Difference between revisions of "Aufgaben:Exercise 5.1Z: GSM System/E–Band"

From LNTwww
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Aufgaben_und_Klassifizierung
+
{{quiz-Header|Buchseite=Modulation_Methods/Tasks_and_Classification
 
}}
 
}}
  
[[File:P_ID1863__Mod_Z_5_1.png|right|frame|Multiplexen beim GSM–System]]
+
[[File:EN_Mod_Z_5_1.png|right|frame|Multiplexing in the GSM system]]
Der seit ca. 1992 in Europa etablierte Mobilfunkstandard  $\rm GSM$  (''Global System for Mobile Communications'')  nutzt gleichzeitig Frequenz– und Zeitmultiplex, um mehreren Teilnehmern die Kommunikation in einer Zelle zu ermöglichen.
+
The mobile communications standard  $\rm GSM$  (''Global System for Mobile Communications''),  which has been established in Europe since around 1992, uses frequency and time division multiplexing simultaneously to enable several subscribers to communicate in one cell.
  
Nachfolgend sind einige Charakteristika des GSM–Systems in etwas vereinfachter Form angegeben.  Eine genaue Beschreibung finden Sie im dritten Kapitel des LNTwww–Fachbuches  [[Beispiele von Nachrichtensystemen]].  Betrachtet wird in dieser Aufgabe der Download–Bereich desso genannten "E–Netzes" im Frequenzbereich um 1800 MHz.
+
Some characteristics of the GSM system are given below in a somewhat simplified form.  A detailed description can be found in the third chapter of the LNTwww book  [[Examples of Communication Systems]].  The download range of the so-called "E-network" in the frequency range around 1800 MHz is considered in this exercise.
* Das Frequenzband des Downlinks  (darunter versteht man die Verbindung von der Basis– zur Mobilstation)  liegt im Frequenzbereich zwischen 1805 MHz und 1880 MHz.  Unter Berücksichtigung der Guard–Bänder an den beiden Enden  (je 100 kHz)  steht somit für den Uplink eine Gesamtbandbreite von 74.8 MHz zur Verfügung.
+
* The frequency band of the downlink  (i.e. the connection from the base station to the mobile station)  is between 1805 MHz and 1880 MHz.  Taking into account the guard bands at both ends  (100 kHz each),  a total bandwidth of 74.8 MHz is thus available for the uplink.
* Dieses Band wird von insgesamt  $K_{\rm F}$  Teilkanälen  (''Radio Frequency Channels'')  genutzt, die mit einem jeweiligen Abstand von 200 kHz frequenzmäßig nebeneinander liegen.  Die Nummerierung geschieht mit der Laufvariablen  $k_{\rm F}$.
+
* This band is used by a total  $K_{\rm F}$  subchannels  (Radio Frequency Channels),  which are adjacent to each other in terms of frequency with a respective spacing of 200 kHz.  The numbering is done with the control variable  $k_{\rm F}$.
* Der Frequenzbereich für den Uplink  (die Verbindung von einer Mobilstation zur Basisstation)  liegt um 95 MHz unterhalb des Downlinks und ist sonst genau gleich aufgebaut wie dieser.
+
* The frequency range for the uplink  (the connection from a mobile station to the base station)  is 95 MHz below the downlink and otherwise has exactly the same structure.
* Jeder dieser FDMA–Teilkanäle wird gleichzeitig von  $K_{\rm T}$  Teilnehmern per TDMA  (''Time Division Multiple Access'')  genutzt.
+
* Each of these FDMA subchannels is used simultaneously by  $K_{\rm T}$  subscribers via TDMA  (Time Division Multiple Access). 
* Jedem Teilnehmer steht im Abstand von 4.62 Millisekunden ein Zeitschlitz der Dauer  $T ≈ 577 \ µ s$  zur Verfügung.  Während dieser Zeit müssen die (näherungsweise)  $156$  Bit übertragen werden, die das Sprachsignal unter Berücksichtigung von Datenreduktion und Kanalcodierung beschreiben.
+
* Each subscriber has a time slot of duration  $T ≈ 577 \ µ s$  available at intervals of 4.62 milliseconds.  During this time, the (approximate)  $156$  bits describing the speech signal must be transmitted, taking data reduction and channel coding into account.
  
  
Line 20: Line 20:
  
  
''Hinweise:''  
+
''Notes:''  
*Die Aufgabe gehört zum  Kapitel  [[Modulation_Methods/Aufgaben_und_Klassifizierung|Aufgaben und Klassifizierung]].
+
*The exercise belongs to the chapter  [[Modulation_Methods/Aufgaben_und_Klassifizierung|Tasks and Classification]].
*Bezug genommen wird insbesondere auf die Seiten&nbsp;  <br> &nbsp; &nbsp;[[Modulation_Methods/Allgemeine_Beschreibung_von_OFDM#Das_Prinzip_von_OFDM_.E2.80.93_Systembetrachtung_im_Zeitbereich|OFDM-Systembetrachtung im Zeitbereich]], &nbsp;<br> &nbsp; &nbsp;[[Modulation_Methods/Allgemeine_Beschreibung_von_OFDM#Systembetrachtung_im_Frequenzbereich_bei_kausalem_Grundimpuls|OFDM-Systembetrachtung im Frequenzbereich bei kausalem Grundimpuls]].
+
*Reference is made in particular to the pages&nbsp;  <br> &nbsp; &nbsp;[[Modulation_Methods/Allgemeine_Beschreibung_von_OFDM#Das_Prinzip_von_OFDM_.E2.80.93_Systembetrachtung_im_Zeitbereich|OFDM system consideration in the time domain]], &nbsp;<br> &nbsp; &nbsp;[[Modulation_Methods/Allgemeine_Beschreibung_von_OFDM#Systembetrachtung_im_Frequenzbereich_bei_kausalem_Grundimpuls|OFDM system consideration in the frequency domain with causal basic pulse]].
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wieviele Teilkanäle &nbsp;$(K_{\rm F})$&nbsp; entstehen durch Frequenzmultiplex?
+
{How many subchannels &nbsp;$(K_{\rm F})$&nbsp; are created by frequency division multiplexing?
 
|type="{}"}
 
|type="{}"}
 
$K_{\rm F} \ = \ $ { 374 1% }  
 
$K_{\rm F} \ = \ $ { 374 1% }  
  
{Welche Mittenfrequenz &nbsp;$f_{\rm M}$&nbsp; hat der&nbsp; ''Radio Frequency Channel'' &nbsp; im Downlink mit der laufenden Nummer &nbsp;$k_{\rm F} = 100$?
+
{What is the center frequency &nbsp;$f_{\rm M}$&nbsp; of the radio frequency channel in the downlink with the sequence number &nbsp;$k_{\rm F} = 100$?
 
|type="{}"}
 
|type="{}"}
 
$f_{\rm M}  \ = \ $ { 1825 1%  } $\ \rm MHz$
 
$f_{\rm M}  \ = \ $ { 1825 1%  } $\ \rm MHz$
  
{Welcher Uplink–Kanal&nbsp; $($Nummer &nbsp;$k_{\rm F})$ &nbsp; benutzt die Mittenfrequenz $f_{\rm M} = 1750 \ \rm MHz$?
+
{Which uplink channel&nbsp; $($number &nbsp;$k_{\rm F})$ &nbsp; uses the center frequency $f_{\rm M} = 1750 \ \rm MHz$?
 
|type="{}"}
 
|type="{}"}
 
$k_{\rm F} \ = \ $ { 200 1% }
 
$k_{\rm F} \ = \ $ { 200 1% }
  
{Wieviele Teilkanäle  &nbsp;$(K_{\rm T})$&nbsp; entstehen durch Zeitmultiplex?
+
{How many subchannels &nbsp;$(K_{\rm T})$&nbsp; are created by time division multiplexing?
 
|type="{}"}
 
|type="{}"}
 
$K_{\rm T} \ = \ $ { 8 }  
 
$K_{\rm T} \ = \ $ { 8 }  
  
{Wieviele Teilnehmer &nbsp;$(K)$&nbsp; können bei GSM im Download des E–Netzes gleichzeitig aktiv sein?
+
{How many subscribers &nbsp;$(K)$&nbsp; can be active simultaneously in GSM in the download of the E-network?
 
|type="{}"}
 
|type="{}"}
 
$K\ = \ $ { 2992 1% }
 
$K\ = \ $ { 2992 1% }
  
{Wie groß ist hierbei die Brutto–Bitrate?
+
{What is the gross bit rate here?
 
|type="{}"}
 
|type="{}"}
 
$R_{\rm Brutto} \ = \ $ { 270 1% } $\ \rm kbit/s$
 
$R_{\rm Brutto} \ = \ $ { 270 1% } $\ \rm kbit/s$
Line 56: Line 56:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Aus der Gesamtbandbreite 74.8 MHz und dem Kanalabstand 200 kHz folgt&nbsp; $K_{\rm F}\hspace{0.15cm}\underline { = 374}$.
+
'''(1)'''&nbsp; From the total bandwidth 74.8 MHz and the channel spacing 200 kHz follows&nbsp; $K_{\rm F}\hspace{0.15cm}\underline { = 374}$.
  
  
'''(2)'''&nbsp; Die Mittenfrequenz des ersten Kanals liegt bei 1805.2 MHz.  
+
'''(2)'''&nbsp; The center frequency of the first channel is 1805.2 MHz.  
*Der mit „RFCH100” bezeichnete Kanal liegt um 99 · 200 kHz = 19.8 MHz höher:
+
*The channel designated "RFCH100" is higher by 99 · 200 kHz = 19.8 MHz:
 
:$$f_{\rm M} = 1805.2 \,\,{\rm MHz } + 19.8 \,\,{\rm MHz } \hspace{0.15cm}\underline {= 1825 \,\,{\rm MHz }}.$$
 
:$$f_{\rm M} = 1805.2 \,\,{\rm MHz } + 19.8 \,\,{\rm MHz } \hspace{0.15cm}\underline {= 1825 \,\,{\rm MHz }}.$$
  
  
'''(3)'''&nbsp; Um die Überlegungen zur Teilaufgabe&nbsp; '''(2)'''&nbsp; nutzen zu können, transformieren wir die Aufgabenstellung in den Downlink.  
+
'''(3)'''&nbsp; To be able to use the observations for subtask&nbsp; '''(2)''',&nbsp; we transform the exercise into the downlink.
*Der gleiche Kanal mit der Kennung&nbsp; $k_{\rm F}$, der im Uplink die Mittenfrequenz 1750 MHz nutzt, liegt im Downlink bei 1845 MHz.
+
*The same channel with the identifier&nbsp; $k_{\rm F}$, which uses the center frequency 1750 MHz in the uplink, is at 1845 MHz in the downlink.
* Damit gilt:
+
* Thus applies:
 
:$$k_{\rm F} = 1 + \frac {1845 \,\,{\rm MHz } - 1805.2 \,\,{\rm MHz } }{0.2 \,\,{\rm MHz }}\hspace{0.15cm}\underline { = 200}.$$
 
:$$k_{\rm F} = 1 + \frac {1845 \,\,{\rm MHz } - 1805.2 \,\,{\rm MHz } }{0.2 \,\,{\rm MHz }}\hspace{0.15cm}\underline { = 200}.$$
  
  
'''(4)'''&nbsp; In einem TDMA–Rahmen der Dauer 4.62 Millisekunden können acht Zeitschlitze mit jeweiliger Dauer &nbsp;$T = 577 \ &micro; s$&nbsp; untergebracht werden.
+
'''(4)'''&nbsp; A TDMA frame of duration 4.62 milliseconds can accommodate eight time slots, each with duration &nbsp;$T = 577 \ &micro; s$.&nbsp;  
*$K_{\rm T}  = 8$&nbsp; wird bei GSM auch tatsächlich verwendet.
+
*$K_{\rm T}  = 8$&nbsp; is also actually used in GSM.
  
  
  
'''(5)'''&nbsp; Mit den Ergebnissen der Teilaufgaben&nbsp; '''(1)'''&nbsp; und&nbsp; '''(4)'''&nbsp; erhält man:
+
'''(5)'''&nbsp; Using the results of subtasks&nbsp; '''(1)'''&nbsp; and&nbsp; '''(4)''',&nbsp; we obtain:
 
:$$K = K_{\rm F} \cdot K_{\rm T} = 374 \cdot 8 \hspace{0.15cm}\underline {= 2992} .$$
 
:$$K = K_{\rm F} \cdot K_{\rm T} = 374 \cdot 8 \hspace{0.15cm}\underline {= 2992} .$$
  
  
'''(6)'''&nbsp; Während der Zeit &nbsp;$T = 577 \ &micro; s$&nbsp; müssen 156 Bit übertragen werden.  
+
'''(6)'''&nbsp; During the time &nbsp;$T = 577 \ &micro; s$&nbsp; 156 bits must be transmitted.
*Damit stehen für jedes Bit die Zeit&nbsp; $T_{\rm B} = 3.699 \ \rm &micro;  s$&nbsp; zur Verfügung.&nbsp; Daraus ergibt sich die Bitrate
+
*Thus, the time&nbsp; $T_{\rm B} = 3.699 \ \rm &micro;  s$&nbsp; is available for each bit.&nbsp; This results in the bit rate
:$$R_{\rm Brutto} = \frac {1 }{T_{\rm B}} \hspace{0.15cm}\underline {\approx 270 \,\,{\rm kbit/s }}.$$
+
:$$R_{\rm Gross} = \frac {1 }{T_{\rm B}} \hspace{0.15cm}\underline {\approx 270 \,\,{\rm kbit/s }}.$$
*Diese Brutto–Bitrate beinhaltet neben den das Sprachsignal beschreibenden Datensymbolen auch die Trainigssequenz zur Kanalschätzung und die Redundanz zur Kanalcodierung.  
+
*In addition to the data symbols describing the speech signal, this gross bit rate also includes the training sequence for channel estimation and the redundancy for channel coding.  
*Die Netto–Bitrate beträgt beim GSM–System für jeden der acht Benutzer nur etwa&nbsp; $R_{\rm Netto} = 13 \ \rm kbit/s$.
+
*The net bit rate for the GSM system is only about&nbsp; $R_{\rm Net} = 13 \ \rm kbit/s$ for each of the eight users.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 16:36, 23 January 2023

Multiplexing in the GSM system

The mobile communications standard  $\rm GSM$  (Global System for Mobile Communications),  which has been established in Europe since around 1992, uses frequency and time division multiplexing simultaneously to enable several subscribers to communicate in one cell.

Some characteristics of the GSM system are given below in a somewhat simplified form.  A detailed description can be found in the third chapter of the LNTwww book  Examples of Communication Systems.  The download range of the so-called "E-network" in the frequency range around 1800 MHz is considered in this exercise.

  • The frequency band of the downlink  (i.e. the connection from the base station to the mobile station)  is between 1805 MHz and 1880 MHz.  Taking into account the guard bands at both ends  (100 kHz each),  a total bandwidth of 74.8 MHz is thus available for the uplink.
  • This band is used by a total  $K_{\rm F}$  subchannels  (Radio Frequency Channels),  which are adjacent to each other in terms of frequency with a respective spacing of 200 kHz.  The numbering is done with the control variable  $k_{\rm F}$.
  • The frequency range for the uplink  (the connection from a mobile station to the base station)  is 95 MHz below the downlink and otherwise has exactly the same structure.
  • Each of these FDMA subchannels is used simultaneously by  $K_{\rm T}$  subscribers via TDMA  (Time Division Multiple Access). 
  • Each subscriber has a time slot of duration  $T ≈ 577 \ µ s$  available at intervals of 4.62 milliseconds.  During this time, the (approximate)  $156$  bits describing the speech signal must be transmitted, taking data reduction and channel coding into account.





Notes:


Questions

1

How many subchannels  $(K_{\rm F})$  are created by frequency division multiplexing?

$K_{\rm F} \ = \ $

2

What is the center frequency  $f_{\rm M}$  of the radio frequency channel in the downlink with the sequence number  $k_{\rm F} = 100$?

$f_{\rm M} \ = \ $

$\ \rm MHz$

3

Which uplink channel  $($number  $k_{\rm F})$   uses the center frequency $f_{\rm M} = 1750 \ \rm MHz$?

$k_{\rm F} \ = \ $

4

How many subchannels  $(K_{\rm T})$  are created by time division multiplexing?

$K_{\rm T} \ = \ $

5

How many subscribers  $(K)$  can be active simultaneously in GSM in the download of the E-network?

$K\ = \ $

6

What is the gross bit rate here?

$R_{\rm Brutto} \ = \ $

$\ \rm kbit/s$


Solution

(1)  From the total bandwidth 74.8 MHz and the channel spacing 200 kHz follows  $K_{\rm F}\hspace{0.15cm}\underline { = 374}$.


(2)  The center frequency of the first channel is 1805.2 MHz.

  • The channel designated "RFCH100" is higher by 99 · 200 kHz = 19.8 MHz:
$$f_{\rm M} = 1805.2 \,\,{\rm MHz } + 19.8 \,\,{\rm MHz } \hspace{0.15cm}\underline {= 1825 \,\,{\rm MHz }}.$$


(3)  To be able to use the observations for subtask  (2),  we transform the exercise into the downlink.

  • The same channel with the identifier  $k_{\rm F}$, which uses the center frequency 1750 MHz in the uplink, is at 1845 MHz in the downlink.
  • Thus applies:
$$k_{\rm F} = 1 + \frac {1845 \,\,{\rm MHz } - 1805.2 \,\,{\rm MHz } }{0.2 \,\,{\rm MHz }}\hspace{0.15cm}\underline { = 200}.$$


(4)  A TDMA frame of duration 4.62 milliseconds can accommodate eight time slots, each with duration  $T = 577 \ µ s$. 

  • $K_{\rm T} = 8$  is also actually used in GSM.


(5)  Using the results of subtasks  (1)  and  (4),  we obtain:

$$K = K_{\rm F} \cdot K_{\rm T} = 374 \cdot 8 \hspace{0.15cm}\underline {= 2992} .$$


(6)  During the time  $T = 577 \ µ s$  156 bits must be transmitted.

  • Thus, the time  $T_{\rm B} = 3.699 \ \rm µ s$  is available for each bit.  This results in the bit rate
$$R_{\rm Gross} = \frac {1 }{T_{\rm B}} \hspace{0.15cm}\underline {\approx 270 \,\,{\rm kbit/s }}.$$
  • In addition to the data symbols describing the speech signal, this gross bit rate also includes the training sequence for channel estimation and the redundancy for channel coding.
  • The net bit rate for the GSM system is only about  $R_{\rm Net} = 13 \ \rm kbit/s$ for each of the eight users.