Difference between revisions of "Aufgaben:Exercise 5.7Z: McCullough Model once more"

From LNTwww
m (Text replacement - "„" to """)
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Bündelfehlerkanäle}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Burst_Error_Channels}}
  
[[File:P_ID1845__Dig_Z_5_7.png|right|frame|FAV und FKF von GE–Modell und äquivalentem MC-Modell]]
+
[[File:P_ID1845__Dig_Z_5_7.png|right|frame|EDD and ECF of GE model and equivalent MC model]]
Wir betrachten wie auch in  [[Aufgaben:5.6:_Fehlerkorrelationsdauer|Aufgabe 5.6]],  [[Aufgaben:5.6Z_GE-Modelleigenschaften|Aufgabe 5.6Z]]  und   [[Aufgaben:5.7_McCullough-Parameter_aus_Gilbert-Elliott-Parameter|Aufgabe 5.7]]  das Bündelfehler–Kanalmodell nach Gilbert und Elliott (GE–Modell) mit den Kenngrößen
+
As in  [[Aufgaben:Exercise_5.6:_Error_Correlation_Duration|"Exercise 5.6"]],  [[Aufgaben:Exercise_5.6Z:_Gilbert-Elliott_Model|"Exercise 5.6Z"]]  and   [[Aufgaben:Exercise_5.7:_McCullough_and_Gilbert-Elliott_Parameters|"Exercise 5.7"]],  we consider the burst error channel model according to Gilbert and Elliott (GE model) with the parameters
 
:$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001,
 
:$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001,
 
\hspace{0.2cm}p_{\rm B} = 0.1,\hspace{0.2cm}
 
\hspace{0.2cm}p_{\rm B} = 0.1,\hspace{0.2cm}
Line 11: Line 11:
 
B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}.$$
 
B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}.$$
  
Aus diesen vier Wahrscheinlichkeiten lassen sich die entsprechenden Kenngrößen des Kanalmodells nach McCullough (MC–Modell) so ermitteln, dass beide Modelle die genau gleichen statistischen Eigenschaften besitzen, nämlich
+
From these four probabilities, the corresponding characteristics of the channel model according to McCullough (MC model) can be determined in such a way that both models have exactly the same statistical properties, namely
* exakt gleiche Fehlerabstandsverteilung (FAV)  $V_a(k)$,
+
* exactly the same error distance distribution (EDD)  $V_a(k)$,
* exakt gleiche Fehlerkorrelationsfunktion (FKF)  $\varphi_e(k)$.
+
* exactly the same error correlation function (ECF)  $\varphi_e(k)$.
  
  
Die Wahrscheinlichkeiten des MC–Modells wurden in der  [[Aufgaben:5.7_McCullough-Parameter_aus_Gilbert-Elliott-Parameter|Aufgabe 5.7]]  wie folgt ermittelt $($Bezeichnungen entsprechend der Grafik zur Aufgabe 5.7, alle mit  $q$  anstelle von  $p)$:
+
The probabilities of the MC model were determined in  [[Aufgaben:Exercise_5.7:_McCullough_and_Gilbert-Elliott_Parameters|"Exercise 5.7"]]  as follows $($labels according to the graph for Exercise 5.7, all with  $q$  instead of  $p)$:
 
:$$q_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.0061,
 
:$$q_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.0061,
 
\hspace{0.2cm}q_{\rm B} = 0.1949,\hspace{0.2cm}
 
\hspace{0.2cm}q_{\rm B} = 0.1949,\hspace{0.2cm}
Line 24: Line 24:
 
B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.3724\hspace{0.05cm}.$$
 
B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.3724\hspace{0.05cm}.$$
  
Die obere Grafik zeigt die aus  $N = 10^6$  Folgenelementen simulativ ermittelten Funktionen  $V_a(k)$  und  $\varphi_e(k)$  für das GE– und das MC–Modell. Hier ergeben sich noch leichte Abweichungen. Im Grenzfall für  $N → ∞$  stimmen dagegen Fehlerkorrelationsfunktion und Fehlerabstandsverteilung beider Modelle exakt überein.
+
The upper graph shows the functions  $V_a(k)$  and  $\varphi_e(k)$  simulatively determined from  $N = 10^6$  sequence elements for the GE and MC models. There are still slight discrepancies here. In the limiting case for  $N → ∞$,  on the other hand, error correlation function and error distance distribution of both models agree exactly.
  
In dieser Aufgabe sollen nun wichtige Beschreibungsgrößen des GE-Modells wie
+
In this exercise, important descriptive variables of the GE model such as
*Zustandswahrscheinlichkeiten,  
+
*state probabilities,
*mittlere Fehlerwahrscheinlichkeiten, und
+
*mean error probabilities, and
*Korrelationsdauer
+
*correlation duration
  
  
direkt aus den $q$–Parametern des MC–Modells ermittelt werden.
+
should be determined directly from the $q$ parameters of the MC model.
  
  
Line 40: Line 40:
  
  
''Hinweise:''
+
''Notes:''
* Die Aufgabe gehört zum Themengebiet des Kapitels  [[Digitalsignal%C3%BCbertragung/B%C3%BCndelfehlerkan%C3%A4le| Bündelfehlerkanäle]].
+
* The exercise belongs to the chapter  [[Digital_Signal_Transmission/Burst_Error_Channels| "Burst Error Channels"]].
 
   
 
   
* Aus den oben genannten Aufgaben können folgende Ergebnisse weiterverwendet werden:
+
* From the above exercises, the following results can be further used:
:(a) Die Zustandswahrscheinlichkeiten des GE–Modells sind
+
:(a) The state probabilities of the GE model are
 
:$$w_{\rm G} = \frac{p(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)}{p(\rm
 
:$$w_{\rm G} = \frac{p(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)}{p(\rm
 
G\hspace{0.05cm}|\hspace{0.05cm} B) + p(\rm
 
G\hspace{0.05cm}|\hspace{0.05cm} B) + p(\rm
Line 50: Line 50:
 
\hspace{0.05cm},\hspace{0.2cm} w_{\rm B} = 1 - w_{\rm G
 
\hspace{0.05cm},\hspace{0.2cm} w_{\rm B} = 1 - w_{\rm G
 
}\hspace{0.05cm}.$$
 
}\hspace{0.05cm}.$$
:(b) Die mittlere Fehlerwahrscheinlichkeit des GE–Modells beträgt
+
:(b) The mean error probability of the GE model is
 
:$$p_{\rm M} = w_{\rm G} \cdot p_{\rm G} + w_{\rm B} \cdot p_{\rm B}
 
:$$p_{\rm M} = w_{\rm G} \cdot p_{\rm G} + w_{\rm B} \cdot p_{\rm B}
 
= \varphi_{e}(k = 0 )\hspace{0.05cm}.$$
 
= \varphi_{e}(k = 0 )\hspace{0.05cm}.$$
:(c) Die Korrelationsdauer des GE–Modells berechnet sich zu
+
:(c) The correlation duration of the GE model is calculated as
 
:$$D_{\rm K} =\frac{1}{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm}
 
:$$D_{\rm K} =\frac{1}{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm}
 
B ) + {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )}-1
 
B ) + {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )}-1
Line 60: Line 60:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die Wahrscheinlichkeiten&nbsp; $\alpha_{\rm G}$&nbsp; und &nbsp;$\alpha_{\rm B}$, dass sich das MC&ndash;Modell im Zustand "Good&rdquo; bzw. im Zustand "Bad&rdquo; befindet.
+
{Calculate the probabilities&nbsp; $\alpha_{\rm G}$&nbsp; and &nbsp;$\alpha_{\rm B}$ that the MC model is in the state "Good" and the state "Bad".
 
|type="{}"}
 
|type="{}"}
 
$\alpha_{\rm G} \hspace{0.05cm} = \ ${ 0.5975 3% }
 
$\alpha_{\rm G} \hspace{0.05cm} = \ ${ 0.5975 3% }
 
$\alpha_{\rm B} \ = \ ${ 0.4025 3% }
 
$\alpha_{\rm B} \ = \ ${ 0.4025 3% }
  
{Ermitteln Sie den mittleren Fehlerabstand des MC&ndash;Modells.
+
{Determine the mean error distance of the MC model.
 
|type="{}"}
 
|type="{}"}
 
${\rm E}\big[a\big] \ = \ ${ 100.1 3% }  
 
${\rm E}\big[a\big] \ = \ ${ 100.1 3% }  
  
{Wie groß ist der Fehlerkorrelationsfunktionswert für&nbsp; $k = 0$?
+
{What is the error correlation function value for&nbsp; $k = 0$?
 
|type="{}"}
 
|type="{}"}
 
$\varphi_e(k = 0) \ = \ ${ 0.01 3% }  
 
$\varphi_e(k = 0) \ = \ ${ 0.01 3% }  
  
{Geben Sie die Fehlerkorrelationsdauer&nbsp; $D_{\rm K}$&nbsp; als Funktion der MC&ndash;Parameter&nbsp; $q_{\rm G},&nbsp; q_{\rm B},&nbsp; q(\rm G\hspace{0.05cm}|\hspace{0.05cm}B)$&nbsp; und&nbsp; $q(\rm B\hspace{0.05cm}|\hspace{0.05cm}G)$&nbsp; an. <br>Welches Ergebnis ist richtig?
+
{Give the error correlation duration&nbsp; $D_{\rm K}$&nbsp; as a function of the MC parameters&nbsp; $q_{\rm G},&nbsp; q_{\rm B},&nbsp; q(\rm G\hspace{0.05cm}|\hspace{0.05cm}B)$&nbsp; and&nbsp; $q(\rm B\hspace{0.05cm}|\hspace{0.05cm}G)$.&nbsp; <br>Which result is correct?
 
|type="()"}
 
|type="()"}
 
- $D_{\rm K} = \big  [q({\rm B\hspace{0.05cm}|\hspace{0.05cm}G}) + q({\rm G\hspace{0.05cm}|\hspace{0.05cm}B})\big]^{-1} \ -1$,
 
- $D_{\rm K} = \big  [q({\rm B\hspace{0.05cm}|\hspace{0.05cm}G}) + q({\rm G\hspace{0.05cm}|\hspace{0.05cm}B})\big]^{-1} \ -1$,
Line 81: Line 81:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Für die Zustandswahrscheinlichkeiten des GE&ndash;Modells wurde in Aufgabe 5.6Z ermittelt:
+
'''(1)'''&nbsp; For the state probabilities of the GE model was determined in Exercise 5.6Z:
 
:$$w_{\rm G} = \frac{p(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)}{p(\rm
 
:$$w_{\rm G} = \frac{p(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)}{p(\rm
 
G\hspace{0.05cm}|\hspace{0.05cm} B) + p(\rm
 
G\hspace{0.05cm}|\hspace{0.05cm} B) + p(\rm
Line 90: Line 90:
 
}= 0.091\hspace{0.05cm}.$$
 
}= 0.091\hspace{0.05cm}.$$
  
*Dagegen erhält man beim MC&ndash;Modell:
+
*In contrast, for the MC model we obtain:
 
:$$\alpha_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{q(\rm
 
:$$\alpha_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{q(\rm
 
G\hspace{0.05cm}|\hspace{0.05cm} B)}{q(\rm
 
G\hspace{0.05cm}|\hspace{0.05cm} B)}{q(\rm
Line 99: Line 99:
 
\alpha_{\rm G} \hspace{0.15cm}\underline {= 0.4025}\hspace{0.05cm}.$$
 
\alpha_{\rm G} \hspace{0.15cm}\underline {= 0.4025}\hspace{0.05cm}.$$
  
*In der Teilaufgabe '''(3)''' der Aufgabe 5.7 wurden diese Werte schon einmal ermittelt, allerdings aus den Parametern des äquivalenten Gilbert&ndash;Elliott&ndash;Modells.
+
*In subtask '''(3)''' of Exercise 5.7, these values have already been determined once, but from the parameters of the equivalent Gilbert-Elliott model.
  
  
  
'''(2)'''&nbsp; Der mittlere Fehlerabstand im Kanalzustand "GOOD&rdquo; ist gleich dem Kehrwert der dazugehörigen Fehlerwahrscheinlichkeit $q_{\rm G}$.  
+
'''(2)'''&nbsp; The mean error distance in the channel state "GOOD" is equal to the reciprocal of the associated error probability $q_{\rm G}$.  
*Der mittlere Fehlerabstand im Zustand "BAD&rdquo; ist dementsprechend $1/q_{\rm B}$.  
+
*Accordingly, the mean error distance in the state "BAD" is $1/q_{\rm B}$.  
*Durch Gewichtung mit den beiden Zustandswahrscheinlichkeiten $\alpha_{\rm G}$ und $\alpha_{\rm B}$ ergibt sich der mittlere Fehlerabstand des MC&ndash;Modells insgesamt zu
+
*By weighting with the two state probabilities $\alpha_{\rm G}$ and $\alpha_{\rm B}$, the mean error distance of the MC model as a whole is given by
 
:$${\rm E}[a] =\frac{\alpha_{\rm G}}{q_{\rm G}} + \frac{\alpha_{\rm
 
:$${\rm E}[a] =\frac{\alpha_{\rm G}}{q_{\rm G}} + \frac{\alpha_{\rm
 
B}}{q_{\rm B}}=\frac{0.5975}{0.0061} + \frac{0.4025}{0.1949} =
 
B}}{q_{\rm B}}=\frac{0.5975}{0.0061} + \frac{0.4025}{0.1949} =
 
97.95 + 2.06\hspace{0.15cm}\underline { = 100.1}\hspace{0.05cm}.$$
 
97.95 + 2.06\hspace{0.15cm}\underline { = 100.1}\hspace{0.05cm}.$$
  
*Dieser Wert sollte natürlich genau so groß wie beim entsprechenden GE&ndash;Modell sein.  
+
*Of course, this value should be exactly the same as for the corresponding GE model.
*Die kleine Abweichung von $0.1$ ist auf Rundungsfehler zurückzuführen.
+
*The small deviation of $0.1$ is due to rounding errors.
  
  
  
'''(3)'''&nbsp; Auch hier gilt der Zusammenhang $\varphi_e(k = 0) = p_{\rm M}$.  
+
'''(3)'''&nbsp; Again, the relation $\varphi_e(k = 0) = p_{\rm M}$ holds.
*Die mittlere Fehlerwahrscheinlichkeit ist aber gleich dem Kehrwert des mittleren Fehlerabstands ${\rm E}[a]$.  
+
*However, the mean error probability is equal to the reciprocal of the mean error distance ${\rm E}[a]$.  
*Daraus folgt $\varphi_e(k = 0) \ \underline {= 0.01}$.
+
*It follows that $\varphi_e(k = 0) \ \underline {= 0.01}$.
  
  
  
'''(4)'''&nbsp; Beim GE&ndash;Modell ist die Korrelationsdauer wie folgt gegeben ($S$ steht für Summe):
+
'''(4)'''&nbsp; In the GE model, the correlation duration is given as follows ($S$ stands for sum):
 
:$$D_{\rm K} = {1}/{S}-1 \hspace{0.05cm},\hspace{0.2cm}S =  {\rm
 
:$$D_{\rm K} = {1}/{S}-1 \hspace{0.05cm},\hspace{0.2cm}S =  {\rm
 
Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B ) + {\rm Pr}(\rm
 
Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B ) + {\rm Pr}(\rm
 
B\hspace{0.05cm}|\hspace{0.05cm} G )\hspace{0.05cm}.$$
 
B\hspace{0.05cm}|\hspace{0.05cm} G )\hspace{0.05cm}.$$
  
*Weiter gilt mit den Angaben zur Aufgabe 5.7:
+
*Further, using the data for Exercise 5.7:
 
:$$q({\rm B\hspace{0.05cm}|\hspace{0.05cm} G }) = \frac{\alpha_{\rm
 
:$$q({\rm B\hspace{0.05cm}|\hspace{0.05cm} G }) = \frac{\alpha_{\rm
 
B} \cdot S}{\alpha_{\rm G} \cdot q_{\rm B} + \alpha_{\rm B} \cdot
 
B} \cdot S}{\alpha_{\rm G} \cdot q_{\rm B} + \alpha_{\rm B} \cdot
Line 143: Line 143:
 
q({\rm G\hspace{0.05cm}|\hspace{0.05cm} B })}-1 \hspace{0.05cm}.$$
 
q({\rm G\hspace{0.05cm}|\hspace{0.05cm} B })}-1 \hspace{0.05cm}.$$
  
*Richtig ist also der <u>Lösungsvorschlag 2</u>. Mit den gegebenen Parameterwerten erhält man zum Beispiel:
+
*So, the correct solution is <u>solution 2</u>. With the given parameter values, we obtain, for example:
 
:$$D_{\rm K} =\frac{1}{0.0061 \cdot 0.3724 + 0.1949 \cdot
 
:$$D_{\rm K} =\frac{1}{0.0061 \cdot 0.3724 + 0.1949 \cdot
 
0.5528}-1=\frac{1}{0.11}-1  {\approx 8.09}\hspace{0.05cm}.$$
 
0.5528}-1=\frac{1}{0.11}-1  {\approx 8.09}\hspace{0.05cm}.$$
  
*Es ergibt sich exakt der gleiche Wert wie in der Teilaufgabe '''(3)''' von Aufgabe 5.6.
+
*The result is exactly the same value as in subtask '''(3)''' of Exercise 5.6.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Digital Signal Transmission: Exercises|^5.3 Bündelfehlerkanäle^]]
+
[[Category:Digital Signal Transmission: Exercises|^5.3 Burst Error Channels^]]

Latest revision as of 09:22, 21 September 2022

EDD and ECF of GE model and equivalent MC model

As in  "Exercise 5.6""Exercise 5.6Z"  and  "Exercise 5.7",  we consider the burst error channel model according to Gilbert and Elliott (GE model) with the parameters

$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001, \hspace{0.2cm}p_{\rm B} = 0.1,\hspace{0.2cm} p(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.1, \hspace{0.2cm} p(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}.$$

From these four probabilities, the corresponding characteristics of the channel model according to McCullough (MC model) can be determined in such a way that both models have exactly the same statistical properties, namely

  • exactly the same error distance distribution (EDD)  $V_a(k)$,
  • exactly the same error correlation function (ECF)  $\varphi_e(k)$.


The probabilities of the MC model were determined in  "Exercise 5.7"  as follows $($labels according to the graph for Exercise 5.7, all with  $q$  instead of  $p)$:

$$q_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.0061, \hspace{0.2cm}q_{\rm B} = 0.1949,\hspace{0.2cm} q(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.5528, \hspace{0.2cm} q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.3724\hspace{0.05cm}.$$

The upper graph shows the functions  $V_a(k)$  and  $\varphi_e(k)$  simulatively determined from  $N = 10^6$  sequence elements for the GE and MC models. There are still slight discrepancies here. In the limiting case for  $N → ∞$,  on the other hand, error correlation function and error distance distribution of both models agree exactly.

In this exercise, important descriptive variables of the GE model such as

  • state probabilities,
  • mean error probabilities, and
  • correlation duration


should be determined directly from the $q$ parameters of the MC model.




Notes:

  • From the above exercises, the following results can be further used:
(a) The state probabilities of the GE model are
$$w_{\rm G} = \frac{p(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)}{p(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) + p(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)} \hspace{0.05cm},\hspace{0.2cm} w_{\rm B} = 1 - w_{\rm G }\hspace{0.05cm}.$$
(b) The mean error probability of the GE model is
$$p_{\rm M} = w_{\rm G} \cdot p_{\rm G} + w_{\rm B} \cdot p_{\rm B} = \varphi_{e}(k = 0 )\hspace{0.05cm}.$$
(c) The correlation duration of the GE model is calculated as
$$D_{\rm K} =\frac{1}{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B ) + {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )}-1 \hspace{0.05cm}.$$


Questions

1

Calculate the probabilities  $\alpha_{\rm G}$  and  $\alpha_{\rm B}$ that the MC model is in the state "Good" and the state "Bad".

$\alpha_{\rm G} \hspace{0.05cm} = \ $

$\alpha_{\rm B} \ = \ $

2

Determine the mean error distance of the MC model.

${\rm E}\big[a\big] \ = \ $

3

What is the error correlation function value for  $k = 0$?

$\varphi_e(k = 0) \ = \ $

4

Give the error correlation duration  $D_{\rm K}$  as a function of the MC parameters  $q_{\rm G},  q_{\rm B},  q(\rm G\hspace{0.05cm}|\hspace{0.05cm}B)$  and  $q(\rm B\hspace{0.05cm}|\hspace{0.05cm}G)$. 
Which result is correct?

$D_{\rm K} = \big [q({\rm B\hspace{0.05cm}|\hspace{0.05cm}G}) + q({\rm G\hspace{0.05cm}|\hspace{0.05cm}B})\big]^{-1} \ -1$,
$D_{\rm K} = \big [q_{\rm G} \cdot q({\rm G|B}) + q_{\rm B} \cdot q({\rm G|B}) \big]^{-1} \ -1$.


Solution

(1)  For the state probabilities of the GE model was determined in Exercise 5.6Z:

$$w_{\rm G} = \frac{p(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)}{p(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) + p(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)} = 0.909 \hspace{0.05cm},\hspace{0.5cm} w_{\rm B} = 1 - w_{\rm G }= 0.091\hspace{0.05cm}.$$
  • In contrast, for the MC model we obtain:
$$\alpha_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{q(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)}{q(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) + q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)}= \frac{0.5528}{0.5528 + 0.3724}\hspace{0.15cm}\underline {= 0.5975}\hspace{0.05cm},\hspace{0.5cm} \alpha_{\rm B} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 - \alpha_{\rm G} \hspace{0.15cm}\underline {= 0.4025}\hspace{0.05cm}.$$
  • In subtask (3) of Exercise 5.7, these values have already been determined once, but from the parameters of the equivalent Gilbert-Elliott model.


(2)  The mean error distance in the channel state "GOOD" is equal to the reciprocal of the associated error probability $q_{\rm G}$.

  • Accordingly, the mean error distance in the state "BAD" is $1/q_{\rm B}$.
  • By weighting with the two state probabilities $\alpha_{\rm G}$ and $\alpha_{\rm B}$, the mean error distance of the MC model as a whole is given by
$${\rm E}[a] =\frac{\alpha_{\rm G}}{q_{\rm G}} + \frac{\alpha_{\rm B}}{q_{\rm B}}=\frac{0.5975}{0.0061} + \frac{0.4025}{0.1949} = 97.95 + 2.06\hspace{0.15cm}\underline { = 100.1}\hspace{0.05cm}.$$
  • Of course, this value should be exactly the same as for the corresponding GE model.
  • The small deviation of $0.1$ is due to rounding errors.


(3)  Again, the relation $\varphi_e(k = 0) = p_{\rm M}$ holds.

  • However, the mean error probability is equal to the reciprocal of the mean error distance ${\rm E}[a]$.
  • It follows that $\varphi_e(k = 0) \ \underline {= 0.01}$.


(4)  In the GE model, the correlation duration is given as follows ($S$ stands for sum):

$$D_{\rm K} = {1}/{S}-1 \hspace{0.05cm},\hspace{0.2cm}S = {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B ) + {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )\hspace{0.05cm}.$$
  • Further, using the data for Exercise 5.7:
$$q({\rm B\hspace{0.05cm}|\hspace{0.05cm} G }) = \frac{\alpha_{\rm B} \cdot S}{\alpha_{\rm G} \cdot q_{\rm B} + \alpha_{\rm B} \cdot q_{\rm G}} \hspace{0.05cm}, \hspace{0.2cm}q({\rm G\hspace{0.05cm}|\hspace{0.05cm} B })= \frac{\alpha_{\rm G}}{\alpha_{\rm B}} \cdot q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )$$
$$\Rightarrow \hspace{0.3cm} S = q_{\rm G} \cdot q({\rm B\hspace{0.05cm}|\hspace{0.05cm} G }) + q_{\rm B} \cdot \frac{\alpha_{\rm G}}{\alpha_{\rm B}} \cdot q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) = q_{\rm G} \cdot q({\rm B\hspace{0.05cm}|\hspace{0.05cm} G })+ q_{\rm B} \cdot q({\rm G\hspace{0.05cm}|\hspace{0.05cm} B }) \hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm}D_{\rm K} =\frac{1}{q_{\rm G} \cdot q({\rm B\hspace{0.05cm}|\hspace{0.05cm} G })+ q_{\rm B} \cdot q({\rm G\hspace{0.05cm}|\hspace{0.05cm} B })}-1 \hspace{0.05cm}.$$
  • So, the correct solution is solution 2. With the given parameter values, we obtain, for example:
$$D_{\rm K} =\frac{1}{0.0061 \cdot 0.3724 + 0.1949 \cdot 0.5528}-1=\frac{1}{0.11}-1 {\approx 8.09}\hspace{0.05cm}.$$
  • The result is exactly the same value as in subtask (3) of Exercise 5.6.