Difference between revisions of "Aufgaben:Exercise 1.7Z: BARBARA Generator"

From LNTwww
 
(2 intermediate revisions by 2 users not shown)
Line 2: Line 2:
 
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Markov_Chains}}
 
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Markov_Chains}}
  
[[File:P_ID454__Sto_Z_1_7.png|right|frame|$BARBARA$ Generator]]
+
[[File:P_ID454__Sto_Z_1_7.png|right|frame|$\rm BARBARA$  Generator]]
Here we consider a ternary random generator with symbols  $A$,  $B$  and  $R$, which can be described by a homogeneous and stationary first order Markov chain.
+
Here we consider a ternary random generator with symbols  $A$,  $B$  and  $R$,  which can be described by a homogeneous and stationary first order Markov chain.
  
 
*The transition probabilities can be taken from the sketched Markov diagram.
 
*The transition probabilities can be taken from the sketched Markov diagram.
 
*For the first three subtasks,  $p = 1/4$  should always hold.
 
*For the first three subtasks,  $p = 1/4$  should always hold.
 
 
 
 
  
  
 
Hints:
 
Hints:
*The task belongs to the chapter  [[Theory_of_Stochastic_Signals/Markov_Chains|Markov Chains]].
+
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Markov_Chains|Markov Chains]].
 
   
 
   
  
Line 24: Line 20:
 
|type="[]"}
 
|type="[]"}
 
- The values of&nbsp; $p > 0$&nbsp; and&nbsp; $q < 1$&nbsp; are largely arbitrary.
 
- The values of&nbsp; $p > 0$&nbsp; and&nbsp; $q < 1$&nbsp; are largely arbitrary.
+ For the transition probabilities, the following must hold: &nbsp; $p + q = 1$.
+
+ For the transition probabilities,&nbsp; the following must hold: &nbsp; $p + q = 1$.
 
+ All symbols have equal ergodic probabilities.
 
+ All symbols have equal ergodic probabilities.
 
- It holds here:&nbsp; ${\rm Pr}(A) = 1/2, \; {\rm Pr}(B) = 1/3, \; {\rm Pr}(R) = 1/6$.
 
- It holds here:&nbsp; ${\rm Pr}(A) = 1/2, \; {\rm Pr}(B) = 1/3, \; {\rm Pr}(R) = 1/6$.
  
{What are the conditional probabilities&nbsp; $p_{\rm A}$,&nbsp; $p_{\rm B}$&nbsp; and&nbsp; $p_{\rm C}$ that at times between&nbsp; $ν+1$&nbsp; and&nbsp; $ν+7$&nbsp; the sequence&nbsp; $BARBARA$&nbsp; is output, <br>if one is in state im Zustand&nbsp; $A$,&nbsp; $B$&nbsp; or&nbsp; $R$&nbsp;, respectively,at time&nbsp; $ν$&nbsp;?&nbsp; Let&nbsp; $p = 1/4$.
+
{What are the conditional probabilities&nbsp; $p_{\rm A}$,&nbsp; $p_{\rm B}$&nbsp; and&nbsp; $p_{\rm C}$ that at times between&nbsp; $ν+1$&nbsp; and&nbsp; $ν+7$&nbsp; the sequence&nbsp; "$\rm BARBARA$"&nbsp; is output, <br>if one is at time&nbsp; $ν$&nbsp; in state&nbsp; $A$,&nbsp; $B$&nbsp; or&nbsp; $R$,&nbsp; respectively?&nbsp; Let&nbsp; $p = 1/4$.
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm A} \ = \ $  { 0.549 3% } $\ \cdot 10^{-3}$  
 
$p_{\rm A} \ = \ $  { 0.549 3% } $\ \cdot 10^{-3}$  
Line 34: Line 30:
 
$p_{\rm C} \ = \ $ { 0.183 3% } $\ \cdot 10^{-3}$  
 
$p_{\rm C} \ = \ $ { 0.183 3% } $\ \cdot 10^{-3}$  
  
{What is the overall probability that the generator outputs the sequence&nbsp; $BARBARA$&nbsp; ausgibt?<br>  Let&nbsp; $p = 1/4$ continue to hold.
+
{What is the overall probability that the generator outputs the sequence&nbsp; "$\rm BARBARA$"?&nbsp;   Let&nbsp; $p = 1/4$ continue to hold.
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(BARBARA)\ = \ $ { 0.244 3% } $\ \cdot 10^{-3}$
+
${\rm Pr}(\rm BARBARA)\ = \ $ { 0.244 3% } $\ \cdot 10^{-3}$
  
{How should the parameter&nbsp; $p_{\rm opt}$&nbsp; be chosen to make&nbsp; ${\rm Pr}(BARBARA)$&nbsp; as large as possible?  <br>What is the resulting probability for&nbsp; $BARBARA$?
+
{How should the parameter&nbsp; $p_{\rm opt}$&nbsp; be chosen to make&nbsp; ${\rm Pr}(\rm BARBARA)$&nbsp; as large as possible?  <br>What is the resulting probability for&nbsp; "$\rm BARBARA$"?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm opt} \ = \ $  { 0.8333 3% }
 
$p_{\rm opt} \ = \ $  { 0.8333 3% }
$p = p_{\rm opt}\hspace{-0.1cm}: \hspace{0.3cm}{\rm Pr}(BARBARA)\ = \ $ { 22 3% } $\ \cdot 10^{-3}$
+
$p = p_{\rm opt}\hspace{-0.1cm}: \hspace{0.3cm}{\rm Pr}(\rm BARBARA)\ = \ $ { 22 3% } $\ \cdot 10^{-3}$
  
 
</quiz>
 
</quiz>
Line 47: Line 43:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Correct are <u>the second and third suggested solutions</u>:
+
'''(1)'''&nbsp; Correct are&nbsp; <u>the second and third suggested solutions</u>:
*The sum of all outgoing arrows must always be&nbsp; $1$&nbsp;. Therefore&nbsp; $q = 1 - p$ holds.  
+
*The sum of all outgoing arrows must always be&nbsp; $1$.&nbsp; Therefore&nbsp; $q = 1 - p$ holds.  
*Because of the symmetry of the Markov diagram, the ergodic probabilities are all equal:
+
*Because of the symmetry of the Markov diagram,&nbsp; the ergodic probabilities are all equal:
 
:$${\rm Pr}(A) ={\rm Pr}(B) ={\rm Pr}(R) = 1/3.$$
 
:$${\rm Pr}(A) ={\rm Pr}(B) ={\rm Pr}(R) = 1/3.$$
  
  
'''(2)'''&nbsp; If one is in the state&nbsp; $B$&nbsp; at the starting time&nbsp; $\nu=1$&nbsp; because of&nbsp; ${\rm Pr}(B\hspace{0.05cm}|\hspace{0.05cm}B) = 0$ the state&nbsp; $B$&nbsp; is not possible.  
+
'''(2)'''&nbsp; If one is in the state&nbsp; $B$&nbsp; at the starting time&nbsp; $\nu=0$,&nbsp; because of&nbsp; ${\rm Pr}(B\hspace{0.05cm}|\hspace{0.05cm}B) = 0$&nbsp; the state&nbsp; $B$&nbsp; is not possible at time&nbsp; $\nu=1$.  
 
+
*One fails here already with the initial letter&nbsp; $B$:  
 
 
*One fails here already with the initial letter $B$:  
 
 
:$$p_{\rm B} \; \underline{ =0}.$$
 
:$$p_{\rm B} \; \underline{ =0}.$$
  
*For the calculation of&nbsp; $p_{\rm A}$&nbsp; it should be noted: &nbsp; Starting from&nbsp; $A$&nbsp; one goes in the Markov diagram first to&nbsp; $B$&nbsp; $($with probability $q)$, then five times clockwise&nbsp; $($each time with probability $p)$&nbsp; and finally from&nbsp; $R$&nbsp; to&nbsp; $A$&nbsp; $($with probability&nbsp; $q)$. &nbsp; Meaning:
+
*For the calculation of&nbsp; $p_{\rm A}$&nbsp; it should be noted: &nbsp; Starting from&nbsp; $A$&nbsp; one goes in the Markov diagram first to&nbsp; $B$&nbsp; $($with probability $q)$,&nbsp; then five times clockwise&nbsp; $($each time with probability $p)$&nbsp; and finally from&nbsp; $R$&nbsp; to&nbsp; $A$&nbsp; $($with probability&nbsp; $q)$. &nbsp; Meaning:
 
:$$p_{\rm A} = q^2 \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 = 3^2 / 4^7 \hspace{0.15cm}\underline {\approx 0.549 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$
 
:$$p_{\rm A} = q^2 \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 = 3^2 / 4^7 \hspace{0.15cm}\underline {\approx 0.549 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$
*In a similar way, one obtains:
+
*In a similar way,&nbsp; one obtains:
 
:$$p_{\rm R} = q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6 = 3 / 4^7 \hspace{0.15cm}\underline {\approx 0.183 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$
 
:$$p_{\rm R} = q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6 = 3 / 4^7 \hspace{0.15cm}\underline {\approx 0.183 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$
 
 
  
  
 
'''(3)'''&nbsp; By averaging over the conditional probabilities we obtain:
 
'''(3)'''&nbsp; By averaging over the conditional probabilities we obtain:
:$${\rm Pr}(BARBARA) = p_{\rm A}  \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm B}  \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(B) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm R}  \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(R).$$
+
:$${\rm Pr}(\rm BARBARA) = p_{\rm A}  \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm B}  \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(B) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm R}  \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(R).$$
This leads to the result:
+
*This leads to the result:
:$${\rm Pr}(BARBARA) = {1}/{3} \cdot \left( q^2 \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 \hspace{0.1cm} +\hspace{0.1cm}0 \hspace{0.1cm} +\hspace{0.1cm}q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6 \right)  
+
:$${\rm Pr}(\rm BARBARA) = {1}/{3} \cdot \left( q^2 \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 \hspace{0.1cm} +\hspace{0.1cm}0 \hspace{0.1cm} +\hspace{0.1cm}q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6 \right)  
 
  = \frac{q \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 }{3} \cdot{p+q}  
 
  = \frac{q \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 }{3} \cdot{p+q}  
 
= \hspace{-0.15cm} \frac{q \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 }{3}
 
= \hspace{-0.15cm} \frac{q \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 }{3}
 
  \hspace{0.15cm}\underline { \approx 0.244 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$
 
  \hspace{0.15cm}\underline { \approx 0.244 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$
  
 
+
'''(4)'''&nbsp; The probability calculated in&nbsp; '''(3)'''&nbsp; is&nbsp; $p^5 \cdot (1-p)/3$,&nbsp; where&nbsp; $q= 1-p$&nbsp; is considered.  
 
 
'''(4)'''&nbsp; The probability calculated in&nbsp; '''(3)'''&nbsp; is&nbsp; $p^5 \cdot (1-p)/3$, where&nbsp; $q= 1-p$&nbsp; is considered.  
 
  
 
*By setting the differential to zero, we obtain the governing equation:
 
*By setting the differential to zero, we obtain the governing equation:
 
:$$5 \cdot p^4 - 6 \cdot p^5 = 0 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} p_{\rm opt} = 5/6 \hspace{0.15cm}\underline { \approx \rm 0.833}.$$
 
:$$5 \cdot p^4 - 6 \cdot p^5 = 0 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} p_{\rm opt} = 5/6 \hspace{0.15cm}\underline { \approx \rm 0.833}.$$
 
*This results in a value that is larger than the subtask&nbsp; '''(3)'''&nbsp; by a factor&nbsp; $90$&nbsp; approximately:  
 
*This results in a value that is larger than the subtask&nbsp; '''(3)'''&nbsp; by a factor&nbsp; $90$&nbsp; approximately:  
:$${\rm Pr}(BARBARA) \hspace{0.15cm}\underline { \approx 22 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$
+
:$${\rm Pr}\rm (BARBARA) \hspace{0.15cm}\underline { \approx 22 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$
 
 
 
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 17:29, 2 December 2021

$\rm BARBARA$  Generator

Here we consider a ternary random generator with symbols  $A$,  $B$  and  $R$,  which can be described by a homogeneous and stationary first order Markov chain.

  • The transition probabilities can be taken from the sketched Markov diagram.
  • For the first three subtasks,  $p = 1/4$  should always hold.


Hints:


Questions

1

Which of the following statements are true?

The values of  $p > 0$  and  $q < 1$  are largely arbitrary.
For the transition probabilities,  the following must hold:   $p + q = 1$.
All symbols have equal ergodic probabilities.
It holds here:  ${\rm Pr}(A) = 1/2, \; {\rm Pr}(B) = 1/3, \; {\rm Pr}(R) = 1/6$.

2

What are the conditional probabilities  $p_{\rm A}$,  $p_{\rm B}$  and  $p_{\rm C}$ that at times between  $ν+1$  and  $ν+7$  the sequence  "$\rm BARBARA$"  is output,
if one is at time  $ν$  in state  $A$,  $B$  or  $R$,  respectively?  Let  $p = 1/4$.

$p_{\rm A} \ = \ $

$\ \cdot 10^{-3}$
$p_{\rm B} \ = \ $

$\ \cdot 10^{-3}$
$p_{\rm C} \ = \ $

$\ \cdot 10^{-3}$

3

What is the overall probability that the generator outputs the sequence  "$\rm BARBARA$"?  Let  $p = 1/4$ continue to hold.

${\rm Pr}(\rm BARBARA)\ = \ $

$\ \cdot 10^{-3}$

4

How should the parameter  $p_{\rm opt}$  be chosen to make  ${\rm Pr}(\rm BARBARA)$  as large as possible?
What is the resulting probability for  "$\rm BARBARA$"?

$p_{\rm opt} \ = \ $

$p = p_{\rm opt}\hspace{-0.1cm}: \hspace{0.3cm}{\rm Pr}(\rm BARBARA)\ = \ $

$\ \cdot 10^{-3}$


Musterlösung

(1)  Correct are  the second and third suggested solutions:

  • The sum of all outgoing arrows must always be  $1$.  Therefore  $q = 1 - p$ holds.
  • Because of the symmetry of the Markov diagram,  the ergodic probabilities are all equal:
$${\rm Pr}(A) ={\rm Pr}(B) ={\rm Pr}(R) = 1/3.$$


(2)  If one is in the state  $B$  at the starting time  $\nu=0$,  because of  ${\rm Pr}(B\hspace{0.05cm}|\hspace{0.05cm}B) = 0$  the state  $B$  is not possible at time  $\nu=1$.

  • One fails here already with the initial letter  $B$:
$$p_{\rm B} \; \underline{ =0}.$$
  • For the calculation of  $p_{\rm A}$  it should be noted:   Starting from  $A$  one goes in the Markov diagram first to  $B$  $($with probability $q)$,  then five times clockwise  $($each time with probability $p)$  and finally from  $R$  to  $A$  $($with probability  $q)$.   Meaning:
$$p_{\rm A} = q^2 \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 = 3^2 / 4^7 \hspace{0.15cm}\underline {\approx 0.549 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$
  • In a similar way,  one obtains:
$$p_{\rm R} = q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6 = 3 / 4^7 \hspace{0.15cm}\underline {\approx 0.183 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$


(3)  By averaging over the conditional probabilities we obtain:

$${\rm Pr}(\rm BARBARA) = p_{\rm A} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm B} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(B) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm R} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(R).$$
  • This leads to the result:
$${\rm Pr}(\rm BARBARA) = {1}/{3} \cdot \left( q^2 \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 \hspace{0.1cm} +\hspace{0.1cm}0 \hspace{0.1cm} +\hspace{0.1cm}q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6 \right) = \frac{q \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 }{3} \cdot{p+q} = \hspace{-0.15cm} \frac{q \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 }{3} \hspace{0.15cm}\underline { \approx 0.244 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$

(4)  The probability calculated in  (3)  is  $p^5 \cdot (1-p)/3$,  where  $q= 1-p$  is considered.

  • By setting the differential to zero, we obtain the governing equation:
$$5 \cdot p^4 - 6 \cdot p^5 = 0 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} p_{\rm opt} = 5/6 \hspace{0.15cm}\underline { \approx \rm 0.833}.$$
  • This results in a value that is larger than the subtask  (3)  by a factor  $90$  approximately:
$${\rm Pr}\rm (BARBARA) \hspace{0.15cm}\underline { \approx 22 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$