Amplitude auf:   $x_0 = 2\hspace{0.05cm}\rm V$.  Hier variiert die Phase  $\varphi_i$, die über alle Musterfunktionen gemittelt gleichverteilt zwischen  $0$  und  $2\pi$  ist:
+
*In the process  $\{y_i(t)\}$,  all pattern functions have the same amplitude:   $x_0 = 2\hspace{0.05cm}\rm V$.  Here the phase  $\varphi_i$ varies, which averaged over all pattern functions is uniformly distributed between  $0$  and  $2\pi$
:$$\{ y_i(t) \} = \{ x_{\rm 0} \cdot \cos (2 \pi f_{\rm 0} t - \varphi_i)\}. $$
+
:$$\{ y_i(t) \} = \{ x_{\rm 0} \cdot \cos (2 \pi f_{\rm 0} t - \varphi_i)\}. $$
  
Die Eigenschaften  „zyklostationär"  und  „zykloergodisch"  sagen aus,  
+
The properties  "cyclo-stationary"  and  "cyclo-ergodic"  state,  
*dass die Prozesse zwar im strengen Sinne nicht als stationär und ergodisch zu bezeichnen sind,  
+
*that although the processes cannot be described as stationary and ergodic in the strict sense,  
*alle statistischen Kennwerte aber für Vielfache der Periondauer  $T_0$  jeweils gleich sind.  
+
*but all statistical characteristics are the same for multiples of the period duration  $T_0$  in each case.  
  
  
In diesen Fällen sind auch die meisten der Berechnungsregeln anwendbar, die eigentlich nur für ergodische Prozesse gelten.
+
In these cases,  most of the calculation rules,  which actually apply only to ergodic processes,  are also applicable.
  
  
 
+
'''Hint''':  This exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Auto-Correlation_Function|Auto-Correlation Function]].
 
 
 
 
 
 
 
 
 
 
''Hinweis:''  
 
*Die Aufgabe gehört zum  Kapitel  [[Theory_of_Stochastic_Signals/Autokorrelationsfunktion_(AKF)|Autokorrelationsfunktion]].
 
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der folgenden Aussagen sind zutreffend?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- Der Prozess&nbsp; $\{x_i(t)\}$&nbsp; ist station&auml;r.
+
- The process&nbsp; $\{x_i(t)\}$&nbsp; is stationary.
- Der Prozess&nbsp; $\{x_i(t)\}$&nbsp; ist ergodisch.
+
- The process&nbsp; $\{x_i(t)\}$&nbsp; is ergodic.
+ Der Prozess&nbsp; $\{y_i(t)\}$&nbsp; ist station&auml;r.
+
+ The process&nbsp; $\{y_i(t)\}$&nbsp; is stationary.
+ Der Prozess&nbsp; $\{y_i(t)\}$&nbsp; ist ergodisch.
+
+ The process&nbsp; $\{y_i(t)\}$&nbsp; is ergodic.
  
  
{Berechnen Sie die Autokorrelationsfunktion&nbsp; $\varphi_y(\tau)$&nbsp; für verschiedene&nbsp; $\tau$-Werte.
+
{Calculate the auto-correlation function&nbsp; $\varphi_y(\tau)$&nbsp; for different&nbsp; $\tau$&nbsp; values.
 
|type="{}"}
 
|type="{}"}
 
$\varphi_y(\tau=0)\ = \ $ { 2 3% } $\ \rm V^2$
 
$\varphi_y(\tau=0)\ = \ $ { 2 3% } $\ \rm V^2$
$\varphi_y(\tau=0.25 \cdot T_0)\ = \ $ { 0. } $\ \rm V^2$
+
$\varphi_y(\tau=0.25 \cdot T_0)\ = \ $ { 0. } $\ \rm V^2$
$\varphi_y(\tau=1.50 \cdot T_0)\ = \ $ { -2.06--1.94 }$\ \rm V^2$
+
$\varphi_y(\tau=1.50 \cdot T_0)\ = \ $ { -2.06--1.94 }$\ \rm V^2$
  
  
{Welche der folgenden Aussagen sind bez&uuml;glich&nbsp; $\{y_i(t)\}$&nbsp; zutreffend?
+
{Which of the following statements are true regarding&nbsp; $\{y_i(t)\}$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Alle Mustersignale sind gleichsignalfrei.
+
+ All pattern signals are free of DC signals.
+ Alle Mustersignale besitzen den Effektivwert&nbsp; $2\hspace{0.05cm}\rm V$.
+
+ All pattern signals have the rms value&nbsp; $2\hspace{0.05cm}\rm V$.
- Die AKF hat die doppelte Periodendauer&nbsp; $(2T_0)$&nbsp; wie die Mustersignale&nbsp; $(T_0)$.
+
- The ACF has twice the period&nbsp; $(2T_0)$&nbsp; as the pattern signals&nbsp; $(T_0)$.
 
 
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind <u>die Lösungsvorschläge 3 und 4</u>:
+
'''(1)'''&nbsp; Correct are the&nbsp; <u>proposed solutions 3 and 4</u>:
*Zum Zeitpunkt&nbsp; $t = 0$&nbsp; $($und allen Vielfachen der Periodendauer&nbsp; $T_0)$&nbsp; hat jedes Mustersignal&nbsp; $x_i(t)$&nbsp; einen Wert zwischen&nbsp; $1\hspace{0.05cm}\rm V$&nbsp; und&nbsp; $2\hspace{0.05cm}\rm V$.&nbsp; Der Mittelwert ist&nbsp; $1.5\hspace{0.05cm}\rm V$.  
+
*At time&nbsp; $t = 0$&nbsp; $($and all multiples of the period&nbsp; $T_0)$&nbsp; each pattern signal&nbsp; $x_i(t)$&nbsp; has a value between&nbsp; $1\hspace{0.05cm}\rm V$&nbsp; and&nbsp; $2\hspace{0.05cm}\rm V$.&nbsp; The mean value is&nbsp; $1.5\hspace{0.05cm}\rm V$.  
*Dagegen ist bei&nbsp; $t = T_0/4$&nbsp; der Signalwert des gesamten Ensembles identisch Null.&nbsp; Das hei&szlig;t:  
+
*In contrast,&nbsp; for&nbsp; $t = T_0/4$&nbsp; the signal value of the entire ensemble is identically zero.&nbsp; That is: <br> &nbsp; Even the linear mean does not satisfy the stationarity condition:&nbsp; The process&nbsp; $\{x_i(t)\}$&nbsp; is not stationary and therefore cannot be ergodic.
*Bereits der lineare Mittelwert erf&uuml;llt die Bedingung der Stationarit&auml;t nicht:&nbsp; Der Prozess&nbsp; $\{x_i(t)\}$&nbsp; ist nicht station&auml;r und kann deshalb auch nicht ergodisch sein.
+
*In contrast,&nbsp; for the process&nbsp; $\{y_i(t)\}$&nbsp; the same moments are expected at all times due to the uniformly distributed phase &nbsp; &rArr; &nbsp; the process is stationary.  
*Dagegen sind beim Prozess&nbsp; $\{y_i(t)\}$&nbsp; aufgrund der gleichverteilten Phase zu allen Zeitpunkten die gleichen Momente zu erwarten &nbsp; &rArr; &nbsp; der Prozess ist station&auml;r.  
+
*Since the phase relations are lost in the ACF calculation,&nbsp; each individual pattern function is representative of the entire process. &nbsp; Therefore,&nbsp; ergodicity can be hypothetically assumed here.  
*Da bei der AKF-Berechnung die Phasenbeziehungen verloren gehen, steht jede einzelne Musterfunktion stellvertretend f&uuml;r den gesamten Prozess.&nbsp; Deshalb kann hier hypothetisch von Ergodizit&auml;t ausgegangen werden.  
+
*At the end of the exercise,&nbsp; check whether this assumption is justified.  
*Am Ende der Aufgabe ist zu &uuml;berpr&uuml;fen, ob diese Annahme gerechtfertigt ist.  
 
  
  
  
 
+
'''(2)'''&nbsp; Due to ergodicity,&nbsp; any pattern function can be used for ACF calculation.&nbsp; We arbitrarily use here the phase&nbsp; $\varphi_i = 0$.  
'''(2)'''&nbsp; Aufgrund der Ergodizit&auml;t kann jede Musterfunktion zur AKF&ndash;Berechung herangezogen werden.&nbsp; Wir benutzen hier willk&uuml;rlich die Phase&nbsp; $\varphi_i = 0$.  
+
*Because of the periodicity,&nbsp; it is sufficient to report only one period&nbsp; $T_0$.&nbsp; Then holds:
*Aufgrund der Periodizit&auml;t gen&uuml;gt die Mitteilung &uuml;ber nur eine Periodendauer&nbsp; $T_0$.&nbsp; Dann gilt:
 
 
:$$\varphi_y (\tau) = \frac{1}{T_0} \cdot \int_0^{T_0} y(t) \cdot y (t+\tau) \hspace{0.1cm}{\rm d} t = \frac{{ x}_0^2}{{ T}_0} \cdot \int_0^{{\it T}_0} \cos (2 \pi {f_{\rm 0} t}) \cdot \cos (2 \pi {f_{\rm 0} (t+\tau)})  \hspace{0.1cm}\rm d \it t.$$
 
:$$\varphi_y (\tau) = \frac{1}{T_0} \cdot \int_0^{T_0} y(t) \cdot y (t+\tau) \hspace{0.1cm}{\rm d} t = \frac{{ x}_0^2}{{ T}_0} \cdot \int_0^{{\it T}_0} \cos (2 \pi {f_{\rm 0} t}) \cdot \cos (2 \pi {f_{\rm 0} (t+\tau)})  \hspace{0.1cm}\rm d \it t.$$
 
+
*Using the trigonometric relation &nbsp; $\cos (\alpha) \cdot \cos (\beta)= {1}/{2} \cdot \cos (\alpha + \beta) + {1}/{2} \cdot \cos (\alpha - \beta)$ &nbsp; it further follows:
*Mit der trigonometrischen Beziehung &nbsp; $\cos (\alpha) \cdot \cos (\beta)= {1}/{2} \cdot \cos (\alpha + \beta) + {1}/{2} \cdot \cos (\alpha - \beta)$ &nbsp; folgt daraus weiter:
 
 
:$$\varphi_y (\tau) = \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (4 \pi \it{f_{\rm 0} t} + {\rm 2} \pi \it{f_{\rm 0} \tau}{\rm )}  \hspace{0.1cm}\rm d \it t \ {\rm +} \ \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (-2 \pi \it{f_{\rm 0} \tau}{\rm )}  \hspace{0.1cm}\rm d \it t. $$
 
:$$\varphi_y (\tau) = \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (4 \pi \it{f_{\rm 0} t} + {\rm 2} \pi \it{f_{\rm 0} \tau}{\rm )}  \hspace{0.1cm}\rm d \it t \ {\rm +} \ \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (-2 \pi \it{f_{\rm 0} \tau}{\rm )}  \hspace{0.1cm}\rm d \it t. $$
 
+
*The first integral is zero&nbsp; (integration over two periods of the cosine function).&nbsp; The second integrand is independent of the integration variable&nbsp; $t$.&nbsp; It follows: &nbsp;  
*Das erste Integral ist Null&nbsp; (Integration &uuml;ber zwei Perioden der Cosinusfunktion).  
+
:$$\varphi_y (\tau) ={{ x}_0^2}/{\rm 2} \cdot \cos (2 \pi {f_{\rm 0} \tau}). $$  
*Der zweite Integrand ist unabh&auml;ngig von der Integrationsvariablen&nbsp; $t$.&nbsp; Daraus folgt: &nbsp; $\varphi_y (\tau) ={{ x}_0^2}/{\rm 2} \cdot \cos (2 \pi {f_{\rm 0} \tau}). $  
+
*For the given time points, with&nbsp; $x_0 = 2\hspace{0.05cm}\rm V$:
*F&uuml;r die angegebenen Zeitpunkte gilt mit&nbsp; $x_0 = 2\hspace{0.05cm}\rm V$:
 
 
:$$\varphi_y (0)\hspace{0.15cm}\underline{ = 2\hspace{0.05cm}{\rm V}^2}, \hspace{0.5cm}  \varphi_y (0.25 \cdot { T}_{\rm 0}{\rm )} \hspace{0.15cm}\underline{ = 0}, \hspace{0.5cm} \varphi_y (\rm 1.5 \cdot {\it T}_{\rm 0} {\rm )} \hspace{0.15cm}\underline{= \rm -2\hspace{0.05cm}{\rm V}^2}.$$
 
:$$\varphi_y (0)\hspace{0.15cm}\underline{ = 2\hspace{0.05cm}{\rm V}^2}, \hspace{0.5cm}  \varphi_y (0.25 \cdot { T}_{\rm 0}{\rm )} \hspace{0.15cm}\underline{ = 0}, \hspace{0.5cm} \varphi_y (\rm 1.5 \cdot {\it T}_{\rm 0} {\rm )} \hspace{0.15cm}\underline{= \rm -2\hspace{0.05cm}{\rm V}^2}.$$
  
  
  
'''(3)'''&nbsp; Richtig sind <u>beiden ersten Lösungsvorschläge</u>:
+
'''(3)'''&nbsp; Correct are&nbsp; <u>both first proposed solutions</u>:
*Der Mittelwert&nbsp; $m_y$&nbsp; kann aus dem Grenzwert der AKF f&uuml;r&nbsp; $\tau \to \infty$&nbsp; ermittelt werden, wenn man die periodischen Anteile ausschlie&szlig;t.&nbsp; Daraus folgt&nbsp; $m_y= 0$.
+
*The mean&nbsp; $m_y$&nbsp; can be obtained from the limit of the ACF for&nbsp; $\tau \to \infty$&nbsp; if one excludes the periodic parts.&nbsp; It follows&nbsp; $m_y= 0$.
*Die Varianz (Leistung) ist gleich dem AKF&ndash;Wert an der Stelle&nbsp; $\tau = 0$, also&nbsp; $2\hspace{0.05cm}\rm V^2$.&nbsp; Der Effektivwert ist die Quadratwurzel daraus: &nbsp; $\sigma_y \approx 1.414\hspace{0.05cm}\rm V$.
+
*The variance&nbsp; (power)&nbsp; is equal to the ACF value at the point&nbsp; $\tau = 0$ &nbsp; &rArr; &nbsp; $\sigma_y^2 =2\hspace{0.05cm}\rm V^2$.&nbsp; The rms value is the square root of it: &nbsp; $\sigma_y \approx 1.414\hspace{0.05cm}\rm V$.
*Die Periodendauer eines periodischen Zufallsprozesses bleibt in der AKF erhalten, das hei&szlig;t, auch die Periodendauer der AKF betr&auml;gt&nbsp; $T_0$.  
+
*The period of a periodic random process is preserved in the ACF,&nbsp; that is,&nbsp; the period of the ACF is also&nbsp; $T_0$.  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Theory of Stochastic Signals: Exercises|^4.4 Autokorrelationsfunktion (AKF)^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^4.4 Auto-Correlation Function^]]

Latest revision as of 17:00, 19 March 2022

"Cyclo–ergodicity property"

We consider two different random processes whose pattern functions are harmonic oscillations,  each with the same frequency  $f_0 = 1/T_0$,  where  $T_0$  denotes the period duration.

  • In the random process  $\{x_i(t)\}$  shown above,  the stochastic component is the amplitude, where the random parameter  $C_i$  can take all values between  $1\hspace{0.05cm}\rm V$  and  $2\hspace{0.05cm}\rm V$  with equal probability:
$$\{ x_i(t) \} = \{ C_i \cdot \cos (2 \pi f_{\rm 0} t)\}. $$
  • In the process  $\{y_i(t)\}$,  all pattern functions have the same amplitude:   $x_0 = 2\hspace{0.05cm}\rm V$.  Here the phase  $\varphi_i$ varies, which averaged over all pattern functions is uniformly distributed between  $0$  and  $2\pi$
$$\{ y_i(t) \} = \{ x_{\rm 0} \cdot \cos (2 \pi f_{\rm 0} t - \varphi_i)\}. $$

The properties  "cyclo-stationary"  and  "cyclo-ergodic"  state,

  • that although the processes cannot be described as stationary and ergodic in the strict sense,
  • but all statistical characteristics are the same for multiples of the period duration  $T_0$  in each case.


In these cases,  most of the calculation rules,  which actually apply only to ergodic processes,  are also applicable.


Hint:  This exercise belongs to the chapter  Auto-Correlation Function.


Questions

1

Which of the following statements are true?

The process  $\{x_i(t)\}$  is stationary.
The process  $\{x_i(t)\}$  is ergodic.
The process  $\{y_i(t)\}$  is stationary.
The process  $\{y_i(t)\}$  is ergodic.

2

Calculate the auto-correlation function  $\varphi_y(\tau)$  for different  $\tau$  values.

$\varphi_y(\tau=0)\ = \ $

$\ \rm V^2$
$\varphi_y(\tau=0.25 \cdot T_0)\ = \ $

$\ \rm V^2$
$\varphi_y(\tau=1.50 \cdot T_0)\ = \ $

$\ \rm V^2$

3

Which of the following statements are true regarding  $\{y_i(t)\}$ ?

All pattern signals are free of DC signals.
All pattern signals have the rms value  $2\hspace{0.05cm}\rm V$.
The ACF has twice the period  $(2T_0)$  as the pattern signals  $(T_0)$.


Solution

(1)  Correct are the  proposed solutions 3 and 4:

  • At time  $t = 0$  $($and all multiples of the period  $T_0)$  each pattern signal  $x_i(t)$  has a value between  $1\hspace{0.05cm}\rm V$  and  $2\hspace{0.05cm}\rm V$.  The mean value is  $1.5\hspace{0.05cm}\rm V$.
  • In contrast,  for  $t = T_0/4$  the signal value of the entire ensemble is identically zero.  That is:
      Even the linear mean does not satisfy the stationarity condition:  The process  $\{x_i(t)\}$  is not stationary and therefore cannot be ergodic.
  • In contrast,  for the process  $\{y_i(t)\}$  the same moments are expected at all times due to the uniformly distributed phase   ⇒   the process is stationary.
  • Since the phase relations are lost in the ACF calculation,  each individual pattern function is representative of the entire process.   Therefore,  ergodicity can be hypothetically assumed here.
  • At the end of the exercise,  check whether this assumption is justified.


(2)  Due to ergodicity,  any pattern function can be used for ACF calculation.  We arbitrarily use here the phase  $\varphi_i = 0$.

  • Because of the periodicity,  it is sufficient to report only one period  $T_0$.  Then holds:
$$\varphi_y (\tau) = \frac{1}{T_0} \cdot \int_0^{T_0} y(t) \cdot y (t+\tau) \hspace{0.1cm}{\rm d} t = \frac{{ x}_0^2}{{ T}_0} \cdot \int_0^{{\it T}_0} \cos (2 \pi {f_{\rm 0} t}) \cdot \cos (2 \pi {f_{\rm 0} (t+\tau)}) \hspace{0.1cm}\rm d \it t.$$
  • Using the trigonometric relation   $\cos (\alpha) \cdot \cos (\beta)= {1}/{2} \cdot \cos (\alpha + \beta) + {1}/{2} \cdot \cos (\alpha - \beta)$   it further follows:
$$\varphi_y (\tau) = \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (4 \pi \it{f_{\rm 0} t} + {\rm 2} \pi \it{f_{\rm 0} \tau}{\rm )} \hspace{0.1cm}\rm d \it t \ {\rm +} \ \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (-2 \pi \it{f_{\rm 0} \tau}{\rm )} \hspace{0.1cm}\rm d \it t. $$
  • The first integral is zero  (integration over two periods of the cosine function).  The second integrand is independent of the integration variable  $t$.  It follows:  
$$\varphi_y (\tau) ={{ x}_0^2}/{\rm 2} \cdot \cos (2 \pi {f_{\rm 0} \tau}). $$
  • For the given time points, with  $x_0 = 2\hspace{0.05cm}\rm V$:
$$\varphi_y (0)\hspace{0.15cm}\underline{ = 2\hspace{0.05cm}{\rm V}^2}, \hspace{0.5cm} \varphi_y (0.25 \cdot { T}_{\rm 0}{\rm )} \hspace{0.15cm}\underline{ = 0}, \hspace{0.5cm} \varphi_y (\rm 1.5 \cdot {\it T}_{\rm 0} {\rm )} \hspace{0.15cm}\underline{= \rm -2\hspace{0.05cm}{\rm V}^2}.$$


(3)  Correct are  both first proposed solutions:

  • The mean  $m_y$  can be obtained from the limit of the ACF for  $\tau \to \infty$  if one excludes the periodic parts.  It follows  $m_y= 0$.
  • The variance  (power)  is equal to the ACF value at the point  $\tau = 0$   ⇒   $\sigma_y^2 =2\hspace{0.05cm}\rm V^2$.  The rms value is the square root of it:   $\sigma_y \approx 1.414\hspace{0.05cm}\rm V$.
  • The period of a periodic random process is preserved in the ACF,  that is,  the period of the ACF is also  $T_0$.