Difference between revisions of "Aufgaben:Exercise 3.5Z: Application of the Residue Theorem"
(14 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID1781__LZI_Z_3_5.png|right|frame|Six | + | [[File:P_ID1781__LZI_Z_3_5.png|right|frame|Six pole–zero configurations]] |
− | + | Let the spectral function YL(p) be given in pole–zero notation characterized by | |
− | *Z | + | *Z zeros poi, |
− | *N | + | *N poles pxi, and |
− | * | + | *the constant K. |
− | + | In the following, the configurations shown in the diagram are considered. Let always K=2 hold. | |
− | + | In the case that the number Z of zeros is less than the number N of poles, the corresponding time signal y(t) can be determined directly by applying the [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Formulation_of_the_residue_theorem|residue theorem]] . | |
− | In | + | In this case: |
:$$y(t) = \sum_{i=1}^{I} \left \{ | :$$y(t) = \sum_{i=1}^{I} \left \{ | ||
Y_{\rm L}(p)\cdot (p - p_{{\rm x}i})\cdot {\rm e}^{\hspace{0.05cm}p | Y_{\rm L}(p)\cdot (p - p_{{\rm x}i})\cdot {\rm e}^{\hspace{0.05cm}p | ||
Line 20: | Line 20: | ||
\bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \right | \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \right | ||
\} \hspace{0.05cm}.$$ | \} \hspace{0.05cm}.$$ | ||
− | I | + | I indicates the number of distinguishable poles; I=N holds for all given constellations. |
Line 27: | Line 27: | ||
− | + | Please note: | |
− | + | *The exercise belongs to the chapter [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]]. | |
− | + | *If the time signal y(t) is complex, then YL(p) cannot be realized as a circuit. However, the application of the residue theorem is still possible. | |
− | + | *The complex frequency p, the zeros poi as well as the poles pxi each describe normalized quantities without units in this exercise. | |
− | *The exercise belongs to the chapter [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]]. | + | *Thus, time t is dimensionless, too. |
− | |||
− | * | ||
− | * | ||
− | * | ||
Line 41: | Line 37: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {For which configurations can the residue theorem <u>not be applied directly</u>? |
|type="[]"} | |type="[]"} | ||
− | - | + | - Configuration A, |
− | + | + | + Configuration B, |
− | - | + | - Configuration C, |
− | + | + | + Configuration D, |
− | - | + | - Configuration E, |
− | + | + | + Configuration F. |
− | { | + | {Compute y(t) for configuration A with K=2 and px=−1. What is the numerical value for time t=1? |
|type="{}"} | |type="{}"} | ||
Re{y(t=1)} = { 0.736 3% } | Re{y(t=1)} = { 0.736 3% } | ||
Line 57: | Line 53: | ||
− | { | + | {Compute y(t) for configuration C with K=2 and px=−0.2+j⋅1.5π. What numerical value is obtained for time t=1? |
|type="{}"} | |type="{}"} | ||
Re{y(t=1)} = { 0. } | Re{y(t=1)} = { 0. } | ||
Line 63: | Line 59: | ||
− | { | + | {What signal value y(t=1) is obtained for the constellation E with K=2 and two poles at px=−0.2±j⋅1.5π? |
|type="{}"} | |type="{}"} | ||
Re{y(t=1)} = { -0.357--0.337 } | Re{y(t=1)} = { -0.357--0.337 } | ||
Line 74: | Line 70: | ||
===Solution=== | ===Solution=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' <u>Suggested solutions 2, 4 and 6</u> are correct: |
− | * | + | *The prerequisite for the application of the residue theorem is that there are fewer zeros than poles, that is, Z<N must hold. |
− | * | + | *This condition is not met for the configurations B, D and F. |
− | * | + | *First, a partial fraction decomposition must be made here, for example for configuration B with px=−1: |
:$$Y_{\rm L}(p)= \frac {p} {p +1}= 1-\frac {1} {p +1} | :$$Y_{\rm L}(p)= \frac {p} {p +1}= 1-\frac {1} {p +1} | ||
\hspace{0.05cm} .$$ | \hspace{0.05cm} .$$ | ||
Line 83: | Line 79: | ||
− | '''(2)''' | + | '''(2)''' Considering YL(p)=2/(p+1) it follows from the residue theorem with I=1: |
:$$y(t) = 2 \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} | :$$y(t) = 2 \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} | ||
\bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1}= 2 \cdot {\rm | \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1}= 2 \cdot {\rm | ||
e}^{- \hspace{0.05cm}t}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}y(t=1) | e}^{- \hspace{0.05cm}t}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}y(t=1) | ||
− | =\frac{2}{\rm e} \hspace{0.15cm}\underline{ \approx 0.736 \hspace{0.15cm}{\rm ( | + | =\frac{2}{\rm e} \hspace{0.15cm}\underline{ \approx 0.736 \hspace{0.15cm}{\rm (purely\hspace{0.15cm}real)}} |
\hspace{0.05cm} .$$ | \hspace{0.05cm} .$$ | ||
− | '''(3)''' | + | [[File:P_ID1782__LZI_Z_3_5_c.png|right|frame|Complex signals at a single complex pole]] |
+ | '''(3)''' Using the same procedure as in subtask '''(2)''' the following is obtained: | ||
:$$y(t) = 2 \cdot {\rm e}^{\hspace{0.05cm}-(0.2 \hspace{0.05cm}+ | :$$y(t) = 2 \cdot {\rm e}^{\hspace{0.05cm}-(0.2 \hspace{0.05cm}+ | ||
\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}1.5 \pi) \hspace{0.05cm} \cdot \hspace{0.05cm}t} | \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}1.5 \pi) \hspace{0.05cm} \cdot \hspace{0.05cm}t} | ||
Line 100: | Line 97: | ||
\hspace{0.05cm}t} | \hspace{0.05cm}t} | ||
\hspace{0.05cm} .$$ | \hspace{0.05cm} .$$ | ||
− | * | + | *Due to the second term, it is a complex signal whose phase rotates in the mathematically positive direction (counterclockwise) . |
− | * | + | *For time t=1, the following holds: |
:$$y(t = 1) = 2 \cdot {\rm e}^{\hspace{0.05cm}-0.2} \cdot \big [ | :$$y(t = 1) = 2 \cdot {\rm e}^{\hspace{0.05cm}-0.2} \cdot \big [ | ||
\cos(1.5 \pi) + {\rm j} \cdot \sin(1.5 \pi) | \cos(1.5 \pi) + {\rm j} \cdot \sin(1.5 \pi) | ||
− | \big ]= - {\rm j} \cdot 1.638 | + | \big ]= - {\rm j} \cdot 1.638$$ |
+ | :$$\Rightarrow | ||
\hspace{0.3cm}{\rm Re}\{y(t = 1)\} \hspace{0.15cm}\underline{ = 0},\hspace{0.2cm} {\rm Im}\{y(t = 1)\} \hspace{0.15cm}\underline{=- 1.638} | \hspace{0.3cm}{\rm Re}\{y(t = 1)\} \hspace{0.15cm}\underline{ = 0},\hspace{0.2cm} {\rm Im}\{y(t = 1)\} \hspace{0.15cm}\underline{=- 1.638} | ||
\hspace{0.05cm} .$$ | \hspace{0.05cm} .$$ | ||
− | * | + | *The left graph shows the signal for a pole at px=−2+j⋅1.5π. |
+ | *The right graph shows the conjugate complex signal to it can be seen for px=−2−j⋅1.5π. | ||
− | |||
− | + | [[File:P_ID1783__LZI_Z_3_5_d.png|right|frame|Signal curve of configuration E]] | |
− | '''(4)''' | + | '''(4)''' Now I=2 holds. The residuals of px1 and px2 yield: |
:$$y_1(t) = | :$$y_1(t) = | ||
\frac {K \cdot (p-p_{{\rm x}1})} { (p-p_{{\rm x}1})(p-p_{{\rm x}2})} \cdot {\rm e}^{\hspace{0.05cm}p\hspace{0.05cm}\cdot | \frac {K \cdot (p-p_{{\rm x}1})} { (p-p_{{\rm x}1})(p-p_{{\rm x}2})} \cdot {\rm e}^{\hspace{0.05cm}p\hspace{0.05cm}\cdot | ||
Line 126: | Line 124: | ||
-\frac {K } { p_{{\rm x}1}-p_{{\rm x}2}} \cdot {\rm e}^{-p_{{\rm x}1}\hspace{0.05cm}\cdot | -\frac {K } { p_{{\rm x}1}-p_{{\rm x}2}} \cdot {\rm e}^{-p_{{\rm x}1}\hspace{0.05cm}\cdot | ||
\hspace{0.05cm}t}$$ | \hspace{0.05cm}t}$$ | ||
− | :$$ | + | :$$y(t)= y_1(t)+y_2(t) = |
− | |||
\frac {2 \cdot {\rm e}^{\hspace{0.05cm}-0.2 | \frac {2 \cdot {\rm e}^{\hspace{0.05cm}-0.2 | ||
\hspace{0.08cm}\cdot | \hspace{0.08cm}\cdot | ||
\hspace{0.05cm}t}}{{\rm j} \cdot 3 \pi} \cdot \big [ \cos(.) + {\rm j} \cdot \sin(.) | \hspace{0.05cm}t}}{{\rm j} \cdot 3 \pi} \cdot \big [ \cos(.) + {\rm j} \cdot \sin(.) | ||
− | - \cos(.) + {\rm j} \cdot \sin(.)\big ]= | + | - \cos(.) + {\rm j} \cdot \sin(.)\big ]$$ |
+ | :$$\Rightarrow | ||
+ | \hspace{0.3cm}y(t)= | ||
\frac {4 }{ 3 \pi} \cdot {\rm e}^{\hspace{0.05cm}-0.2 | \frac {4 }{ 3 \pi} \cdot {\rm e}^{\hspace{0.05cm}-0.2 | ||
\hspace{0.08cm}\cdot | \hspace{0.08cm}\cdot | ||
\hspace{0.05cm}t}\cdot \sin(1.5\pi \cdot t)$$ | \hspace{0.05cm}t}\cdot \sin(1.5\pi \cdot t)$$ | ||
− | |||
:$$\Rightarrow | :$$\Rightarrow | ||
\hspace{0.3cm}y(t=1)= -\frac {4 }{ 3 \pi} \cdot {\rm e}^{\hspace{0.05cm}-0.2 | \hspace{0.3cm}y(t=1)= -\frac {4 }{ 3 \pi} \cdot {\rm e}^{\hspace{0.05cm}-0.2 | ||
Line 142: | Line 140: | ||
\hspace{0.05cm} .$$ | \hspace{0.05cm} .$$ | ||
− | + | The graph shows the (purely real) signal curve y(t) for this configuration. | |
{{ML-Fuß}} | {{ML-Fuß}} |
Latest revision as of 12:12, 10 November 2021
Let the spectral function YL(p) be given in pole–zero notation characterized by
- Z zeros poi,
- N poles pxi, and
- the constant K.
In the following, the configurations shown in the diagram are considered. Let always K=2 hold.
In the case that the number Z of zeros is less than the number N of poles, the corresponding time signal y(t) can be determined directly by applying the residue theorem .
In this case:
- y(t)=I∑i=1{YL(p)⋅(p−pxi)⋅ept|p=pxi}.
I indicates the number of distinguishable poles; I=N holds for all given constellations.
Please note:
- The exercise belongs to the chapter Inverse Laplace Transform.
- If the time signal y(t) is complex, then YL(p) cannot be realized as a circuit. However, the application of the residue theorem is still possible.
- The complex frequency p, the zeros poi as well as the poles pxi each describe normalized quantities without units in this exercise.
- Thus, time t is dimensionless, too.
Questions
Solution
- The prerequisite for the application of the residue theorem is that there are fewer zeros than poles, that is, Z<N must hold.
- This condition is not met for the configurations B, D and F.
- First, a partial fraction decomposition must be made here, for example for configuration B with px=−1:
- YL(p)=pp+1=1−1p+1.
(2) Considering YL(p)=2/(p+1) it follows from the residue theorem with I=1:
- y(t)=2⋅ept|p=−1=2⋅e−t⇒y(t=1)=2e≈0.736(purelyreal)_.
(3) Using the same procedure as in subtask (2) the following is obtained:
- y(t)=2⋅e−(0.2+j⋅1.5π)⋅t=2⋅e−0.2⋅t⋅e−j⋅1.5π⋅t.
- Due to the second term, it is a complex signal whose phase rotates in the mathematically positive direction (counterclockwise) .
- For time t=1, the following holds:
- y(t=1)=2⋅e−0.2⋅[cos(1.5π)+j⋅sin(1.5π)]=−j⋅1.638
- ⇒Re{y(t=1)}=0_,Im{y(t=1)}=−1.638_.
- The left graph shows the signal for a pole at px=−2+j⋅1.5π.
- The right graph shows the conjugate complex signal to it can be seen for px=−2−j⋅1.5π.
(4) Now I=2 holds. The residuals of px1 and px2 yield:
- y1(t)=K⋅(p−px1)(p−px1)(p−px2)⋅ep⋅t|p=px1=Kpx1−px2⋅epx1⋅t,
- y2(t)=Kpx2−px1⋅epx2⋅t=−Kpx1−px2⋅e−px1⋅t
- y(t)=y1(t)+y2(t)=2⋅e−0.2⋅tj⋅3π⋅[cos(.)+j⋅sin(.)−cos(.)+j⋅sin(.)]
- ⇒y(t)=43π⋅e−0.2⋅t⋅sin(1.5π⋅t)
- ⇒y(t=1)=−43π⋅e−0.2⋅t=−0.347_.
The graph shows the (purely real) signal curve y(t) for this configuration.