Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.5Z: Application of the Residue Theorem"

From LNTwww
 
(12 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1781__LZI_Z_3_5.png|right|frame|Six different <br>pole–zero configurations]]
+
[[File:P_ID1781__LZI_Z_3_5.png|right|frame|Six pole–zero configurations]]
 
Let the spectral function &nbsp;YL(p)&nbsp; be given in pole&ndash;zero notation characterized by  
 
Let the spectral function &nbsp;YL(p)&nbsp; be given in pole&ndash;zero notation characterized by  
 
*Z&nbsp; zeros&nbsp; poi,  
 
*Z&nbsp; zeros&nbsp; poi,  
Line 10: Line 10:
  
  
In the following, the configurations shown in the diagram are considered. Let always &nbsp;K=2 hold.
+
In the following,&nbsp; the configurations shown in the diagram are considered.&nbsp; Let always &nbsp;K=2 hold.
  
In the case that the number&nbsp; Z&nbsp; of zeros is less than the number&nbsp; N&nbsp; of poles, the corresponding time signal &nbsp;y(t)&nbsp; can be determined directly by applying the&nbsp; [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Formulation_of_the_residue_theorem|residue theorem]]&nbsp;.  
+
In the case that the number&nbsp; Z&nbsp; of zeros is less than the number&nbsp; N&nbsp; of poles,&nbsp; the corresponding time signal &nbsp;y(t)&nbsp; can be determined directly by applying the&nbsp; [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform#Formulation_of_the_residue_theorem|residue theorem]]&nbsp;.  
  
In this case
+
In this case:
 
:$$y(t) = \sum_{i=1}^{I} \left \{
 
:$$y(t) = \sum_{i=1}^{I} \left \{
 
  Y_{\rm L}(p)\cdot (p - p_{{\rm x}i})\cdot  {\rm e}^{\hspace{0.05cm}p
 
  Y_{\rm L}(p)\cdot (p - p_{{\rm x}i})\cdot  {\rm e}^{\hspace{0.05cm}p
Line 20: Line 20:
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \right
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \right
 
  \} \hspace{0.05cm}.$$
 
  \} \hspace{0.05cm}.$$
I&nbsp; gibt die Anzahl der unterscheidbaren Pole an;&nbsp; bei allen vorgegebenen Konstellationen ist&nbsp; I=N.
+
I&nbsp; indicates the number of distinguishable poles;&nbsp; &nbsp; I=N holds&nbsp; for all given constellations.
  
  
Line 27: Line 27:
  
  
 
+
Please note:  
 
+
*The exercise belongs to the chapter&nbsp;  [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]].  
 
+
*If the time signal &nbsp;y(t)&nbsp; is complex,&nbsp; then &nbsp;YL(p)&nbsp; cannot be realized as a circuit.&nbsp; However, the application of the residue theorem is still possible.
''Please note:''
+
*The complex frequency &nbsp;p,&nbsp; the zeros &nbsp;poi&nbsp; as well as the poles &nbsp;pxi&nbsp; each describe normalized quantities without units in this exercise.  
*The exercise belongs to the chapter&nbsp;  [[Linear_and_Time_Invariant_Systems/Inverse_Laplace_Transform|Inverse Laplace Transform]].
+
*Thus,&nbsp; time&nbsp; t&nbsp; is dimensionless, too.
 
*Ist das Zeitsignal &nbsp;y(t)&nbsp; komplex, so kann &nbsp;YL(p)&nbsp; nicht als Schaltung realisiert werden.&nbsp; Die Anwendung des Residuensatzes ist aber trotzdem möglich.
 
*Die komplexe Frequenz &nbsp;p, die Nullstellen &nbsp;poi&nbsp; sowie die Pole &nbsp;pxi&nbsp; beschreiben in dieser Aufgabe jeweils normierte Größen ohne Einheit.  
 
*Damit ist auch die Zeit&nbsp; t&nbsp; dimensionslos.
 
  
  
Line 41: Line 37:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Bei welchen Konfigurationen lässt sich der Residuensatz <u>nicht direkt</u> anwenden?
+
{For which configurations can the residue theorem&nbsp; <u>not be applied directly</u>?
 
|type="[]"}
 
|type="[]"}
- Konfiguration &nbsp;A,
+
- Configuration &nbsp;A,
+ Konfiguration &nbsp;B,
+
+ Configuration &nbsp;B,
- Konfiguration &nbsp;C,
+
- Configuration &nbsp;C,
+ Konfiguration &nbsp;D,
+
+ Configuration &nbsp;D,
- Konfiguration &nbsp;E,
+
- Configuration &nbsp;E,
+ Konfiguration &nbsp;F.
+
+ Configuration &nbsp;F.
  
  
{Berechnen Sie &nbsp;y(t)&nbsp; für die Konfiguration &nbsp;A mit &nbsp;K=2&nbsp; und &nbsp;px=1.&nbsp; Welcher Zahlenwert ergibt sich für den Zeitpunkt &nbsp;t=1?
+
{Compute &nbsp;y(t)&nbsp; for configuration &nbsp;A&nbsp; with &nbsp;K=2&nbsp; and &nbsp;px=1.&nbsp; What is the numerical value for time &nbsp;t=1?
 
|type="{}"}
 
|type="{}"}
 
 Re{y(t=1)} =   { 0.736 3% }
 
 Re{y(t=1)} =   { 0.736 3% }
Line 57: Line 53:
  
  
{Berechnen Sie &nbsp;y(t)&nbsp; für die Konfiguration &nbsp;C mit &nbsp;K=2&nbsp; und &nbsp;px=0.2+j1.5π.&nbsp; Welcher Zahlenwert ergibt sich für den Zeitpunkt &nbsp;t=1?
+
{Compute &nbsp;y(t)&nbsp; for configuration &nbsp;C&nbsp; with &nbsp;K=2&nbsp; and &nbsp;px=0.2+j1.5π.&nbsp; What numerical value is obtained for time &nbsp;t=1?
 
|type="{}"}
 
|type="{}"}
 
 Re{y(t=1)} =  { 0. }
 
 Re{y(t=1)} =  { 0. }
Line 63: Line 59:
  
  
{Welcher Signalwert &nbsp;y(t=1)&nbsp; ergibt sich bei der Konstellation &nbsp;E mit &nbsp;K=2&nbsp; und zwei Polstellen bei &nbsp;px=0.2±j1.5π?
+
{What signal value &nbsp;y(t=1)&nbsp; is obtained for the constellation &nbsp;E&nbsp; with &nbsp;K=2&nbsp; and two poles at &nbsp;px=0.2±j1.5π?
 
|type="{}"}
 
|type="{}"}
 
   Re{y(t=1)} =  { -0.357--0.337 }
 
   Re{y(t=1)} =  { -0.357--0.337 }
Line 74: Line 70:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2, 4 und 6</u>:
+
'''(1)'''&nbsp; <u>Suggested solutions 2,&nbsp; 4&nbsp; and&nbsp; 6</u>&nbsp; are correct:
*Voraussetzung für die Anwendung des Residuensatzes ist, dass es weniger Nullstellen als Pole gibt, das heißt, es muss &nbsp;Z<N&nbsp; gelten.  
+
*The prerequisite for the application of the residue theorem is that there are fewer zeros than poles,&nbsp; that is, &nbsp;Z<N&nbsp; must hold.  
*Diese Voraussetzung ist bei den Konfigurationen &nbsp;B, &nbsp;D und &nbsp;F nicht gegeben.  
+
*This condition is not met for the configurations &nbsp;B, &nbsp;D and &nbsp;F.  
*Hier muss zunächst eine Partialbruchzerlegung vorgenommen werden, zum Beispiel für die Konfiguration &nbsp;B&nbsp; mit &nbsp;px=1:
+
*First,&nbsp; a partial fraction decomposition must be made here,&nbsp; for example for configuration &nbsp;B&nbsp; with &nbsp;px=1:
 
:$$Y_{\rm L}(p)=  \frac {p} {p +1}= 1-\frac {1} {p +1}
 
:$$Y_{\rm L}(p)=  \frac {p} {p +1}= 1-\frac {1} {p +1}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
Line 83: Line 79:
  
  
'''(2)'''&nbsp; Mit  &nbsp;YL(p)=2/(p+1)&nbsp; ergibt sich aus dem Residuensatz mit &nbsp;I=1:
+
'''(2)'''&nbsp; Considering &nbsp;YL(p)=2/(p+1)&nbsp; it follows from the residue theorem with &nbsp;I=1:
 
:$$y(t) = 2 \cdot  {\rm e}^{\hspace{0.05cm}p  \hspace{0.05cm}t}
 
:$$y(t) = 2 \cdot  {\rm e}^{\hspace{0.05cm}p  \hspace{0.05cm}t}
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1}= 2 \cdot  {\rm
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1}= 2 \cdot  {\rm
 
  e}^{-  \hspace{0.05cm}t}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}y(t=1)
 
  e}^{-  \hspace{0.05cm}t}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}y(t=1)
  =\frac{2}{\rm e}  \hspace{0.15cm}\underline{ \approx 0.736 \hspace{0.15cm}{\rm (rein\hspace{0.15cm}reell)}}
+
  =\frac{2}{\rm e}  \hspace{0.15cm}\underline{ \approx 0.736 \hspace{0.15cm}{\rm (purely\hspace{0.15cm}real)}}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
  
  
'''(3)'''&nbsp; Bei gleicher Vorgehensweise wie in der Teilaufgabe&nbsp; '''(2)'''&nbsp; erhält man nun:
+
[[File:P_ID1782__LZI_Z_3_5_c.png|right|frame|Complex signals at a single complex pole]]
 +
'''(3)'''&nbsp; Using the same procedure as in subtask&nbsp; '''(2)'''&nbsp; the following is obtained:
 
:$$y(t) = 2 \cdot  {\rm e}^{\hspace{0.05cm}-(0.2 \hspace{0.05cm}+
 
:$$y(t) = 2 \cdot  {\rm e}^{\hspace{0.05cm}-(0.2 \hspace{0.05cm}+
 
  \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}1.5 \pi) \hspace{0.05cm} \cdot \hspace{0.05cm}t}
 
  \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}1.5 \pi) \hspace{0.05cm} \cdot \hspace{0.05cm}t}
Line 100: Line 97:
 
  \hspace{0.05cm}t}
 
  \hspace{0.05cm}t}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
*Aufgrund des zweiten Terms handelt es sich um ein komplexes Signal, dessen Phase in mathematisch positiver Richtung&nbsp; (entgegen dem Uhrzeigersinn)&nbsp; dreht.  
+
*Due to the second term,&nbsp; it is a complex signal whose phase rotates in the mathematically positive direction&nbsp; (counterclockwise)&nbsp;.  
*Für den Zeitpunkt &nbsp;t=1&nbsp; gilt:
+
*For time &nbsp;t=1,&nbsp; the following holds:
 
:$$y(t = 1)  = 2 \cdot  {\rm e}^{\hspace{0.05cm}-0.2} \cdot  \big [
 
:$$y(t = 1)  = 2 \cdot  {\rm e}^{\hspace{0.05cm}-0.2} \cdot  \big [
 
  \cos(1.5 \pi) + {\rm j} \cdot \sin(1.5 \pi)
 
  \cos(1.5 \pi) + {\rm j} \cdot \sin(1.5 \pi)
  \big ]= - {\rm j} \cdot 1.638\hspace{0.3cm}\Rightarrow
+
  \big ]= - {\rm j} \cdot 1.638$$
 +
:$$\Rightarrow
 
  \hspace{0.3cm}{\rm Re}\{y(t = 1)\}  \hspace{0.15cm}\underline{ = 0},\hspace{0.2cm}  {\rm Im}\{y(t = 1)\} \hspace{0.15cm}\underline{=- 1.638}
 
  \hspace{0.3cm}{\rm Re}\{y(t = 1)\}  \hspace{0.15cm}\underline{ = 0},\hspace{0.2cm}  {\rm Im}\{y(t = 1)\} \hspace{0.15cm}\underline{=- 1.638}
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
*Die linke Grafik zeigt das komplexe Signal für einen Pol bei &nbsp;px=2+j1.5π.&nbsp; Rechts sieht man das dazu konjugiert&ndash;komplexe Signal für &nbsp;px=2j1.5π.
+
*The left graph shows the signal for a pole at &nbsp;px=2+j1.5π.&nbsp;  
 +
*The right graph shows the conjugate complex signal to it can be seen for &nbsp;px=2j1.5π.
  
  
[[File:P_ID1782__LZI_Z_3_5_c.png|center|frame|Komplexe Signale bei einem Pol]]
 
  
 
+
[[File:P_ID1783__LZI_Z_3_5_d.png|right|frame|Signal curve of configuration&nbsp; E]]
'''(4)'''&nbsp; Nun gilt &nbsp;I=2. Die Residien von &nbsp;px1&nbsp; bzw. &nbsp;px2&nbsp; liefern:
+
'''(4)'''&nbsp; Now &nbsp;I=2 holds.&nbsp;  The residuals of &nbsp;px1&nbsp; and &nbsp;px2&nbsp; yield:
 
:$$y_1(t) =
 
:$$y_1(t) =
 
  \frac {K \cdot (p-p_{{\rm x}1})} { (p-p_{{\rm x}1})(p-p_{{\rm x}2})} \cdot  {\rm e}^{\hspace{0.05cm}p\hspace{0.05cm}\cdot
 
  \frac {K \cdot (p-p_{{\rm x}1})} { (p-p_{{\rm x}1})(p-p_{{\rm x}2})} \cdot  {\rm e}^{\hspace{0.05cm}p\hspace{0.05cm}\cdot
Line 126: Line 124:
 
  -\frac {K } { p_{{\rm x}1}-p_{{\rm x}2}} \cdot  {\rm e}^{-p_{{\rm x}1}\hspace{0.05cm}\cdot
 
  -\frac {K } { p_{{\rm x}1}-p_{{\rm x}2}} \cdot  {\rm e}^{-p_{{\rm x}1}\hspace{0.05cm}\cdot
 
  \hspace{0.05cm}t}$$
 
  \hspace{0.05cm}t}$$
:$$\Rightarrow
+
:$$y(t)= y_1(t)+y_2(t) =
\hspace{0.3cm}y(t)= y_1(t)+y_2(t) =
 
 
  \frac {2 \cdot {\rm e}^{\hspace{0.05cm}-0.2
 
  \frac {2 \cdot {\rm e}^{\hspace{0.05cm}-0.2
 
\hspace{0.08cm}\cdot
 
\hspace{0.08cm}\cdot
 
  \hspace{0.05cm}t}}{{\rm j} \cdot 3 \pi} \cdot \big [ \cos(.) + {\rm j} \cdot \sin(.)
 
  \hspace{0.05cm}t}}{{\rm j} \cdot 3 \pi} \cdot \big [ \cos(.) + {\rm j} \cdot \sin(.)
  - \cos(.) + {\rm j} \cdot \sin(.)\big ]=   
+
  - \cos(.) + {\rm j} \cdot \sin(.)\big ]$$
 +
:$$\Rightarrow
 +
\hspace{0.3cm}y(t)=   
 
  \frac {4 }{ 3 \pi} \cdot {\rm e}^{\hspace{0.05cm}-0.2
 
  \frac {4 }{ 3 \pi} \cdot {\rm e}^{\hspace{0.05cm}-0.2
 
\hspace{0.08cm}\cdot
 
\hspace{0.08cm}\cdot
 
  \hspace{0.05cm}t}\cdot  \sin(1.5\pi \cdot t)$$
 
  \hspace{0.05cm}t}\cdot  \sin(1.5\pi \cdot t)$$
[[File:P_ID1783__LZI_Z_3_5_d.png|right|frame|Signalverlauf der Konfiguration E]]
 
 
:$$\Rightarrow
 
:$$\Rightarrow
 
\hspace{0.3cm}y(t=1)= -\frac {4 }{ 3 \pi} \cdot {\rm e}^{\hspace{0.05cm}-0.2
 
\hspace{0.3cm}y(t=1)= -\frac {4 }{ 3 \pi} \cdot {\rm e}^{\hspace{0.05cm}-0.2
Line 142: Line 140:
 
  \hspace{0.05cm} .$$
 
  \hspace{0.05cm} .$$
  
Die Grafik zeigt den (rein reellen) Signalverlauf&nbsp; y(t)&nbsp; für diese Konfiguration.
+
The graph shows the&nbsp; (purely real)&nbsp; signal curve&nbsp; y(t)&nbsp; for this configuration.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 12:12, 10 November 2021

Six pole–zero configurations

Let the spectral function  YL(p)  be given in pole–zero notation characterized by

  • Z  zeros  poi,
  • N  poles  pxi, and
  • the constant  K.


In the following,  the configurations shown in the diagram are considered.  Let always  K=2 hold.

In the case that the number  Z  of zeros is less than the number  N  of poles,  the corresponding time signal  y(t)  can be determined directly by applying the  residue theorem .

In this case:

y(t)=Ii=1{YL(p)(ppxi)ept|p=pxi}.

I  indicates the number of distinguishable poles;    I=N holds  for all given constellations.




Please note:

  • The exercise belongs to the chapter  Inverse Laplace Transform.
  • If the time signal  y(t)  is complex,  then  YL(p)  cannot be realized as a circuit.  However, the application of the residue theorem is still possible.
  • The complex frequency  p,  the zeros  poi  as well as the poles  pxi  each describe normalized quantities without units in this exercise.
  • Thus,  time  t  is dimensionless, too.


Questions

1

For which configurations can the residue theorem  not be applied directly?

Configuration  A,
Configuration  B,
Configuration  C,
Configuration  D,
Configuration  E,
Configuration  F.

2

Compute  y(t)  for configuration  A  with  K=2  and  px=1.  What is the numerical value for time  t=1?

 Re{y(t=1)} = 

 Im{y(t=1)} = 

3

Compute  y(t)  for configuration  C  with  K=2  and  px=0.2+j1.5π.  What numerical value is obtained for time  t=1?

 Re{y(t=1)} = 

 Im{y(t=1)} = 

4

What signal value  y(t=1)  is obtained for the constellation  E  with  K=2  and two poles at  px=0.2±j1.5π?

 Re{y(t=1)} = 

 Im{y(t=1)} = 


Solution

(1)  Suggested solutions 2,  4  and  6  are correct:

  • The prerequisite for the application of the residue theorem is that there are fewer zeros than poles,  that is,  Z<N  must hold.
  • This condition is not met for the configurations  B,  D and  F.
  • First,  a partial fraction decomposition must be made here,  for example for configuration  B  with  px=1:
YL(p)=pp+1=11p+1.


(2)  Considering  YL(p)=2/(p+1)  it follows from the residue theorem with  I=1:

y(t)=2ept|p=1=2ety(t=1)=2e0.736(purelyreal)_.


Complex signals at a single complex pole

(3)  Using the same procedure as in subtask  (2)  the following is obtained:

y(t)=2e(0.2+j1.5π)t=2e0.2tej1.5πt.
  • Due to the second term,  it is a complex signal whose phase rotates in the mathematically positive direction  (counterclockwise) .
  • For time  t=1,  the following holds:
y(t=1)=2e0.2[cos(1.5π)+jsin(1.5π)]=j1.638
Re{y(t=1)}=0_,Im{y(t=1)}=1.638_.
  • The left graph shows the signal for a pole at  px=2+j1.5π
  • The right graph shows the conjugate complex signal to it can be seen for  px=2j1.5π.


Signal curve of configuration  E

(4)  Now  I=2 holds.  The residuals of  px1  and  px2  yield:

y1(t)=K(ppx1)(ppx1)(ppx2)ept|p=px1=Kpx1px2epx1t,
y2(t)=Kpx2px1epx2t=Kpx1px2epx1t
y(t)=y1(t)+y2(t)=2e0.2tj3π[cos(.)+jsin(.)cos(.)+jsin(.)]
y(t)=43πe0.2tsin(1.5πt)
y(t=1)=43πe0.2t=0.347_.

The graph shows the  (purely real)  signal curve  y(t)  for this configuration.