Difference between revisions of "Theory of Stochastic Signals/Set Theory Basics"

From LNTwww
 
(35 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Wahrscheinlichkeitsrechnung
+
|Untermenü=Probability Calculation
|Vorherige Seite=Some basic definitions
+
|Vorherige Seite=Some Basic Definitions
|Nächste Seite=Statistische Abhängigkeit und Unabhängigkeit
+
|Nächste Seite=Statistical Dependence and Independence
 
}}
 
}}
 
==Venn diagram, universal and empty set==
 
==Venn diagram, universal and empty set==
 
<br>
 
<br>
 +
In later chapters,&nbsp; we will sometimes refer to&nbsp; [https://en.wikipedia.org/wiki/Set_theory &raquo;set theory&laquo;]&nbsp;.&nbsp; Therefore,&nbsp; the most important basics and definitions of this discipline will be briefly summarized here.&nbsp;  The topic is also covered in the&nbsp; $($German language$)$&nbsp; learning video&nbsp; [[Mengentheoretische_Begriffe_und_Gesetzmäßigkeiten_(Lernvideo)|&raquo;Mengentheoretische Begriffe und Gesetzmäßigkeiten&laquo;]] &nbsp; &rArr; &nbsp; &raquo;Set Theory &ndash; Terms and Regularities&laquo;.
 
[[File:EN_Sto_T_1_2_S1.png | right|frame|Set representation in the Venn diagram]]
 
[[File:EN_Sto_T_1_2_S1.png | right|frame|Set representation in the Venn diagram]]
In later chapters,&nbsp; we will sometimes refer to&nbsp; [https://https://en.wikipedia.org/wiki/Set_theory set theory]&nbsp;.&nbsp; Therefore,&nbsp; the most important basics and definitions of this discipline will be briefly summarized here.&nbsp;  The topic is also covered in the&nbsp; (German language)&nbsp; learning video&nbsp; <br> [[Mengentheoretische_Begriffe_und_Gesetzmäßigkeiten_(Lernvideo)|"Mengentheoretische Begriffe und Gesetzmäßigkeiten"]] &nbsp; &rArr; &nbsp; "Set Theory &ndash; Terms and Regularities"
 
  
An important tool of set theory is the&nbsp; '''Venn diagramm'''&nbsp; according to the graph:
+
An important tool of set theory is the&nbsp; &raquo;'''Venn diagram'''&laquo;&nbsp; according to the graph:
*Applied to probability theory,&nbsp; here the events&nbsp; $A_i$&nbsp; are represented as areas.&nbsp; For a simpler description we do not denote the events here with&nbsp; $A_1$,&nbsp; $A_2$&nbsp; and&nbsp;  $A_3$,&nbsp; but with&nbsp; $A$,&nbsp; $B$&nbsp; and&nbsp; $C$ in contrast to the last chapter.&nbsp;  
+
*Applied to probability theory,&nbsp; the events&nbsp; $A_i$&nbsp; are represented here as areas.&nbsp; For a simpler description we do not denote the events here with&nbsp; $A_1$,&nbsp; $A_2$&nbsp; and&nbsp;  $A_3$,&nbsp; but with&nbsp; $A$,&nbsp; $B$&nbsp; and&nbsp; $C$ in contrast to the last chapter.&nbsp;  
*The total area corresponds to the&nbsp; "universal set"&nbsp; (or short:&nbsp; "universe")&nbsp; $G$.&nbsp; The universe&nbsp; $G$&nbsp; contains all possible outcomes and stands for the&nbsp; '''certain event''',&nbsp; which by definition occurs with probability „one”:  &nbsp; ${\rm Pr}(G) = 1$.&nbsp;  For example,&nbsp; in the random experiment&nbsp; "Throwing a die",&nbsp; the probability for the event&nbsp; "The number of eyes is less than or equal to 6"&nbsp; is identical to one.
 
*In contrast,&nbsp; the&nbsp; '''empty set'''&nbsp; $ϕ$&nbsp; does not contain a single element.&nbsp; In terms of events,&nbsp; the empty set specifies the&nbsp; '''impossible event'''&nbsp; with probability&nbsp; ${\rm Pr}(ϕ) = 0$&nbsp; an.&nbsp; For example,&nbsp; in the experiment&nbsp; "Throwing a die",&nbsp; the probability for the event&nbsp; "The number of eyes is greater than 6" is identically zero.
 
  
 +
*The total area corresponds to the&nbsp; &raquo;universal set&laquo;&nbsp; $($or short:&nbsp; &raquo;universe&laquo;$)$&nbsp; $G$.&nbsp; The universe&nbsp; $G$&nbsp; contains all possible outcomes and stands for the&nbsp; &raquo;'''certain event'''&laquo;,&nbsp; which by definition occurs with probability &raquo;one&laquo;:  &nbsp; ${\rm Pr}(G) = 1$.&nbsp;  For example,&nbsp; in the random experiment&nbsp; &raquo;Throwing a die&laquo;,&nbsp; the probability for the event&nbsp; &raquo;The number of eyes is less than or equal to 6&laquo;&nbsp; is identical to one.
  
Note that not every event&nbsp; $A$&nbsp; with&nbsp; ${\rm Pr}(A) = 0$&nbsp; can really never happen.&nbsp; For example:
+
*In contrast,&nbsp; the&nbsp; &raquo;'''empty set'''&laquo;&nbsp; $ϕ$&nbsp; does not contain a single element.&nbsp; In terms of events,&nbsp; the empty set specifies the&nbsp; &raquo;'''impossible event'''&laquo;&nbsp; with probability&nbsp; ${\rm Pr}(ϕ) = 0$&nbsp; an.&nbsp; For example,&nbsp; in the experiment&nbsp; &raquo;Throwing a die&laquo;,&nbsp; the probability for the event&nbsp; &raquo;The number of eyes is greater than 6&laquo;&nbsp; is identically zero.
*The event&nbsp; "The noise value&nbsp; $n$&nbsp; is identically zero"&nbsp; is vanishingly small and&nbsp; ${\rm Pr}(n \equiv 0) = 0$,&nbsp; if&nbsp; $n$&nbsp; is described by a continuous&nbsp; (Gaussian)&nbsp; random variable.
+
 
*Nevertheless,&nbsp; it is of course possible&nbsp; (although extremely unlikely)&nbsp; that at some point the exact noise value&nbsp; $n = 0$&nbsp; will also occur.
+
 
 +
It should be noted that not every event&nbsp; $A$&nbsp; with&nbsp; ${\rm Pr}(A) = 0$&nbsp; can really never occur:
 +
*Thus,&nbsp; the probability of the event&nbsp; &raquo;the noise value&nbsp; $n$&nbsp; is identical to zero&raquo;&nbsp; is vanishingly small and it applies&nbsp; ${\rm Pr}(n \equiv 0) = 0$,&nbsp; if&nbsp; $n$&nbsp; is described by a continuous&ndash;valued&nbsp; $($Gaussian$)$&nbsp; random variable.
 +
 
 +
*Nevertheless,&nbsp; it is of course possible&nbsp; $($although extremely unlikely$)$&nbsp; that at some points the exact noise value&nbsp; $n = 0$&nbsp; will also occur.
  
 
==Union set==
 
==Union set==
 
<br>
 
<br>
Some set-theoretical relationss are explained now on the basis of the Venn diagram.
+
Some set-theoretical relations are explained now on the basis of the Venn diagram.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; The&nbsp; '''union set'''&nbsp; $C$&nbsp; of two sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; contains all the elements that are contained either in set&nbsp; $A$&nbsp; or in set&nbsp; $B$&nbsp; or in both.&nbsp;  
+
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''union set'''&laquo;&nbsp; $C$&nbsp; of two sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; contains all the elements that are contained either in set&nbsp; $A$&nbsp; or in set&nbsp; $B$&nbsp; or in both.&nbsp;
 +
[[File: EN_Sto_T_1_2_S2.png  |right|frame| Union set in the Venn diagram]]
 
*This relationship is expressed as the following formula:
 
*This relationship is expressed as the following formula:
$$\ C = A \cup B \hspace{0.2cm}(= A + B).$$
+
:$$\ C = A \cup B.$$
 
 
*In the literature,&nbsp; especially in the Galois field&nbsp; $\rm GF(2)$&nbsp; the term&nbsp; [https://en.wikipedia.org/wiki/Sumset "sumset"]&nbsp; is common,&nbsp; and the plus sign is sometimes used.
 
 
 
*For example, in our tutorial we use this term in the book&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Examples_and_Properties_of_Galois_fields|"Channel Coding"]].}}
 
 
 
  
[[File: EN_Sto_T_1_2_S2.png  |right|frame| Union set in the Venn diagram]]
+
*Using the diagram, it is easy to see the following laws of set theory:
Using the diagram, it is easy to see the following laws of set theory:
 
 
:$$A \cup \it \phi = A \rm \hspace{3.6cm}(union \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}empty \hspace{0.15cm}set),$$
 
:$$A \cup \it \phi = A \rm \hspace{3.6cm}(union \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}empty \hspace{0.15cm}set),$$
 
:$$A\cup G = G \rm \hspace{3.6cm}(union \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}universe),$$
 
:$$A\cup G = G \rm \hspace{3.6cm}(union \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}universe),$$
Line 42: Line 40:
 
:$$(A\cup B)\cup C = A\cup (B\cup C) \hspace{0.45cm}(\rm associative \hspace{0.15cm}property).$$
 
:$$(A\cup B)\cup C = A\cup (B\cup C) \hspace{0.45cm}(\rm associative \hspace{0.15cm}property).$$
  
If nothing else is known about the event sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; then only a lower bound and an upper bound can be given for the probability of the union set:
+
*If nothing else is known about the event sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; then only a lower bound and an upper bound can be given for the probability of the union set:
 
:$${\rm Max}\big({\rm Pr} (A), \ {\rm Pr} (B)\big) \le {\rm Pr} (A \cup B) \le  {\rm Pr} (A)+{\rm Pr} (B).$$
 
:$${\rm Max}\big({\rm Pr} (A), \ {\rm Pr} (B)\big) \le {\rm Pr} (A \cup B) \le  {\rm Pr} (A)+{\rm Pr} (B).$$
  
*The probability of the union set is equal to the lower bound if&nbsp; $A$&nbsp; is a&nbsp; [[Theory_of_Stochastic_Signals/Set_Theory_Basics#Echte_Teilmenge_.E2.80.93_unechte_Teilmenge|subset]]&nbsp; of&nbsp; $B$&nbsp; or vice versa.  
+
*The probability of the union set is equal to the lower bound if&nbsp; $A$&nbsp; is a&nbsp; [[Theory_of_Stochastic_Signals/Set_Theory_Basics#Proper_subset_.E2.80.93_Improper_subset|$\text{subset}$]]&nbsp; of&nbsp; $B$&nbsp; or vice versa.  
*The upper bound holds for&nbsp; [[Theory_of_Stochastic_Signals/Set_Theory_Basics#Disjunkte_Mengen|disjoint sets]].
+
 
 +
*The upper bound holds for&nbsp; [[Theory_of_Stochastic_Signals/Set_Theory_Basics#Disjoint_sets|&raquo;disjoint sets&laquo;]].}}
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 1:}$&nbsp; We consider again the experiment&nbsp; "throwing a die".&nbsp; The possible outcomes&nbsp; (number of points)&nbsp; are thus&nbsp;  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.
+
$\text{Example 1:}$&nbsp; We consider again the experiment&nbsp; &raquo;throwing a die&laquo;.&nbsp; The possible outcomes&nbsp; $($number of points$)$&nbsp; are thus&nbsp;  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.
  
 
Consider the two events
 
Consider the two events
* $A :=$&nbsp; "The outcome is greater than or equal to&nbsp; $5$"$ = \{5, 6\}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (A)= 2/6= 1/3$,  
+
* $A :=$&nbsp; &raquo;The outcome is greater than or equal to&nbsp; $5$ &laquo;&nbsp; $ = \{5, 6\}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (A)= 2/6= 1/3$,
* $B :=$&nbsp; "The outcome is even" $= \{2, 4, 6\}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (B)= 3/6= 1/2$,  
+
 +
* $B :=$&nbsp; &raquo;The outcome is even &laquo;&nbsp; $= \{2, 4, 6\}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (B)= 3/6= 1/2$,  
  
  
Line 63: Line 63:
 
==Intersection set==
 
==Intersection set==
 
<br>
 
<br>
Another important set-theoretic linkage is the intersection.
+
Another important set-theoretic relation is the intersection.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; The&nbsp; '''intersection set'''&nbsp; $C$&nbsp; of two sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; contains all those elements which are contained in both the set&nbsp; $A$&nbsp; and the set&nbsp; $B$.
+
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''intersection set'''&laquo;&nbsp; $C$&nbsp; of two sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; contains all those elements which are contained in both the set&nbsp; $A$&nbsp; and the set&nbsp; $B$.
 +
[[File:EN_Sto_T_1_2_S3.png |right|frame| Intersection set in the Venn diagram]]
  
 
*This relationship is expressed as the following formula:
 
*This relationship is expressed as the following formula:
:$$C = A \cap B \hspace{0.2cm}(= A \cdot B).$$
+
:$$C = A \cap B.$$
 
 
*In the literature,&nbsp; especially in the Galois field&nbsp; $\rm GF(2)$&nbsp; the term&nbsp; [https://en.wikipedia.org/wiki/Cartesian_product "Cartesian product"]&nbsp; is also common,&nbsp; and the multiplication sign is sometimes used.
 
 
 
*For example, in our tutorial we use this term in the book&nbsp; [[Channel_Coding/Some_Basics_of_Algebra#Examples_and_Properties_of_Galois_fields|"Channel Coding"]]. }}
 
 
 
  
[[File:EN_Sto_T_1_2_S3.png |right|frame| Intersection set in the Venn diagram]]
+
*In the diagram,&nbsp; the intersection is shown in purple.&nbsp; Analog to the union set,&nbsp; the following regularities apply here:
In the diagram,&nbsp; the intersection is shown in purple.&nbsp; Analog to the union set,&nbsp; the following regularities are to be mentioned here:
 
 
:$$A \cap \it \phi = \it \phi \rm \hspace{3.75cm}(intersection \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}empty \hspace{0.15cm}set),$$
 
:$$A \cap \it \phi = \it \phi \rm \hspace{3.75cm}(intersection \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}empty \hspace{0.15cm}set),$$
 
:$$A \cap G = A \rm \hspace{3.6cm}(intersection \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}universe),$$
 
:$$A \cap G = A \rm \hspace{3.6cm}(intersection \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}universe),$$
Line 83: Line 78:
 
:$$A\cap B = B\cap A \rm \hspace{2.75cm}(commutative \hspace{0.15cm}property),$$
 
:$$A\cap B = B\cap A \rm \hspace{2.75cm}(commutative \hspace{0.15cm}property),$$
 
:$$(A\cap B)\cap C = A\cap (B\cap C) \rm \hspace{0.45cm}(associative \hspace{0.15cm}property).$$
 
:$$(A\cap B)\cap C = A\cap (B\cap C) \rm \hspace{0.45cm}(associative \hspace{0.15cm}property).$$
<br clear=all>
+
 
*If nothing else is known about&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp;, then no statement can be made for the probability of the intersection.
+
*If nothing else is known about&nbsp; $A$&nbsp; and&nbsp; $B$,&nbsp; then no statement can be made for the probability of the intersection.
*However, if&nbsp; ${\rm Pr} (A) \le 1/2$&nbsp; and at the same time&nbsp; ${\rm Pr} (B) \le 1/2$ hold, then a lower bound and an upper bound can be given:
+
 
 +
*However,&nbsp;  if&nbsp; ${\rm Pr} (A) \le 1/2$&nbsp; and at the same time&nbsp; ${\rm Pr} (B) \le 1/2$ hold,&nbsp; then a lower and an upper bound can be given:
 
:$$0 \le {\rm Pr} (A ∩ B) \le {\rm Min}\ \big({\rm Pr} (A),\  {\rm Pr} (B)\big ).$$
 
:$$0 \le {\rm Pr} (A ∩ B) \le {\rm Min}\ \big({\rm Pr} (A),\  {\rm Pr} (B)\big ).$$
  
*${\rm Pr}(A ∩ B)$&nbsp; is sometimes called the "joint probability" and is denoted by&nbsp; ${\rm Pr}(A, \ B)$&nbsp;.
+
*${\rm Pr}(A ∩ B)$&nbsp; is sometimes called the&nbsp; &raquo;joint probability&laquo;&nbsp; and is denoted by&nbsp; ${\rm Pr}(A, \ B)$.
*${\rm Pr}(A ∩ B)$&nbsp; is equal to the upper bound if&nbsp; $A$&nbsp; is a&nbsp; [[Theory_of_Stochastic_Signals/Set_Theory_Basics#Echte_Teilmenge_.E2.80.93_Unechte_Teilmenge|subset]]&nbsp;  of&nbsp; $B$&nbsp; or vice versa.  
+
 
*The lower bound is obtained for the joint probability of&nbsp;  [[Theory_of_Stochastic_Signals/Set_Theory_Basics#Disjunkte_Mengen|disjoint sets]].
+
*${\rm Pr}(A ∩ B)$&nbsp; is equal to the upper bound if&nbsp; $A$&nbsp; is a&nbsp; [[Theory_of_Stochastic_Signals/Set_Theory_Basics#Proper_subset_.E2.80.93_Improper_subset|$\text{subset}$]]&nbsp;  of&nbsp; $B$&nbsp; or vice versa.
 +
 +
*The lower bound is obtained for the joint probability of&nbsp;  [[Theory_of_Stochastic_Signals/Set_Theory_Basics#Disjoint_sets|&raquo;disjoint sets&laquo;]].}}
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 2:}$&nbsp; We consider again the experiment&nbsp; "throwing a die".&nbsp; The possible outcomes&nbsp; (number of points)&nbsp; are thus&nbsp;  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.
+
$\text{Example 2:}$&nbsp; We consider again the experiment&nbsp; &raquo;throwing a die&laquo;.&nbsp; The possible outcomes&nbsp; (number of points)&nbsp; are thus&nbsp;  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.
 +
 
 
Consider the two events
 
Consider the two events
* $A :=$ „the outcome is greater than or equal to&nbsp; $5$$ = \{5, 6\}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (A)= 2/6= 1/3$,  und
+
* $A :=$&nbsp; &raquo;The outcome is greater than or equal to&nbsp; $5$&laquo;&nbsp;  $ = \{5, 6\}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (A)= 2/6= 1/3$,&nbsp;  
* $B :=$ „the outcome is even”$ = \{2, 4, 6\}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (B)= 3/6= 1/2$,
+
 
 +
* $B :=$&nbsp; &raquo;The outcome is even&laquo;&nbsp;  $ = \{2, 4, 6\}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (B)= 3/6= 1/2$.
  
  
 
The intersection contains only one element: &nbsp;  $(A ∩ B) = \{ 6 \}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (A ∩ B) = 1/6$.  
 
The intersection contains only one element: &nbsp;  $(A ∩ B) = \{ 6 \}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (A ∩ B) = 1/6$.  
 
*The upper bound is obtained as&nbsp; ${\rm Pr} (A ∩ B) \le {\rm Min}\ \big ({\rm Pr} (A), \, {\rm Pr} (B)\big ) = 2/6.$
 
*The upper bound is obtained as&nbsp; ${\rm Pr} (A ∩ B) \le {\rm Min}\ \big ({\rm Pr} (A), \, {\rm Pr} (B)\big ) = 2/6.$
*The lower bound of the intersection here is zero because of&nbsp; ${\rm Pr} (A) \le 1/2$ &nbsp;and&nbsp; ${\rm Pr} (B) \le 1/2$&nbsp; gleich Null.}}
+
 
 +
*The lower bound of the intersection is zero because of&nbsp; ${\rm Pr} (A) \le 1/2$ &nbsp;and&nbsp; ${\rm Pr} (B) \le 1/2$&nbsp;.}}
  
 
==Complementary set==
 
==Complementary set==
 
<br>
 
<br>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; The&nbsp; '''complementary set''' of&nbsp; $A$&nbsp; is often denoted by a straight line above the letter&nbsp; $(\overline{A})$&nbsp;.&nbsp; It contains all the elements that are not contained in the set&nbsp; $A$&nbsp; and it holds for their probability:
+
$\text{Definition:}$&nbsp; The&nbsp; &raquo;'''complementary set'''&laquo; of&nbsp; $A$&nbsp; is often denoted by a straight line above the letter&nbsp; $(\overline{A})$&nbsp;.&nbsp; It contains all the elements that are not contained in the set&nbsp; $A$&nbsp; and it holds for their probability:
:$${\rm Pr}(\overline{A}) = 1- {\rm Pr}(A).$$}}
+
[[File:EN_Sto_T_1_2_S4Neu.png| right|frame|Complementary set in the Venn diagram]]
 +
 
 +
:$${\rm Pr}(\overline{A}) = 1- {\rm Pr}(A).$$
  
 +
In the Venn diagram,&nbsp; the set complementary to&nbsp; $A$&nbsp; is shaded.&nbsp;
  
[[File:EN_Sto_T_1_2_S4.png| right|frame|Complementary set in the Venn diagram]]
+
From this diagram,&nbsp; some set-theoretic relationships can be seen:
In the Venn diagram shown, the set complementary to&nbsp; $A$&nbsp; is shaded.&nbsp; From this diagram, some set-theoretic relationships can be seen:
+
*The complementary of the complementary of&nbsp; $A$&nbsp; is the set&nbsp; $A$&nbsp; itself:
*The complementary set of the complementary set of&nbsp; $A$&nbsp; is the set&nbsp; $A$&nbsp; itself:
+
:$$\overline{\overline{A} } = A.$$
:$$\overline{\overline{A}} = A.$$
 
 
*The union of a set&nbsp; $A$&nbsp; with its complementary set gives the universal set:
 
*The union of a set&nbsp; $A$&nbsp; with its complementary set gives the universal set:
 
:$${\rm Pr}(A \cup \overline{A}) = {\rm Pr}(G) = \rm 1.$$
 
:$${\rm Pr}(A \cup \overline{A}) = {\rm Pr}(G) = \rm 1.$$
*The intersection of $A$ with its complementary set gives the empty set:
+
*The intersection of&nbsp; $A$&nbsp; with its complementary set gives the empty set:
:$${\rm Pr}(A \cap \overline{A}) = {\rm Pr}({\it \phi}) \rm = 0.$$
+
:$${\rm Pr}(A \cap \overline{A}) = {\rm Pr}({\it \phi}) \rm = 0.$$}}
 +
 
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 3:}$&nbsp; We consider again the experiment&nbsp; "throwing a die".&nbsp; The possible outcomes&nbsp; (number of points)&nbsp; are thus&nbsp;  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.
+
$\text{Example 3:}$&nbsp; We consider again the experiment&nbsp; &raquo;throwing a die&raquo;.&nbsp; The possible outcomes&nbsp; (number of points)&nbsp; are thus&nbsp;  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.
Starting from the set
 
* $A :=$ „the outcome is smaller than&nbsp; $5$” $= \{1, 2, 3, 4\}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (A)= 2/3$
 
  
 +
*Starting from the set
 +
:$$A :=\text{&nbsp;&raquo;The outcome is smaller than&nbsp; $5$&laquo;&nbsp;}  = \{1, 2, 3, 4\}\ \  \text{&nbsp; &rArr; &nbsp;} \ \ {\rm Pr} (A)= 2/3,$$
  
the corresponding complementary set is
+
*the corresponding complementary set is
* $\overline{A} :=$ „the outcome is greater than or equal to&nbsp; $5$”$ = \{5, 6\}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (\overline{A})= 1 - {\rm Pr} (A) = 1 - 2/3 = 1/3.$}}
+
:$$\overline{A} :=\text{&nbsp; &raquo;The outcome is greater than or equal to&nbsp; $5$&laquo;}&nbsp;  = \{5, 6\} \ \ \text{&nbsp; &rArr; &nbsp;}\ \  {\rm Pr} (\overline{A})= 1 - {\rm Pr} (A) = 1 - 2/3 = 1/3.$$}}
  
==Strict subset &ndash; improper subset==
+
==Proper subset &ndash; Improper subset==
 
<br>
 
<br>
[[File:EN_Sto_T_1_2_S5.png | right|frame| Subsets in the Venn diagram]]
+
{{BlaueBox|TEXT=
{{BlaueBox|TEXT=  
+
[[File:EN_Sto_T_1_2_S5.png | right|frame| Proper subset in the Venn diagram]]   
$\text{Definitions:}$&nbsp; One calls&nbsp; $A$&nbsp; a&nbsp; '''strict subset'''&nbsp; of&nbsp; $B$ and writes for this&nbsp; $A ⊂ B$,  
+
$\text{Definitions:}$&nbsp;
*if all elements of&nbsp; $A$&nbsp; are also contained in&nbsp; $B$&nbsp;,
+
 
*but not all elements of&nbsp; $B$&nbsp; are also contained in&nbsp; $A$.  
+
'''(1)'''&nbsp; One calls&nbsp; $A$&nbsp; a&nbsp; &raquo;'''proper subset'''&laquo;&nbsp; of&nbsp; $B$&nbsp; and writes for this relationship&nbsp; $A ⊂ B$,  
 +
*if all elements of&nbsp; $A$&nbsp; are also contained in&nbsp; $B$,
 +
 
 +
*but not all elements of&nbsp; $B$&nbsp; are contained in&nbsp; $A$.  
  
  
In this case, the probabilities are:
+
In this case,&nbsp; for the probabilities hold:
 
:$${\rm Pr}(A)  <  {\rm Pr}(B).$$
 
:$${\rm Pr}(A)  <  {\rm Pr}(B).$$
  
This set-theoretic relation is illustrated by the sketched Venn diagram.
+
This set-theoretic relationship is illustrated by the sketched Venn diagram on the right.
 +
 
  
On the other hand,&nbsp; $A$&nbsp; is called a&nbsp; ''' subset'''&nbsp; of&nbsp; $B$&nbsp; and uses the notation
+
'''(2)'''&nbsp; On the other hand,&nbsp; $A$&nbsp; is called an&nbsp; &raquo;'''improper subset'''&laquo;&nbsp; of&nbsp; $B$&nbsp; and uses the notation
 
:$$A \subseteq B = (A \subset B) \cup (A = B),$$
 
:$$A \subseteq B = (A \subset B) \cup (A = B),$$
wenn&nbsp; $A$&nbsp; entweder eine echte Teilmenge von&nbsp; $B$&nbsp; ist oder wenn&nbsp; $A$&nbsp; und&nbsp; $B$&nbsp; gleiche Mengen sind.
+
if&nbsp; $A$&nbsp; is either a proper subset of&nbsp; $B$&nbsp; or if&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; are equal sets.
 +
 
 +
*Then applies to the probabilities:&nbsp;  ${\rm Pr} (A) \le  {\rm Pr} (B)$.
  
*The relation&nbsp;  ${\rm Pr} (A) \le  {\rm Pr} (B)$ then applies to the probabilities.
 
 
*The equality sign is only valid for the special case&nbsp;  $A = B$.}}  
 
*The equality sign is only valid for the special case&nbsp;  $A = B$.}}  
  
  
In addition, however, the two equations known as the&nbsp; '''laws of absorption'''&nbsp also apply:
+
In addition,&nbsp; the two equations known as the&nbsp; &raquo;'''absorption laws'''&laquo;&nbsp; also apply:
 
:$$(A \cap B)  \cup A  =  A ,$$
 
:$$(A \cap B)  \cup A  =  A ,$$
 
:$$(A  \cup B) \cap A  =  A,$$
 
:$$(A  \cup B) \cap A  =  A,$$
  
since the intersection&nbsp; $A ∩ B$&nbsp; is always a subset of&nbsp; $A$&nbsp;, but at the same time&nbsp; $A$&nbsp; is also a subset of the union&nbsp; $A ∪ B$&nbsp;.
+
*since the intersection&nbsp; $A ∩ B$&nbsp; is always a subset of&nbsp; $A$,&nbsp;  
 +
*but at the same time&nbsp; $A$&nbsp; is also a subset of the union&nbsp; $A ∪ B$.
 +
 
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 4:}$&nbsp; We consider again the experiment&nbsp; "throwing a die".&nbsp; The possible outcomes&nbsp; (number of points)&nbsp; are thus&nbsp;  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.
+
$\text{Example 4:}$&nbsp; We consider again the experiment&nbsp; &raquo;throwing a die&laquo;.&nbsp; The possible outcomes&nbsp; (number of points)&nbsp; are thus&nbsp;  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.
 +
 
 
Consider the two events
 
Consider the two events
* $A :=$ „the outcome is uneven”$ = \{1, 3, 5\}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (A)= 3/6$, und
+
* $A :=$&nbsp; &raquo;The outcome is odd&laquo; $&nbsp; = \{1, 3, 5\}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (A)= 3/6$,&nbsp;
* $B :=$ „the outcome is a prime number” $= \{1, 2, 3, 5\}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (B)= 4/6$.
+
 
 +
* $B :=$&nbsp; &raquo;The outcome is a prime number&raquo; $&nbsp; = \{1, 2, 3, 5\}$ &nbsp; &rArr; &nbsp; ${\rm Pr} (B)= 4/6$.
  
  
It can be seen that&nbsp;  $A$&nbsp; is a (strict) subset of the set&nbsp; $B$&nbsp;.&nbsp; Accordingly, &nbsp; ${\rm Pr} (A) <  {\rm Pr} (B)$is also true. }}
+
It can be seen that&nbsp;  $A$&nbsp; is a&nbsp; $($proper$)$ subset&nbsp; of&nbsp; $B$.&nbsp; Accordingly,&nbsp; ${\rm Pr} (A) <  {\rm Pr} (B)$&nbsp; is also true. }}
  
==Theoreme von de Morgan==
+
==Theorems of de Morgan==
 
<br>
 
<br>
[[File:EN_Sto_T_1_2_S6.png|frame| Zu den Theoremen von de Morgan | rechts]]
+
In many set-theoretical tasks,&nbsp; the two theorems of&nbsp; [https://en.wikipedia.org/wiki/Augustus_De_Morgan $\text{de Morgan}$]&nbsp;   are extremely useful.&nbsp;
Bei vielen Aufgaben aus der Mengenlehre sind die beiden Theoreme von&nbsp; [https://de.wikipedia.org/wiki/Augustus_De_Morgan de Morgan]&nbsp;  äußerst nützlich. Diese lauten:
+
   
 +
{{BlaueBox|TEXT=
 +
$\text{Theorem of de Morgan:}$
 +
[[File:EN_Sto_T_1_2_S6.png|frame| Zu den Theoremen von de Morgan | About de Morgan's theorems]]
 +
 
 
:$$\overline{A \cup B} = \overline{A} \cap \overline{B},$$
 
:$$\overline{A \cup B} = \overline{A} \cap \overline{B},$$
 
:$$\overline{A \cap B} = \overline{A} \cup \overline{B}.$$
 
:$$\overline{A \cap B} = \overline{A} \cup \overline{B}.$$
  
Diese Gesetzmäßigkeiten sind im Schaubild veranschaulicht:  
+
These regularities are illustrated in the Venn diagram:
*Die Menge&nbsp; $A$&nbsp; ist rot dargestellt und die Menge&nbsp; $B$&nbsp; blau.  
+
#Set&nbsp; $A$&nbsp; is shown in red and set&nbsp; $B$&nbsp; is shown in blue.  
*Die Komplentärmenge&nbsp; $\overline {A}$&nbsp; von&nbsp; $A$&nbsp; ist in horizontaler Richtung schraffiert.  
+
#The complement&nbsp; $\overline {A}$&nbsp; of&nbsp; $A$&nbsp; is hatched in the horizontal direction.
*Die Komplentärmenge&nbsp;  $\overline {B}$&nbsp; von&nbsp; $B$&nbsp; ist in vertikaler Richtung schraffiert.  
+
#The complement&nbsp;  $\overline {B}$&nbsp; of&nbsp; $B$&nbsp; is hatched in the vertical direction.  
*Das Komplement&nbsp; $\overline{A \cup B}$&nbsp; der Vereinigungsmenge&nbsp; ${A \cup B}$&nbsp; ist sowohl horizontal als auch vertikal schraffiert.  
+
#The complement&nbsp; $\overline{A \cup B}$&nbsp; of the union&nbsp; ${A \cup B}$&nbsp; is hatched both horizontally and vertically.  
*Es ist damit gleich der Schnittmenge&nbsp; $\overline{A} \cap \overline{B}$&nbsp; der beiden Komplentärmengen von&nbsp; $A$&nbsp; und&nbsp; $B$:
+
#It is thus equal to the intersection&nbsp; $\overline{A} \cap \overline{B}$&nbsp; of the two complement sets of&nbsp; $A$&nbsp; and&nbsp; $B$:
:$$\overline{A \cup B} = \overline{A} \cap \overline{B}.$$
+
::$$\overline{A \cup B} = \overline{A} \cap \overline{B}.$$}}
 +
 
  
Auch die zweite Form des de Morgan-Theorems lässt sich mit diesem Venndiagramm grafisch verdeutlichen:
+
The second form of the de Morgan theorem can also be illustrated graphically with the same Venn diagram:
  
*Die Schnittmenge&nbsp; $A ∩ B$&nbsp; (im Bild violett dargestellt) ist weder horizontal noch vertikal schraffiert.  
+
#The intersection&nbsp; $A ∩ B$&nbsp; $($shown in purple in the figure$)$&nbsp; is neither horizontally nor vertically hatched.  
*Das Komplement&nbsp; $\overline{A ∩ B}$&nbsp; der Schnittmenge ist dementsprechend entweder horizontal, vertikal oder in beiden Richtungen schraffiert.  
+
#Accordingly, the complement&nbsp; $\overline{A ∩ B}$&nbsp; of the intersection is hatched either horizontally, vertically, or in both directions.
*Nach dem zweiten Theorem von de Morgan ist das Komplement der Schnittmenge gleich der Vereinigungsmenge der beiden Komplentärmengen von&nbsp; $A$&nbsp; und&nbsp; $B$:
+
#By de Morgan's second theorem,&nbsp; the complement of the intersection equals the union of the two complementary sets of&nbsp; $A$&nbsp; and&nbsp; $B$:
:$$\overline{A \cap B} = \overline{A} \cup \overline{B}.$$
+
::$$\overline{A \cap B} = \overline{A} \cup \overline{B}.$$
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 5:}$&nbsp; Wir betrachten die beiden Mengen
+
$\text{Example 5:}$&nbsp; We consider again the experiment&nbsp; &raquo;throwing a die&laquo;.&nbsp; The possible outcomes&nbsp; (number of points)&nbsp; are thus&nbsp;  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.
* $A : =$ „die Augenzahl ist ungeradzahlig” $= \{1, 3, 5\}$,
 
* $B : =$  „die Augenzahl ist größer als&nbsp; $2$” $= \{3, 4, 5, 6\}$.  
 
  
 +
We consider the two sets
 +
* $A : =$&nbsp; &raquo;The outcome is odd&laquo;&nbsp; $= \{1, 3, 5\}$,
 +
* $B : =$&nbsp; &raquo;The outcome is greater than&nbsp; $2$&laquo;&nbsp; $= \{3, 4, 5, 6\}$.
  
Daraus folgen die beiden komplementären Mengen
 
* $\overline {A} : =$ „die Augenzahl ist geradzahlig” $= \{2, 4, 6\}$,
 
* $\overline {B} : =$ „die Augenzahl ist kleiner als&nbsp; $3$” $= \{1, 2\}$.
 
  
 +
From this follow the two complementary sets
 +
* $\overline {A} : =$&nbsp; &raquo;The outcome is even&laquo;&nbsp; $= \{2, 4, 6\}$,
 +
* $\overline {B} : =$&nbsp; &raquo;The outcome is smaller than&nbsp; $3$&laquo;&nbsp; $= \{1, 2\}$.
  
Weiter erhält man mit den obigen Theoremen die folgenden Teilmengen:
 
:$$\overline{A \cup B} = \overline{A} \cap \overline{B} = \{2\}\hspace{0.5 cm}\rm und \hspace{0.5cm} \overline{\it A \cap \it B} =\overline{\it A} \cup \overline{\it B} = \{1,2,4,6\}.$$}}
 
  
==Disjunkte Mengen==
+
Further,&nbsp; using the above theorems,&nbsp; we obtain the following sets:
 +
:$$\overline{A \cup B} = \overline{A} \cap \overline{B} = \{2\},$$
 +
:$$\overline{\it A \cap \it B} =\overline{\it A} \cup \overline{\it B} = \{1,2,4,6\}.$$}}
 +
 
 +
==Disjoint sets==
 
<br>
 
<br>
{{BlaueBox|TEXT=
+
{{BlaueBox|TEXT=
$\text{Definition:}$&nbsp; Zwei Mengen&nbsp; $A$&nbsp; und&nbsp; $B$&nbsp; nennt man&nbsp; '''disjunkt'''&nbsp; (englisch:&nbsp; ''disjoint'')&nbsp; oder&nbsp; '''miteinander unvereinbar''',  
+
[[File:EN_Sto_T_1_2_S7.png |frame| Disjunkte Mengen im Venndiagramm | Disjoint sets in the Venn diagram]]
*wenn es kein einziges Element gibt,  
+
 
*das sowohl in&nbsp; $A$&nbsp; als auch in&nbsp; $B$&nbsp; enthalten ist.}}
+
$\text{Definition:}$&nbsp; Two sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; are called&nbsp; &raquo;'''disjoint'''&laquo; or&nbsp; &raquo;'''incompatible'''&laquo;,
 +
 +
*if there is no single element,
 +
 +
*that is contained in both&nbsp; $A$&nbsp; and&nbsp; $B$.
  
  
[[File:EN_Sto_T_1_2_S7.png |frame| Disjunkte Mengen im Venndiagramm | rechts]]
+
The diagram shows two disjoint sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; in the Venn diagram.
Das Schaubild zeigt zwei disjunkte Mengen&nbsp; $A$&nbsp; und&nbsp; $B$&nbsp; im Venndiagramm.  
 
  
In diesem Sonderfall gelten die folgenden Aussagen:  
+
In this special case,&nbsp; the following statements hold:
*Die Schnittmenge zweier disjunkter Mengen&nbsp; $A$&nbsp; und&nbsp; $B$&nbsp; ergibt stets die leere Menge:
+
 +
*The intersection of two disjoint sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; always yields the empty set:
 
:$${\rm Pr}(A \cap B) =  {\rm Pr}(\phi) = \rm 0.$$
 
:$${\rm Pr}(A \cap B) =  {\rm Pr}(\phi) = \rm 0.$$
*Die Wahrscheinlichkeit der Vereinigungsmenge zweier disjunkter Mengen&nbsp; $A$&nbsp; und&nbsp; $B$&nbsp; ist immer gleich der Summe der beiden Einzelwahrscheinlichkeiten:
+
*The probability of the union set of two disjoint sets&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; is always equal to the sum of the two individual probabilities:
:$${\rm Pr}( A \cup B) =  {\rm Pr}( A) + {\rm Pr}(B).$$
+
:$${\rm Pr}( A \cup B) =  {\rm Pr}( A) + {\rm Pr}(B).$$}}
 
<br clear=all>
 
<br clear=all>
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 6:}$&nbsp; Bei unserem Standardexperiment sind die beiden Mengen
+
$\text{Example 6:}$&nbsp; We consider again the experiment&nbsp; &raquo;throwing a die&laquo;.&nbsp; The possible outcomes&nbsp; (number of points)&nbsp; are thus&nbsp;  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.
* $A :=$  „die Augenzahl ist kleiner als&nbsp; $3$”$ = \{1, 2\}$  &nbsp; ⇒  &nbsp; ${\rm Pr}( A) = 2/6$, und
 
* $B :=$  „die Augenzahl ist größer als&nbsp; $3$” $ = \{4, 5,6\}$ &nbsp; ⇒  &nbsp;  ${\rm Pr}( B) = 3/6$
 
  
 +
In our standard experiment,&nbsp; the two sets are now
 +
* $A :=$&nbsp;  &raquo;The outcome is smaller than&nbsp; $3$ &laquo; $ = \{1, 2\}$  &nbsp; ⇒  &nbsp; ${\rm Pr}( A) = 2/6$,
 +
 
 +
* $B :=$&nbsp;  &raquo;The outcome is greater than&nbsp; $3$ &laquo; $ = \{4, 5,6\}$  &nbsp; ⇒  &nbsp;  ${\rm Pr}( B) = 3/6$
  
zueinander disjunkt, da&nbsp; $A$&nbsp; und&nbsp; $B$&nbsp; kein einziges gemeinsames Element beinhalten.
 
*Die Schnittmenge ergibt die leere Menge:&nbsp; ${A \cap B} = \phi$.
 
*Die Wahrscheinlichkeit der Vereinigungsmenge&nbsp; ${A \cup B}  = \{1, 2, 4, 5, 6\}$&nbsp; ist gleich&nbsp; ${\rm Pr}( A) + {\rm Pr}(B) = 5/6.$}}
 
  
==Additionstheorem==
+
disjoint to each other,&nbsp; since&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; do not contain a single common element.
 +
#The intersection yields the empty set:&nbsp; ${A \cap B} = \phi$.
 +
#The probability of the union set&nbsp; ${A \cup B}  = \{1, 2, 4, 5, 6\}$&nbsp; is equal to&nbsp; ${\rm Pr}( A) + {\rm Pr}(B) = 5/6.$}}
 +
 
 +
==Addition rule==
 
<br>
 
<br>
Nur bei disjunkten Mengen&nbsp; $A$&nbsp; und&nbsp; $B$&nbsp; gilt für die Wahrscheinlichkeit der Vereinigungsmenge der Zusammenhang&nbsp; ${\rm Pr}( A \cup B) =  {\rm Pr}( A) + {\rm Pr}(B)$.&nbsp; Wie errechnet sich diese Wahrscheinlichkeit aber bei allgemeinen, nicht notwendigerweise disjunkten Ereignissen?  
+
Only for disjoint sets&nbsp; $A$&nbsp; and&nbsp; $B$,&nbsp; the relation&nbsp; ${\rm Pr}( A \cup B) =  {\rm Pr}( A) + {\rm Pr}(B)$&nbsp; holds for the probability of the union set.&nbsp; But how is this probability calculated for general events that are not necessarily disjoint?  
  
[[File:EN_Sto_T_1_2_S8.png | right|frame| Zum Additionstheorem der Wahrscheinlichkeitsrechnung]]
+
[[File:EN_Sto_T_1_2_S8.png | right|frame| &raquo;Addition rule&laquo;&nbsp; of probability calculus]]
Betrachten Sie das rechte  Venndiagramm mit der violett dargestellten Schnittmenge&nbsp; $A ∩ B$.
+
Consider the right-hand Venn diagram with the intersection&nbsp; $A ∩ B$&nbsp; shown in purple:
*Die rote Menge beinhaltet alle Elemente, die zu&nbsp; $A$&nbsp; gehören, aber nicht zu&nbsp; $B$.  
+
#The red set contains all the elements that belong to&nbsp; $A$,&nbsp; but not to&nbsp; $B$.  
*Die Elemente von&nbsp; $B$, die nicht gleichzeitig in&nbsp; $A$&nbsp; enthalten sind, sind blau dargestellt.  
+
#The elements of&nbsp; $B$, that are not simultaneously contained in&nbsp; $A$&nbsp; are shown in blue.  
*Alle roten, blauen und violetten Flächen zusammen ergeben die Vereinigungsmenge&nbsp; $A ∪ B$.
+
#All red,&nbsp; blue,&nbsp; and purple surfaces together make up the union set&nbsp; $A ∪ B$.
  
  
Aus dieser mengentheoretischen Darstellung erkennt man folgende Zusammenhänge:
+
From this set-theoretical representation,&nbsp; one can see the following relationships:
 
:$${\rm Pr}(A) \hspace{0.8cm}= {\rm Pr}(A \cap B)  + {\rm Pr}(A \cap \overline{B}),$$
 
:$${\rm Pr}(A) \hspace{0.8cm}= {\rm Pr}(A \cap B)  + {\rm Pr}(A \cap \overline{B}),$$
 
:$${\rm Pr}(B) \hspace{0.8cm}= {\rm Pr}(A \cap B) \rm +{\rm Pr}(\overline{A} \cap {B}),$$
 
:$${\rm Pr}(B) \hspace{0.8cm}= {\rm Pr}(A \cap B) \rm +{\rm Pr}(\overline{A} \cap {B}),$$
:$${\rm Pr}(A \cup B) ={\rm Pr}(A \cap B) +{\rm Pr} ({A} \cap \overline{B}) \rm + {\rm Pr}(\overline{A} \cap {B}).$$
+
:$${\rm Pr}(A \cup B) ={\rm Pr}(A \cap B) +{\rm Pr} ({A} \cap \overline{B}) + {\rm Pr}(\overline{A} \cap {B}).$$
  
Addiert man die ersten beiden Gleichungen und subtrahiert davon die dritte, so erhält man:
+
Adding the first two equations and subtracting from them the third,&nbsp; we get:
:$${\rm Pr}(A) \rm +{\rm Pr}(B) -{\rm Pr}(A \cup B) = {\rm Pr}(A \cap B).$$
+
:$${\rm Pr}(A) +{\rm Pr}(B) -{\rm Pr}(A \cup B) = {\rm Pr}(A \cap B).$$
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Durch Umstellen dieser Gleichung kommt man zum sogenannten&nbsp; '''Additionstheorem'''&nbsp; (englisch:&nbsp; ''Addition Rule'')&nbsp; für zwei beliebige, nicht notwendigerweise disjunkte Ereignisse:
+
$\text{Definition:}$&nbsp; By rearranging this equation,&nbsp; one arrives at the so-called&nbsp; &raquo;'''addition rule'''&laquo;&nbsp; for any two,&nbsp; not necessarily disjoint events:
 
:$${\rm Pr}(A \cup B) = {\rm Pr}(A) + {\rm Pr}(B) - {\rm Pr}(A \cap B).$$}}
 
:$${\rm Pr}(A \cup B) = {\rm Pr}(A) + {\rm Pr}(B) - {\rm Pr}(A \cap B).$$}}
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 7:}$&nbsp; Wir betrachten die beiden Mengen
+
$\text{Example 7:}$&nbsp; We consider again the experiment&nbsp; &raquo;throwing a die&laquo;.&nbsp; The possible outcomes&nbsp; (number of points)&nbsp; are thus&nbsp;  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.
* $A :=$ „die Augenzahl ist ungeradzahlig” $= \{1, 3, 5\}$  &nbsp; &nbsp; ${\rm Pr}(A) = 3/6$, und
 
* $B :=$  „die Augenzahl ist größer als&nbsp; $2$”$ = \{3, 4, 5, 6\}$  &nbsp; ⇒ &nbsp;  ${\rm Pr}(B) = 4/6$.  
 
  
 +
We consider the two sets
 +
* $A :=$&nbsp; &raquo;The outcome is odd &laquo; $= \{1, 3, 5\}$  &nbsp; ⇒ &nbsp;  ${\rm Pr}(A) = 3/6$,
 +
 
 +
* $B :=$&nbsp; &raquo;The outcome is greater than&nbsp; $2$ &laquo; $ = \{3, 4, 5, 6\}$  &nbsp; ⇒ &nbsp;  ${\rm Pr}(B) = 4/6$.
  
Damit ergeben sich für die Wahrscheinlichkeiten
 
*der Vereinigungsmenge  &nbsp; ⇒ &nbsp;  ${\rm Pr}(A ∪ B) = 5/6$, und
 
*der Schnittmenge  &nbsp; ⇒ &nbsp;  ${\rm Pr}(A  ∩ B) = 2/6$.
 
  
 +
This gives the following probabilities
 +
*of the union  &nbsp; ⇒ &nbsp;  ${\rm Pr}(A ∪ B) = 5/6$,&nbsp; and
 +
 +
*of the intersection  &nbsp; ⇒ &nbsp;  ${\rm Pr}(A  ∩ B) = 2/6$.
  
Die Zahlenwerte zeigen die Gültigkeit des Additionstheorems: &nbsp; $5/6 = 3/6 + 4/6 − 2/6$.}}
 
  
==Vollständiges System==
+
The numerical values show the validity of the addition rule: &nbsp;
 +
:$$5/6 = 3/6 + 4/6 − 2/6.$$}}
 +
 
 +
==Complete system==
 
<br>
 
<br>
Im letzten Abschnitt zu diesem Kapitel betrachten wir wieder mehr als zwei mögliche Ereignisse, nämlich allgemein&nbsp; $I$.&nbsp; Diese Ereignisse werden im Folgenden mit&nbsp; $A_i$&nbsp; bezeichnet, und es gilt für den Laufindex: &nbsp; $1 ≤ i ≤ I$.
+
In the last section to this chapter,&nbsp; we consider again more than two possible events, namely, in general,&nbsp; $I$.&nbsp; These events will be denoted by&nbsp; $A_i$ &nbsp; &rArr; &nbsp; the running index $i$ can be in the range&nbsp; $1 ≤ i ≤ I$.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
$\text{Definition:}$&nbsp; Eine Konstellation mit den Ereignissen&nbsp; $A_1, \hspace{0.1cm}\text{...}\hspace{0.1cm} , A_i,  \hspace{0.1cm}\text{...}\hspace{0.1cm}  , A_I$&nbsp; bezeichnet man dann und nur dann als ein&nbsp; '''vollständiges System''', wenn die beiden folgenden Bedingungen erfüllt sind:
+
$\text{Definition:}$&nbsp; A constellation with events&nbsp; $A_1, \hspace{0.1cm}\text{...}\hspace{0.1cm} , A_i,  \hspace{0.1cm}\text{...}\hspace{0.1cm}  , A_I$&nbsp; is called a&nbsp; &raquo;'''complete system'''&laquo;,&nbsp; if and only if the following two conditions are satisfied:
 
   
 
   
'''(1)''' &nbsp; Alle Ereignisse sind paarweise disjunkt:
+
'''(1)''' &nbsp; All events are pairwise disjoint:
:$$A_i \cap A_j = \it \phi \hspace{0.15cm}\rm f\ddot{u}r\hspace{0.15cm}alle\hspace{0.15cm}\it i \ne j.$$
+
:$$A_i \cap A_j = \it \phi \hspace{0.25cm}\rm for\hspace{0.15cm}all\hspace{0.25cm}\it i \ne j.$$
'''(2)''' &nbsp; Die Vereinigung aller Ereignismengen ergibt die Grundmenge:
+
'''(2)''' &nbsp; The union of all event sets gives the universal set:
 
:$$\bigcup_{i=1}^{I} A_i = G.$$}}
 
:$$\bigcup_{i=1}^{I} A_i = G.$$}}
  
  
Aufgrund dieser beiden Voraussetzungen gilt dann für die Summe aller Wahrscheinlichkeiten:
+
Given these two assumptions, the sum of all probabilities is then:
 
:$$\sum_{i =1}^{  I} {\rm Pr}(A_i) = 1.$$
 
:$$\sum_{i =1}^{  I} {\rm Pr}(A_i) = 1.$$
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 8:}$&nbsp; Die Ereignismengen&nbsp; $A_1 := \{1, 5\}$&nbsp; und&nbsp; $A_2 := \{2, 3\}$&nbsp; ergeben beim Zufallsexperiment "Werfen eines Würfels" zusammen mit der Menge&nbsp; $A_3 := \{4, 6\}$&nbsp; ein vollständiges System, nicht jedoch beim Experiment "Werfen einer Roulettekugel".}}
+
$\text{Example 8:}$&nbsp;  
 +
*The sets&nbsp; $A_1 := \{1, 5\}$&nbsp; and&nbsp; $A_2 := \{2, 3\}$&nbsp; together with the set&nbsp; $A_3 := \{4, 6\}$&nbsp; result in a complete system in the random experiment&nbsp; &raquo;throwing a die&laquo;,
 +
 
 +
* but not in the experiment&nbsp; &raquo;throwing a roulette ball&laquo;.}}
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 9:}$&nbsp; Ein weiteres Beispiel für ein vollständiges System ist die diskrete Zufallsgröße&nbsp; $X = \{ x_1, x_2, \hspace{0.1cm}\text{...}\hspace{0.1cm} , x_I\}$&nbsp; mit den Auftrittswahrscheinlichkeiten entsprechend der folgenden&nbsp; [[Information_Theory/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Wahrscheinlichkeitsfunktion_und_Wahrscheinlichkeitsdichtefunktion|Wahrscheinlichkeitsfunktion]]:
+
$\text{Example 9:}$&nbsp; Another example of a complete system is the discrete random variable&nbsp; $X = \{ x_1, x_2, \hspace{0.1cm}\text{...}\hspace{0.1cm} , x_I\}$&nbsp; with the likelihood corresponding to the following&nbsp; [[Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables#Probability_mass_function_and_probability_density_function|&raquo;probability mass function&laquo;]]&nbsp; $\rm (PMF)$:
:$$P_X(X) = \big [ \hspace{0.1cm} P_X(x_1), P_X(x_2), \hspace{0.05cm}\text{...}\hspace{0.15cm}, P_X(x_I) \hspace{0.05cm} \big ] = \big [ \hspace{0.1cm} p_1, p_2, \hspace{0.05cm}\text{...} \hspace{0.15cm}, p_I \hspace{0.05cm} \big ] \hspace{0.05cm}$$
+
:$$P_X(X) = \big [ \hspace{0.1cm} P_X(x_1),\ P_X(x_2), \hspace{0.05cm}\text{...}\hspace{0.15cm},\ P_X(x_I) \hspace{0.05cm} \big ] = \big [ \hspace{0.1cm} p_1, p_2, \hspace{0.05cm}\text{...} \hspace{0.15cm}, p_I \hspace{0.05cm} \big ] \hspace{0.05cm}$$
 
:$$\Rightarrow \hspace{0.3cm} p_1 = P_X(x_1) = {\rm Pr}(X=x_1) \hspace{0.05cm},  
 
:$$\Rightarrow \hspace{0.3cm} p_1 = P_X(x_1) = {\rm Pr}(X=x_1) \hspace{0.05cm},  
 
\hspace{0.2cm}p_2 =  {\rm Pr}(X=x_2) \hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.15cm},\hspace{0.2cm} p_I = {\rm Pr}(X=x_I) \hspace{0.05cm}.$$
 
\hspace{0.2cm}p_2 =  {\rm Pr}(X=x_2) \hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.15cm},\hspace{0.2cm} p_I = {\rm Pr}(X=x_I) \hspace{0.05cm}.$$
  
Die möglichen Ergebnisse&nbsp; $x_i$&nbsp; der Zufallsgröße&nbsp; $X$&nbsp; sind paarweise zueinander disjunkt und die Summe aller Auftrittswahrscheinlichkeiten&nbsp;  $p_1 + p_2 + \hspace{0.1cm}\text{...}\hspace{0.1cm} + \hspace{0.05cm} p_I$&nbsp;  liefert grundsätzlich das Ergebnis&nbsp; $1$.}}
+
*The possible outcomes&nbsp; $x_i$&nbsp; of the random variable&nbsp; $X$&nbsp; are pairwise disjoint to each other.
 +
 
 +
*The sum of all likelihoods&nbsp;  $p_1 + p_2 + \hspace{0.1cm}\text{...}\hspace{0.1cm} + \hspace{0.05cm} p_I$&nbsp;  always yields the result&nbsp; $1$.}}
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 10:}$&nbsp; Es gelte&nbsp; $X= \{0, 1, 2 \}$&nbsp; und&nbsp; $P_X (X) = \big[0.2, \ 0.5, \ 0.3\big]$. Dann gilt:
+
$\text{Example 10:}$&nbsp; Let&nbsp; $X= \{0, 1, 2 \}$&nbsp; and&nbsp; $P_X (X) = \big[0.2, \ 0.5, \ 0.3\big]$. Then holds:
 
:$${\rm Pr}(X=0) = 0.2 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=1) = 0.5 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=2) = 0.3 \hspace{0.05cm}.$$
 
:$${\rm Pr}(X=0) = 0.2 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=1) = 0.5 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=2) = 0.3 \hspace{0.05cm}.$$
  
Bei der Zufallsgröße&nbsp; $X = \{1, \pi, {\rm e} \}$&nbsp; und gleichem&nbsp; $P_X(X) = \big[0.2, \ 0.5, \ 0.3\big]$&nbsp; lauten die Zuordnungen:
+
With random variable&nbsp; $X = \{1, \pi, {\rm e} \}$&nbsp; and the same&nbsp; $P_X(X) = \big[0.2, \ 0.5, \ 0.3\big]$&nbsp; the assignments are:
 
:$${\rm Pr}(X=1) = 0.2 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=\pi) = 0.5 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X={\rm e}) = 0.3 \hspace{0.05cm}.$$
 
:$${\rm Pr}(X=1) = 0.2 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=\pi) = 0.5 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X={\rm e}) = 0.3 \hspace{0.05cm}.$$
  
 +
$\text{Hints:}$
 +
*The&nbsp; [[Information_Theory/Some_Preliminary_Remarks_on_Two-Dimensional_Random_Variables#Probability_mass_function_and_probability_density_function|&raquo;probability mass function&laquo;]]&nbsp; $P_X(X)$&nbsp; only makes statements about probabilities,&nbsp; not about the set of values&nbsp;  $\{x_1, x_2, \hspace{0.1cm}\text{...}\hspace{0.1cm} , x_I\}$&nbsp; of the random variable&nbsp; $X$.
 +
 +
*This additional information is provided by the&nbsp; [[Theory_of_Stochastic_Signals/Probability_Density_Function_(PDF)#Definition_of_the_probability_density_function|&raquo;probability density function&laquo;]]&nbsp; $\rm (PDF)$.}}
  
''Hinweise:''
+
==Exercises for the chapter==
*Die&nbsp; [[Information_Theory/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Wahrscheinlichkeitsfunktion_und_Wahrscheinlichkeitsdichtefunktion|Wahrscheinlichkeitsfunktion]]&nbsp; $P_X(X)$&nbsp; macht nur Aussagen über die Wahrscheinlichkeiten, nicht über den Wertevorrat&nbsp;  $\{x_1, x_2, \hspace{0.1cm}\text{...}\hspace{0.1cm} , x_I\}$&nbsp; der Zufallsgröße&nbsp; $X$.
 
*Diese zusätzliche Information liefert die&nbsp; [[Theory_of_Stochastic_Signals/Wahrscheinlichkeitsdichtefunktion_(WDF)#Definition_der_Wahrscheinlichkeitsdichtefunktion|Wahrscheinlichkeitsdichtefunktion]]&nbsp; (WDF).}}
 
 
 
==Aufgaben zum Kapitel==
 
 
<br>
 
<br>
[[Aufgaben:1.2 Schaltlogik (D/B-Wandler)|Aufgabe 1.2: Schaltlogik (D/B-Wandler)]]
+
[[Aufgaben:Exercise_1.2:_Switching_Logic_(D/B_Converter)|Exercise 1.2: Switching Logic (D/B Converter)]]
  
[[Aufgaben:1.2Z_Ziffernmengen|Aufgabe 1.2Z: Ziffernmengen]]
+
[[Aufgaben:Exercise_1.2Z:_Sets_of_Digits|Exercise 1.2Z: Sets of Digits]]
  
[[Aufgaben:1.3 Fiktive_Uni_Irgenwo|Aufgabe 1.3: Fiktive Uni Irgenwo]]
+
[[Aufgaben:Exercise_1.3:_Fictional_University_Somewhere|Exercise 1.3: Fictional University Somewhere]]
  
[[Aufgaben:Aufgabe_1.3Z:_Gewinnen_mit_Roulette%3F|Aufgabe 1.3Z: Gewinnen mit Roulette?]]
+
[[Aufgaben:Exercise_1.3Z:_Winning_with_Roulette%3F|Exercise 1.3Z: Winning with Roulette?]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 15:41, 5 February 2024

Venn diagram, universal and empty set


In later chapters,  we will sometimes refer to  »set theory« .  Therefore,  the most important basics and definitions of this discipline will be briefly summarized here.  The topic is also covered in the  $($German language$)$  learning video  »Mengentheoretische Begriffe und Gesetzmäßigkeiten«   ⇒   »Set Theory – Terms and Regularities«.

Set representation in the Venn diagram

An important tool of set theory is the  »Venn diagram«  according to the graph:

  • Applied to probability theory,  the events  $A_i$  are represented here as areas.  For a simpler description we do not denote the events here with  $A_1$,  $A_2$  and  $A_3$,  but with  $A$,  $B$  and  $C$ in contrast to the last chapter. 
  • The total area corresponds to the  »universal set«  $($or short:  »universe«$)$  $G$.  The universe  $G$  contains all possible outcomes and stands for the  »certain event«,  which by definition occurs with probability »one«:   ${\rm Pr}(G) = 1$.  For example,  in the random experiment  »Throwing a die«,  the probability for the event  »The number of eyes is less than or equal to 6«  is identical to one.
  • In contrast,  the  »empty set«  $ϕ$  does not contain a single element.  In terms of events,  the empty set specifies the  »impossible event«  with probability  ${\rm Pr}(ϕ) = 0$  an.  For example,  in the experiment  »Throwing a die«,  the probability for the event  »The number of eyes is greater than 6«  is identically zero.


It should be noted that not every event  $A$  with  ${\rm Pr}(A) = 0$  can really never occur:

  • Thus,  the probability of the event  »the noise value  $n$  is identical to zero»  is vanishingly small and it applies  ${\rm Pr}(n \equiv 0) = 0$,  if  $n$  is described by a continuous–valued  $($Gaussian$)$  random variable.
  • Nevertheless,  it is of course possible  $($although extremely unlikely$)$  that at some points the exact noise value  $n = 0$  will also occur.

Union set


Some set-theoretical relations are explained now on the basis of the Venn diagram.

$\text{Definition:}$  The  »union set«  $C$  of two sets  $A$  and  $B$  contains all the elements that are contained either in set  $A$  or in set  $B$  or in both. 

Union set in the Venn diagram
  • This relationship is expressed as the following formula:
$$\ C = A \cup B.$$
  • Using the diagram, it is easy to see the following laws of set theory:
$$A \cup \it \phi = A \rm \hspace{3.6cm}(union \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}empty \hspace{0.15cm}set),$$
$$A\cup G = G \rm \hspace{3.6cm}(union \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}universe),$$
$$A\cup A = A \hspace{3.6cm}(\rm tautology),$$
$$A\cup B = B\cup A \hspace{2.75cm}(\rm commutative \hspace{0.15cm}property),$$
$$(A\cup B)\cup C = A\cup (B\cup C) \hspace{0.45cm}(\rm associative \hspace{0.15cm}property).$$
  • If nothing else is known about the event sets  $A$  and  $B$  then only a lower bound and an upper bound can be given for the probability of the union set:
$${\rm Max}\big({\rm Pr} (A), \ {\rm Pr} (B)\big) \le {\rm Pr} (A \cup B) \le {\rm Pr} (A)+{\rm Pr} (B).$$
  • The probability of the union set is equal to the lower bound if  $A$  is a  $\text{subset}$  of  $B$  or vice versa.


$\text{Example 1:}$  We consider again the experiment  »throwing a die«.  The possible outcomes  $($number of points$)$  are thus  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.

Consider the two events

  • $A :=$  »The outcome is greater than or equal to  $5$ «  $ = \{5, 6\}$   ⇒   ${\rm Pr} (A)= 2/6= 1/3$,
  • $B :=$  »The outcome is even «  $= \{2, 4, 6\}$   ⇒   ${\rm Pr} (B)= 3/6= 1/2$,


then the union set contains four elements:   $(A \cup B) = \{2, 4, 5, 6 \}$   ⇒   ${\rm Pr} (A \cup B) = 4/6 = 2/3$.

  • For the lower bound:   ${\rm Pr} (A \cup B) \ge {\rm Max}\big({\rm Pr} (A),\ {\rm Pr} (B)\big ) = 3/6.$
  • For the upper bound:   $ {\rm Pr} (A \cup B) \le {\rm Pr} (A)+{\rm Pr} (B) = 5/6.$

Intersection set


Another important set-theoretic relation is the intersection.

$\text{Definition:}$  The  »intersection set«  $C$  of two sets  $A$  and  $B$  contains all those elements which are contained in both the set  $A$  and the set  $B$.

Intersection set in the Venn diagram
  • This relationship is expressed as the following formula:
$$C = A \cap B.$$
  • In the diagram,  the intersection is shown in purple.  Analog to the union set,  the following regularities apply here:
$$A \cap \it \phi = \it \phi \rm \hspace{3.75cm}(intersection \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}empty \hspace{0.15cm}set),$$
$$A \cap G = A \rm \hspace{3.6cm}(intersection \hspace{0.15cm}with \hspace{0.15cm}the \hspace{0.15cm}universe),$$
$$A\cap A = A \rm \hspace{3.6cm}(tautology),$$
$$A\cap B = B\cap A \rm \hspace{2.75cm}(commutative \hspace{0.15cm}property),$$
$$(A\cap B)\cap C = A\cap (B\cap C) \rm \hspace{0.45cm}(associative \hspace{0.15cm}property).$$
  • If nothing else is known about  $A$  and  $B$,  then no statement can be made for the probability of the intersection.
  • However,  if  ${\rm Pr} (A) \le 1/2$  and at the same time  ${\rm Pr} (B) \le 1/2$ hold,  then a lower and an upper bound can be given:
$$0 \le {\rm Pr} (A ∩ B) \le {\rm Min}\ \big({\rm Pr} (A),\ {\rm Pr} (B)\big ).$$
  • ${\rm Pr}(A ∩ B)$  is sometimes called the  »joint probability«  and is denoted by  ${\rm Pr}(A, \ B)$.
  • ${\rm Pr}(A ∩ B)$  is equal to the upper bound if  $A$  is a  $\text{subset}$  of  $B$  or vice versa.


$\text{Example 2:}$  We consider again the experiment  »throwing a die«.  The possible outcomes  (number of points)  are thus  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.

Consider the two events

  • $A :=$  »The outcome is greater than or equal to  $5$«  $ = \{5, 6\}$   ⇒   ${\rm Pr} (A)= 2/6= 1/3$, 
  • $B :=$  »The outcome is even«  $ = \{2, 4, 6\}$   ⇒   ${\rm Pr} (B)= 3/6= 1/2$.


The intersection contains only one element:   $(A ∩ B) = \{ 6 \}$   ⇒   ${\rm Pr} (A ∩ B) = 1/6$.

  • The upper bound is obtained as  ${\rm Pr} (A ∩ B) \le {\rm Min}\ \big ({\rm Pr} (A), \, {\rm Pr} (B)\big ) = 2/6.$
  • The lower bound of the intersection is zero because of  ${\rm Pr} (A) \le 1/2$  and  ${\rm Pr} (B) \le 1/2$ .

Complementary set


$\text{Definition:}$  The  »complementary set« of  $A$  is often denoted by a straight line above the letter  $(\overline{A})$ .  It contains all the elements that are not contained in the set  $A$  and it holds for their probability:

Complementary set in the Venn diagram
$${\rm Pr}(\overline{A}) = 1- {\rm Pr}(A).$$

In the Venn diagram,  the set complementary to  $A$  is shaded. 

From this diagram,  some set-theoretic relationships can be seen:

  • The complementary of the complementary of  $A$  is the set  $A$  itself:
$$\overline{\overline{A} } = A.$$
  • The union of a set  $A$  with its complementary set gives the universal set:
$${\rm Pr}(A \cup \overline{A}) = {\rm Pr}(G) = \rm 1.$$
  • The intersection of  $A$  with its complementary set gives the empty set:
$${\rm Pr}(A \cap \overline{A}) = {\rm Pr}({\it \phi}) \rm = 0.$$


$\text{Example 3:}$  We consider again the experiment  »throwing a die».  The possible outcomes  (number of points)  are thus  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.

  • Starting from the set
$$A :=\text{ »The outcome is smaller than  $5$« } = \{1, 2, 3, 4\}\ \ \text{  ⇒  } \ \ {\rm Pr} (A)= 2/3,$$
  • the corresponding complementary set is
$$\overline{A} :=\text{  »The outcome is greater than or equal to  $5$«}  = \{5, 6\} \ \ \text{  ⇒  }\ \ {\rm Pr} (\overline{A})= 1 - {\rm Pr} (A) = 1 - 2/3 = 1/3.$$

Proper subset – Improper subset


Proper subset in the Venn diagram

$\text{Definitions:}$ 

(1)  One calls  $A$  a  »proper subset«  of  $B$  and writes for this relationship  $A ⊂ B$,

  • if all elements of  $A$  are also contained in  $B$,
  • but not all elements of  $B$  are contained in  $A$.


In this case,  for the probabilities hold:

$${\rm Pr}(A) < {\rm Pr}(B).$$

This set-theoretic relationship is illustrated by the sketched Venn diagram on the right.


(2)  On the other hand,  $A$  is called an  »improper subset«  of  $B$  and uses the notation

$$A \subseteq B = (A \subset B) \cup (A = B),$$

if  $A$  is either a proper subset of  $B$  or if  $A$  and  $B$  are equal sets.

  • Then applies to the probabilities:  ${\rm Pr} (A) \le {\rm Pr} (B)$.
  • The equality sign is only valid for the special case  $A = B$.


In addition,  the two equations known as the  »absorption laws«  also apply:

$$(A \cap B) \cup A = A ,$$
$$(A \cup B) \cap A = A,$$
  • since the intersection  $A ∩ B$  is always a subset of  $A$, 
  • but at the same time  $A$  is also a subset of the union  $A ∪ B$.


$\text{Example 4:}$  We consider again the experiment  »throwing a die«.  The possible outcomes  (number of points)  are thus  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.

Consider the two events

  • $A :=$  »The outcome is odd« $  = \{1, 3, 5\}$   ⇒   ${\rm Pr} (A)= 3/6$, 
  • $B :=$  »The outcome is a prime number» $  = \{1, 2, 3, 5\}$   ⇒   ${\rm Pr} (B)= 4/6$.


It can be seen that  $A$  is a  $($proper$)$ subset  of  $B$.  Accordingly,  ${\rm Pr} (A) < {\rm Pr} (B)$  is also true.

Theorems of de Morgan


In many set-theoretical tasks,  the two theorems of  $\text{de Morgan}$  are extremely useful. 

$\text{Theorem of de Morgan:}$

About de Morgan's theorems
$$\overline{A \cup B} = \overline{A} \cap \overline{B},$$
$$\overline{A \cap B} = \overline{A} \cup \overline{B}.$$

These regularities are illustrated in the Venn diagram:

  1. Set  $A$  is shown in red and set  $B$  is shown in blue.
  2. The complement  $\overline {A}$  of  $A$  is hatched in the horizontal direction.
  3. The complement  $\overline {B}$  of  $B$  is hatched in the vertical direction.
  4. The complement  $\overline{A \cup B}$  of the union  ${A \cup B}$  is hatched both horizontally and vertically.
  5. It is thus equal to the intersection  $\overline{A} \cap \overline{B}$  of the two complement sets of  $A$  and  $B$:
$$\overline{A \cup B} = \overline{A} \cap \overline{B}.$$


The second form of the de Morgan theorem can also be illustrated graphically with the same Venn diagram:

  1. The intersection  $A ∩ B$  $($shown in purple in the figure$)$  is neither horizontally nor vertically hatched.
  2. Accordingly, the complement  $\overline{A ∩ B}$  of the intersection is hatched either horizontally, vertically, or in both directions.
  3. By de Morgan's second theorem,  the complement of the intersection equals the union of the two complementary sets of  $A$  and  $B$:
$$\overline{A \cap B} = \overline{A} \cup \overline{B}.$$

$\text{Example 5:}$  We consider again the experiment  »throwing a die«.  The possible outcomes  (number of points)  are thus  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.

We consider the two sets

  • $A : =$  »The outcome is odd«  $= \{1, 3, 5\}$,
  • $B : =$  »The outcome is greater than  $2$«  $= \{3, 4, 5, 6\}$.


From this follow the two complementary sets

  • $\overline {A} : =$  »The outcome is even«  $= \{2, 4, 6\}$,
  • $\overline {B} : =$  »The outcome is smaller than  $3$«  $= \{1, 2\}$.


Further,  using the above theorems,  we obtain the following sets:

$$\overline{A \cup B} = \overline{A} \cap \overline{B} = \{2\},$$
$$\overline{\it A \cap \it B} =\overline{\it A} \cup \overline{\it B} = \{1,2,4,6\}.$$

Disjoint sets


Disjoint sets in the Venn diagram

$\text{Definition:}$  Two sets  $A$  and  $B$  are called  »disjoint« or  »incompatible«,

  • if there is no single element,
  • that is contained in both  $A$  and  $B$.


The diagram shows two disjoint sets  $A$  and  $B$  in the Venn diagram.

In this special case,  the following statements hold:

  • The intersection of two disjoint sets  $A$  and  $B$  always yields the empty set:
$${\rm Pr}(A \cap B) = {\rm Pr}(\phi) = \rm 0.$$
  • The probability of the union set of two disjoint sets  $A$  and  $B$  is always equal to the sum of the two individual probabilities:
$${\rm Pr}( A \cup B) = {\rm Pr}( A) + {\rm Pr}(B).$$


$\text{Example 6:}$  We consider again the experiment  »throwing a die«.  The possible outcomes  (number of points)  are thus  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.

In our standard experiment,  the two sets are now

  • $A :=$  »The outcome is smaller than  $3$ « $ = \{1, 2\}$   ⇒   ${\rm Pr}( A) = 2/6$,
  • $B :=$  »The outcome is greater than  $3$ « $ = \{4, 5,6\}$   ⇒   ${\rm Pr}( B) = 3/6$


disjoint to each other,  since  $A$  and  $B$  do not contain a single common element.

  1. The intersection yields the empty set:  ${A \cap B} = \phi$.
  2. The probability of the union set  ${A \cup B} = \{1, 2, 4, 5, 6\}$  is equal to  ${\rm Pr}( A) + {\rm Pr}(B) = 5/6.$

Addition rule


Only for disjoint sets  $A$  and  $B$,  the relation  ${\rm Pr}( A \cup B) = {\rm Pr}( A) + {\rm Pr}(B)$  holds for the probability of the union set.  But how is this probability calculated for general events that are not necessarily disjoint?

»Addition rule«  of probability calculus

Consider the right-hand Venn diagram with the intersection  $A ∩ B$  shown in purple:

  1. The red set contains all the elements that belong to  $A$,  but not to  $B$.
  2. The elements of  $B$, that are not simultaneously contained in  $A$  are shown in blue.
  3. All red,  blue,  and purple surfaces together make up the union set  $A ∪ B$.


From this set-theoretical representation,  one can see the following relationships:

$${\rm Pr}(A) \hspace{0.8cm}= {\rm Pr}(A \cap B) + {\rm Pr}(A \cap \overline{B}),$$
$${\rm Pr}(B) \hspace{0.8cm}= {\rm Pr}(A \cap B) \rm +{\rm Pr}(\overline{A} \cap {B}),$$
$${\rm Pr}(A \cup B) ={\rm Pr}(A \cap B) +{\rm Pr} ({A} \cap \overline{B}) + {\rm Pr}(\overline{A} \cap {B}).$$

Adding the first two equations and subtracting from them the third,  we get:

$${\rm Pr}(A) +{\rm Pr}(B) -{\rm Pr}(A \cup B) = {\rm Pr}(A \cap B).$$

$\text{Definition:}$  By rearranging this equation,  one arrives at the so-called  »addition rule«  for any two,  not necessarily disjoint events:

$${\rm Pr}(A \cup B) = {\rm Pr}(A) + {\rm Pr}(B) - {\rm Pr}(A \cap B).$$


$\text{Example 7:}$  We consider again the experiment  »throwing a die«.  The possible outcomes  (number of points)  are thus  $E_μ ∈ G = \{1, 2, 3, 4, 5, 6\}$.

We consider the two sets

  • $A :=$  »The outcome is odd « $= \{1, 3, 5\}$   ⇒   ${\rm Pr}(A) = 3/6$,
  • $B :=$  »The outcome is greater than  $2$ « $ = \{3, 4, 5, 6\}$   ⇒   ${\rm Pr}(B) = 4/6$.


This gives the following probabilities

  • of the union   ⇒   ${\rm Pr}(A ∪ B) = 5/6$,  and
  • of the intersection   ⇒   ${\rm Pr}(A ∩ B) = 2/6$.


The numerical values show the validity of the addition rule:  

$$5/6 = 3/6 + 4/6 − 2/6.$$

Complete system


In the last section to this chapter,  we consider again more than two possible events, namely, in general,  $I$.  These events will be denoted by  $A_i$   ⇒   the running index $i$ can be in the range  $1 ≤ i ≤ I$.

$\text{Definition:}$  A constellation with events  $A_1, \hspace{0.1cm}\text{...}\hspace{0.1cm} , A_i, \hspace{0.1cm}\text{...}\hspace{0.1cm} , A_I$  is called a  »complete system«,  if and only if the following two conditions are satisfied:

(1)   All events are pairwise disjoint:

$$A_i \cap A_j = \it \phi \hspace{0.25cm}\rm for\hspace{0.15cm}all\hspace{0.25cm}\it i \ne j.$$

(2)   The union of all event sets gives the universal set:

$$\bigcup_{i=1}^{I} A_i = G.$$


Given these two assumptions, the sum of all probabilities is then:

$$\sum_{i =1}^{ I} {\rm Pr}(A_i) = 1.$$

$\text{Example 8:}$ 

  • The sets  $A_1 := \{1, 5\}$  and  $A_2 := \{2, 3\}$  together with the set  $A_3 := \{4, 6\}$  result in a complete system in the random experiment  »throwing a die«,
  • but not in the experiment  »throwing a roulette ball«.


$\text{Example 9:}$  Another example of a complete system is the discrete random variable  $X = \{ x_1, x_2, \hspace{0.1cm}\text{...}\hspace{0.1cm} , x_I\}$  with the likelihood corresponding to the following  »probability mass function«  $\rm (PMF)$:

$$P_X(X) = \big [ \hspace{0.1cm} P_X(x_1),\ P_X(x_2), \hspace{0.05cm}\text{...}\hspace{0.15cm},\ P_X(x_I) \hspace{0.05cm} \big ] = \big [ \hspace{0.1cm} p_1, p_2, \hspace{0.05cm}\text{...} \hspace{0.15cm}, p_I \hspace{0.05cm} \big ] \hspace{0.05cm}$$
$$\Rightarrow \hspace{0.3cm} p_1 = P_X(x_1) = {\rm Pr}(X=x_1) \hspace{0.05cm}, \hspace{0.2cm}p_2 = {\rm Pr}(X=x_2) \hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.15cm},\hspace{0.2cm} p_I = {\rm Pr}(X=x_I) \hspace{0.05cm}.$$
  • The possible outcomes  $x_i$  of the random variable  $X$  are pairwise disjoint to each other.
  • The sum of all likelihoods  $p_1 + p_2 + \hspace{0.1cm}\text{...}\hspace{0.1cm} + \hspace{0.05cm} p_I$  always yields the result  $1$.


$\text{Example 10:}$  Let  $X= \{0, 1, 2 \}$  and  $P_X (X) = \big[0.2, \ 0.5, \ 0.3\big]$. Then holds:

$${\rm Pr}(X=0) = 0.2 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=1) = 0.5 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=2) = 0.3 \hspace{0.05cm}.$$

With random variable  $X = \{1, \pi, {\rm e} \}$  and the same  $P_X(X) = \big[0.2, \ 0.5, \ 0.3\big]$  the assignments are:

$${\rm Pr}(X=1) = 0.2 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X=\pi) = 0.5 \hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(X={\rm e}) = 0.3 \hspace{0.05cm}.$$

$\text{Hints:}$

  • The  »probability mass function«  $P_X(X)$  only makes statements about probabilities,  not about the set of values  $\{x_1, x_2, \hspace{0.1cm}\text{...}\hspace{0.1cm} , x_I\}$  of the random variable  $X$.

Exercises for the chapter


Exercise 1.2: Switching Logic (D/B Converter)

Exercise 1.2Z: Sets of Digits

Exercise 1.3: Fictional University Somewhere

Exercise 1.3Z: Winning with Roulette?