Difference between revisions of "Aufgaben:Exercise 2.4: Frequency and Phase Offset"

From LNTwww
m
m
 
(12 intermediate revisions by 2 users not shown)
Line 7: Line 7:
 
:$$ A_1  =  2\,{\rm V}, \hspace{0.15cm}f_1 = 2\,{\rm kHz} \hspace{0.05cm},$$
 
:$$ A_1  =  2\,{\rm V}, \hspace{0.15cm}f_1 = 2\,{\rm kHz} \hspace{0.05cm},$$
 
:$$A_2  =  1\,{\rm V}, \hspace{0.15cm}f_2 = 5\,{\rm kHz}\hspace{0.05cm}.$$
 
:$$A_2  =  1\,{\rm V}, \hspace{0.15cm}f_2 = 5\,{\rm kHz}\hspace{0.05cm}.$$
This signal is DSB ammplitude modulated.
+
This signal is DSB amplitude-modulated.
  
Thus, the modulated signal  $s(t)$  has spectral components at  $±45$ kHz,  $±48$ kHz,  $±52$ kHz  and  $±55$ kHz.  It is also known, that the transmitter-side carrier Trägersignal is sinusoidal  $(ϕ_{\rm T} = -90^\circ)$.
+
*Thus,  the modulated signal  $s(t)$  has spectral components at  $±45$ kHz,  $±48$ kHz,  $±52$ kHz  and  $±55$ kHz.   
 +
*It is also known  that the transmitter-side carrier  $z(t)$   is sinusoidal  $(ϕ_{\rm T} = -90^\circ)$.
  
The demodulation  to be performed with the circuit sketched here, which is defined by the following parameters:
 
* Amplitude  $A_{\rm E}$  (no unit),
 
* Frequency  $f_{\rm E}$,
 
* Phase  $ϕ_{\rm E}$.
 
  
 +
The demodulation  to be performed with the circuit sketched here,&nbsp; which is defined by the following parameters <br>("E" &nbsp; &rArr;  &nbsp; "empfägerseitig" &nbsp; &rArr;  &nbsp; "receiver-side"):
 +
#&nbsp; Amplitude &nbsp;$A_{\rm E}$&nbsp; (no unit),
 +
#&nbsp; frequency &nbsp;$f_{\rm E}$,
 +
#&nbsp; phase &nbsp;$ϕ_{\rm E}$.
  
The &nbsp;$H_{\rm E}(f)$&nbsp; block represents an ideal, rectangular low-pass filter, which is suitably dimensioned.
 
  
 +
The &nbsp;$H_{\rm E}(f)$&nbsp; block represents an ideal,&nbsp; rectangular low-pass filter,&nbsp; which is suitably dimensioned.
  
  
  
 
+
Hints:  
 
 
 
 
 
 
''Hints:''
 
 
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Synchronous_Demodulation|Synchronous Demodulation]].
 
*This exercise belongs to the chapter&nbsp; [[Modulation_Methods/Synchronous_Demodulation|Synchronous Demodulation]].
*Particular reference is made to the pages  &nbsp;[[Modulation_Methods/Synchronous_Demodulation##Influence_of_a_frequency_offset|Influence of a frequency offset]]&nbsp; and &nbsp;[[Modulation_Methods/Synchronous_Demodulation##Influence_of_a_phase_offset|Influence of a phase offset]].
+
*Particular reference is made to the pages  &nbsp;[[Modulation_Methods/Synchronous_Demodulation#Influence_of_a_frequency_offset|Influence of a frequency offset]]&nbsp; and &nbsp;[[Modulation_Methods/Synchronous_Demodulation#Influence_of_a_phase_offset|Influence of a phase offset]].
 
   
 
   
 
*Take the following trigonometric transformations into account:
 
*Take the following trigonometric transformations into account:
Line 43: Line 40:
 
- The demodulator would work better for DSB-AM with carrier.
 
- The demodulator would work better for DSB-AM with carrier.
 
+ The carrier would unnecessarily increase the transmit power.
 
+ The carrier would unnecessarily increase the transmit power.
+ The correct dimension of the low-pass &nbsp;$H_{\rm E}(f)$&nbsp; is essential.
+
+ The correct dimensioning of the low-pass &nbsp;$H_{\rm E}(f)$&nbsp; is essential.
 
- One could also use an envelope demodulator.
 
- One could also use an envelope demodulator.
 
+ Envelope demodulation is only applicable for &nbsp;$m \le 1$&nbsp;.
 
+ Envelope demodulation is only applicable for &nbsp;$m \le 1$&nbsp;.
Line 49: Line 46:
  
  
{How should the signal parameters of the receiver-side carrier signal &nbsp;$z_{\rm E}(t)$&nbsp; be chosen, so that &nbsp;$v(t) = q(t)$&nbsp; holds?
+
{How should the signal parameters of the receiver-side carrier signal &nbsp;$z_{\rm E}(t)$&nbsp; be chosen,&nbsp; so that &nbsp;$v(t) = q(t)$&nbsp; holds?
 
|type="{}"}
 
|type="{}"}
 
$A_{\rm E} \ = \ $ { 2 3% }
 
$A_{\rm E} \ = \ $ { 2 3% }
 
$f_{\rm E} \ \hspace{0.05cm} = \ $ { 50 3% } $\ \text{kHz}$  
 
$f_{\rm E} \ \hspace{0.05cm} = \ $ { 50 3% } $\ \text{kHz}$  
$\phi_{\rm E} \ = \ $ { -94--86 } $\ \text{Grad}$
+
$\phi_{\rm E} \ = \ $ { -94--86 } $\ \text{deg}$
  
 
{Let &nbsp;$f_{\rm E} = f_{\rm T}$&nbsp; (no frequency offset).&nbsp; Which sink signal &nbsp;$v(t)$&nbsp; results with &nbsp;$ϕ_{\rm E} = - 120^\circ$? <br>Give its signal value at &nbsp;$t = 0$&nbsp;.
 
{Let &nbsp;$f_{\rm E} = f_{\rm T}$&nbsp; (no frequency offset).&nbsp; Which sink signal &nbsp;$v(t)$&nbsp; results with &nbsp;$ϕ_{\rm E} = - 120^\circ$? <br>Give its signal value at &nbsp;$t = 0$&nbsp;.
Line 60: Line 57:
  
  
{Now also let &nbsp;$f_{\rm E} = f_{\rm T}$.&nbsp; Which sink signal &nbsp;$v(t)$&nbsp; results with &nbsp;$ϕ_{\rm E} = 0^\circ$? <br>Give the signal value at &nbsp;$t = 0$&nbsp;.
+
{Let &nbsp;$f_{\rm E} = f_{\rm T}$&nbsp; again.&nbsp; Which sink signal &nbsp;$v(t)$&nbsp; results with &nbsp;$ϕ_{\rm E} = 0^\circ$? <br>Give the signal value at &nbsp;$t = 0$.
 
|type="{}"}  
 
|type="{}"}  
 
$v(t = 0)\ = \ $ { 0. }  $\ \text{V}$
 
$v(t = 0)\ = \ $ { 0. }  $\ \text{V}$
Line 76: Line 73:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  <u>Answers 2, 3 and 5</u> are correct:  
+
'''(1)'''&nbsp;  <u>Answers 2, 3 and 5</u>&nbsp; are correct:  
*Bei ZSB–AM ohne Träger bzw. mit einem Modulationsgrad&nbsp; $m > 1$&nbsp; ist Hüllkurvendemodulation nicht anwendbar.  
+
*Envelope demodulation is not applicable for DSB-AM without carrier and a modulation depth of &nbsp; $m > 1$.  
*Die Leistungsfähigkeit des Synchrondemodulators wird durch den zusätzlichen Trägeranteil nicht gesteigert, sondern führt lediglich zu einer unnötigen Vergrößerung der aufzubringenden Sendeleistung.
+
*The performance of the synchronous demodulator is not increased by the additional carrier component,&nbsp; but only leads to an unnecessary increase in the transmit power to be applied.
*Auch die dritte Aussage ist richtig.&nbsp; In der Musterlösung zur&nbsp; [[Aufgaben:Aufgabe_2.4Z:_Tiefpass-Einfluss_bei_Synchrondemodulation|Aufgabe 2.4Z]]&nbsp; wird gezeigt, welche Auswirkungen ein Verzicht bzw. eine falsche Dimensionierung von&nbsp; $H_{\rm E} (f)$&nbsp; hat.
+
*The third statement is also correct.&nbsp; The solution to&nbsp; [[Aufgaben:Exercise_2.4Z:__Low-pass_Influence_with_Synchronous_Demodulation|Exercise 2.4Z]]&nbsp; shows the effects of omitting or incorrectly dimensioning&nbsp; $H_{\rm E} (f)$.
  
  
  
'''(2)'''&nbsp; Wie der Name „Synchrondemodulator” bereits impliziert, müssen die Signale&nbsp; $z(t)$&nbsp; und&nbsp; $z_{\rm E} (t)$&nbsp; frequenz– und phasensynchron sein:
+
'''(2)'''&nbsp; As the name&nbsp; "synchronous demodulator"&nbsp; already implies,&nbsp; the signals &nbsp; $z(t)$&nbsp; and&nbsp; $z_{\rm E} (t)$&nbsp;  
 +
must be synchronous in frequency and phase:
 
:$$f_{\rm E} = f_{\rm T} \hspace{0.15cm}\underline {= 50\,{\rm kHz}}, \hspace{0.15cm}\phi_{\rm E} = \phi_{\rm T} \hspace{0.15cm}\underline {= - 90^{\circ}} \hspace{0.05cm}.$$
 
:$$f_{\rm E} = f_{\rm T} \hspace{0.15cm}\underline {= 50\,{\rm kHz}}, \hspace{0.15cm}\phi_{\rm E} = \phi_{\rm T} \hspace{0.15cm}\underline {= - 90^{\circ}} \hspace{0.05cm}.$$
*Die Trägerfrequenz&nbsp; $f_{\rm T} $&nbsp; am Sender kann aus den Angaben über das Sendespektrum&nbsp; $S(f)$&nbsp; ermittelt werden.&nbsp; Bei vollständiger Synchronität gilt:
+
*The carrier frequency&nbsp; $f_{\rm T} $&nbsp; at the transmitter can be determined from the transmission spectrum&nbsp; $S(f)$.&nbsp; In the case of perfect synchronisation:
 
:$$v(t) = {A_{\rm E}}/{2} \cdot q(t) + {A_{\rm E}}/{2} \cdot q(t)\cdot \cos(2 \cdot \omega_{\rm T} \cdot t ) \hspace{0.05cm}.$$
 
:$$v(t) = {A_{\rm E}}/{2} \cdot q(t) + {A_{\rm E}}/{2} \cdot q(t)\cdot \cos(2 \cdot \omega_{\rm T} \cdot t ) \hspace{0.05cm}.$$
*Der zweite Term wird durch den Tiefpass entfernt.&nbsp; Mit&nbsp; $A_{\rm E}\hspace{0.15cm}\underline{ = 2}$&nbsp; gilt somit&nbsp; $v(t) = q(t)$.
+
*The second term is removed by the low-pass filter.&nbsp; Thus,&nbsp; with&nbsp; $A_{\rm E}\hspace{0.15cm}\underline{ = 2}$,&nbsp; $v(t) = q(t)$ holds.
  
  
  
'''(3)'''&nbsp; Im Theorieteil wurde gezeigt, dass bei ZSB–AM und Synchrondemodulation allgemein gilt:
+
'''(3)'''&nbsp; In the theory section,&nbsp; it was shown that in general for DSB-AM and synchronous demodulation:
 
:$$v(t) = \cos(\Delta \phi_{\rm T}) \cdot q(t) \hspace{0.05cm}.$$
 
:$$v(t) = \cos(\Delta \phi_{\rm T}) \cdot q(t) \hspace{0.05cm}.$$
*Auch bei ungenügender Phasensynchronisation kommt es nicht zu Verzerrungen, sondern nur zu einer frequenzunabhängigen Dämpfung.  
+
*Even insufficient phase synchronisation does not lead to distortions,&nbsp; only to a frequency-independent attenuation.
*Mit&nbsp; $ϕ_{\rm T} =-90^\circ$&nbsp; und&nbsp; $ϕ_{\rm T} = -120^\circ$&nbsp; ist&nbsp; $Δϕ_{\rm T} = -30^\circ$&nbsp; und man erhält:
+
*With&nbsp; $ϕ_{\rm T} =-90^\circ$&nbsp; and&nbsp; $ϕ_{\rm E} = -120^\circ$&nbsp; &rArr; &nbsp; $Δϕ_{\rm T} = -30^\circ$:
 
:$$ v(t) = \cos(30^{\circ}) \cdot q(t)= 0.866 \cdot q(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t= 0) = 0.866 \cdot A_1 \hspace{0.15cm}\underline {= 1.732\,{\rm V}}\hspace{0.05cm}.$$
 
:$$ v(t) = \cos(30^{\circ}) \cdot q(t)= 0.866 \cdot q(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t= 0) = 0.866 \cdot A_1 \hspace{0.15cm}\underline {= 1.732\,{\rm V}}\hspace{0.05cm}.$$
  
  
  
'''(4)'''&nbsp; Nun beträgt die Phasendifferenz&nbsp; $Δϕ_{\rm T} = 90^\circ$&nbsp; und man erhält&nbsp; $v(t) \equiv 0$.  
+
'''(4)'''&nbsp; Now the phase difference is &nbsp; $Δϕ_{\rm T} = 90^\circ$&nbsp; and we get&nbsp; $v(t) \equiv 0$.  
*Es ist müßig darüber zu diskutieren, ob es sich hierbei noch immer um ein verzerrungsfreies System handelt.
+
*It is pointless to discuss whether this is still a distortion-free system.
 +
*The result&nbsp; $v(t) \equiv 0$&nbsp; is due to the fact that cosine and sine are orthogonal functions.
 +
*This principle is made use of,&nbsp; for example,&nbsp; in what is known as &nbsp; [[Modulation_Methods/Quadrature_Amplitude_Modulation|quadrature amplitude modulation.]].
  
*Das Ergebnis&nbsp; $v(t) \equiv 0$&nbsp; ist darauf zurückzuführen, dass Cosinus und Sinus orthogonale Funktionen sind.
 
*Dieses Prinzip wird zum Beispiel bei der so genannten&nbsp; [[Modulation_Methods/Quadratur–Amplitudenmodulation|Quadratur–Amplitudenmodulation]]&nbsp; ausgenutzt.
 
  
  
 
+
'''(5)'''&nbsp; The equation for the signal after multiplication is:
'''(5)'''&nbsp; Hier lautet nun die Gleichung für das Signal nach der Multiplikation:
 
 
:$$b(t) =  q(t) \cdot \cos(\omega_{\rm T} \cdot t - 90^{\circ}) \cdot 2 \cdot \cos(\omega_{\rm E} \cdot t - 90^{\circ})= 2 \cdot q(t) \cdot \sin(\omega_{\rm T} \cdot t ) \cdot \sin(\omega_{\rm E} \cdot t )\hspace{0.05cm}.$$
 
:$$b(t) =  q(t) \cdot \cos(\omega_{\rm T} \cdot t - 90^{\circ}) \cdot 2 \cdot \cos(\omega_{\rm E} \cdot t - 90^{\circ})= 2 \cdot q(t) \cdot \sin(\omega_{\rm T} \cdot t ) \cdot \sin(\omega_{\rm E} \cdot t )\hspace{0.05cm}.$$
*Dieses Ergebnis kann mit der trigonometrischen Umformung
+
*This result can also be rewritten using the trigonometric transformation
 
:$$\sin(\alpha)\cdot \sin(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) - \cos(\alpha+\beta)\right]$$
 
:$$\sin(\alpha)\cdot \sin(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) - \cos(\alpha+\beta)\right]$$
:auch wie folgt geschrieben werden:
+
:as follows:
 
:$$ b(t) = q(t) \cdot \cos((\omega_{\rm T} - \omega_{\rm E}) \cdot t ) + q(t) \cdot \cos((\omega_{\rm T} + \omega_{\rm E}) \cdot t ) \hspace{0.05cm}.$$
 
:$$ b(t) = q(t) \cdot \cos((\omega_{\rm T} - \omega_{\rm E}) \cdot t ) + q(t) \cdot \cos((\omega_{\rm T} + \omega_{\rm E}) \cdot t ) \hspace{0.05cm}.$$
*Der zweite Term liegt für&nbsp; $f_{\rm E} ≈ f_{\rm T}$&nbsp; in der Umgebung von&nbsp; $2f_{\rm T}$&nbsp; und wird durch den Tiefpass entfernt.  
+
*The second term lies in the vicinity of &nbsp; $2f_{\rm T}$&nbsp; for &nbsp; $f_{\rm E} = f_{\rm T}$&nbsp; and is removed by the low-pass.  
 
+
*With the frequency difference &nbsp; $Δ\hspace{-0.05cm}f_{\rm T} = f_{\rm E} - f_{\rm T}= 1$ kHz,&nbsp; this leaves:
 
 
Somit bleibt mit der Frequenzdifferenz&nbsp; $Δ\hspace{-0.05cm}f_{\rm T} = f_{\rm E} - f_{\rm T}= 1$ kHz:
 
 
:$$ v(t) = q(t) \cdot \cos(2 \pi \cdot \Delta \hspace{-0.05cm}f_{\rm T} \cdot t) \hspace{0.05cm}.$$
 
:$$ v(t) = q(t) \cdot \cos(2 \pi \cdot \Delta \hspace{-0.05cm}f_{\rm T} \cdot t) \hspace{0.05cm}.$$
*Die erste Aussage ist richtig.&nbsp; Diese besagt, dass nun das Nachrichtensignal&nbsp; $v(t)$&nbsp; nach der Demodulation gemäß einer Cosinusfunktion leiser und wieder lauter wird („Schwebung”).  
+
*The first statement is correct.&nbsp; This states that now the signal &nbsp; $v(t)$&nbsp; becomes quieter and louder again after demodulation according to a cosine function&nbsp; (a&nbsp; "beat").  
*Aus dem Cosinusanteil von&nbsp; $q(t)$&nbsp; mit der Frequenz&nbsp; $f_1 = 2\text{ kHz}$&nbsp; werden nun zwei Anteile&nbsp; (jeweils halber Amplitude)&nbsp; bei&nbsp; $1\text{ kHz}$ und $3\text{ kHz}$.
+
*The cosine component of &nbsp; $q(t)$&nbsp; with frequency &nbsp; $f_1 = 2\text{ kHz}$&nbsp; now becomes two components&nbsp; (each of half the amplitude)&nbsp; at &nbsp; $1\text{ kHz}$ and $3\text{ kHz}$.
* Ebenso ist im Sinkensignal kein Anteil bei&nbsp; $f_2 = 5\text{ kHz}$&nbsp; enthalten, sondern lediglich Anteile bei&nbsp; $4\text{ kHz}$&nbsp; und bei&nbsp; $6\text{ kHz}$:
+
*Similarly,&nbsp; the sink signal does not include a component at&nbsp; $f_2 = 5\text{ kHz}$,&nbsp; only components at &nbsp; $4\text{ kHz}$&nbsp; and at&nbsp; $6\text{ kHz}$:
 
:$$1\,{\rm V} \cdot \sin(2 \pi \cdot 5\,{\rm kHz} \cdot t)\cdot \cos(2 \pi \cdot 1\,{\rm kHz} \cdot t)  =
 
:$$1\,{\rm V} \cdot \sin(2 \pi \cdot 5\,{\rm kHz} \cdot t)\cdot \cos(2 \pi \cdot 1\,{\rm kHz} \cdot t)  =
 
  0.5\,{\rm V} \cdot \sin(2 \pi \cdot 4\,{\rm kHz} \cdot t)
 
  0.5\,{\rm V} \cdot \sin(2 \pi \cdot 4\,{\rm kHz} \cdot t)
 
+  0.5\,{\rm V} \cdot \sin(2 \pi \cdot 6\,{\rm kHz} \cdot t)\hspace{0.05cm}.$$
 
+  0.5\,{\rm V} \cdot \sin(2 \pi \cdot 6\,{\rm kHz} \cdot t)\hspace{0.05cm}.$$
Richtig sind somit die <u>Aussagen 1, 3 und 4</u>.
+
<u>Answers 1, 3 and 4</u>&nbsp; are correct.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 16:25, 25 March 2022

Model of a synchronous demodulator

Consider the source signal  $q(t) = A_{\rm 1} \cdot \cos(2 \pi f_{\rm 1} t ) +A_{\rm 2} \cdot \sin(2 \pi f_{\rm 2} t )$  with the signal parameters

$$ A_1 = 2\,{\rm V}, \hspace{0.15cm}f_1 = 2\,{\rm kHz} \hspace{0.05cm},$$
$$A_2 = 1\,{\rm V}, \hspace{0.15cm}f_2 = 5\,{\rm kHz}\hspace{0.05cm}.$$

This signal is DSB amplitude-modulated.

  • Thus,  the modulated signal  $s(t)$  has spectral components at  $±45$ kHz,  $±48$ kHz,  $±52$ kHz  and  $±55$ kHz. 
  • It is also known  that the transmitter-side carrier  $z(t)$  is sinusoidal  $(ϕ_{\rm T} = -90^\circ)$.


The demodulation to be performed with the circuit sketched here,  which is defined by the following parameters
("E"   ⇒   "empfägerseitig"   ⇒   "receiver-side"):

  1.   Amplitude  $A_{\rm E}$  (no unit),
  2.   frequency  $f_{\rm E}$,
  3.   phase  $ϕ_{\rm E}$.


The  $H_{\rm E}(f)$  block represents an ideal,  rectangular low-pass filter,  which is suitably dimensioned.


Hints:

  • Take the following trigonometric transformations into account:
$$\cos(\alpha)\cdot \cos(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) + \cos(\alpha+\beta)\right] \hspace{0.05cm},$$
$$\sin(\alpha)\cdot \cos(\beta) = {1}/{2} \cdot \left[ \sin(\alpha-\beta) + \sin(\alpha+\beta)\right] \hspace{0.05cm},$$
$$\sin(\alpha)\cdot \sin(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) - \cos(\alpha+\beta)\right] \hspace{0.05cm}.$$


Questions

1

Which of the following statements are true?

The demodulator would work better for DSB-AM with carrier.
The carrier would unnecessarily increase the transmit power.
The correct dimensioning of the low-pass  $H_{\rm E}(f)$  is essential.
One could also use an envelope demodulator.
Envelope demodulation is only applicable for  $m \le 1$ .

2

How should the signal parameters of the receiver-side carrier signal  $z_{\rm E}(t)$  be chosen,  so that  $v(t) = q(t)$  holds?

$A_{\rm E} \ = \ $

$f_{\rm E} \ \hspace{0.05cm} = \ $

$\ \text{kHz}$
$\phi_{\rm E} \ = \ $

$\ \text{deg}$

3

Let  $f_{\rm E} = f_{\rm T}$  (no frequency offset).  Which sink signal  $v(t)$  results with  $ϕ_{\rm E} = - 120^\circ$?
Give its signal value at  $t = 0$ .

$v(t = 0)\ = \ $

$\ \text{V}$

4

Let  $f_{\rm E} = f_{\rm T}$  again.  Which sink signal  $v(t)$  results with  $ϕ_{\rm E} = 0^\circ$?
Give the signal value at  $t = 0$.

$v(t = 0)\ = \ $

$\ \text{V}$

5

Let  $ϕ_{\rm E} = ϕ_{\rm T}$  (no phase offset).  Which sink signal does one obtain with  $Δ\hspace{-0.05cm}f_{\rm T} = f_{\rm E} - f_{\rm T} = 1\text{ kHz}$?
Which of the following statements are correct?

It holds that  $v(t) = q(t) · \cos(2π · Δ\hspace{-0.05cm}f_{\rm T} · t).$
$v(t)$  contains a spectral component at  $2$ kHz.
$v(t)$  contains a spectral component at $4$ kHz.
$v(t)$  contains a spectral component at  $6$ kHz.


Solution

(1)  Answers 2, 3 and 5  are correct:

  • Envelope demodulation is not applicable for DSB-AM without carrier and a modulation depth of   $m > 1$.
  • The performance of the synchronous demodulator is not increased by the additional carrier component,  but only leads to an unnecessary increase in the transmit power to be applied.
  • The third statement is also correct.  The solution to  Exercise 2.4Z  shows the effects of omitting or incorrectly dimensioning  $H_{\rm E} (f)$.


(2)  As the name  "synchronous demodulator"  already implies,  the signals   $z(t)$  and  $z_{\rm E} (t)$  must be synchronous in frequency and phase:

$$f_{\rm E} = f_{\rm T} \hspace{0.15cm}\underline {= 50\,{\rm kHz}}, \hspace{0.15cm}\phi_{\rm E} = \phi_{\rm T} \hspace{0.15cm}\underline {= - 90^{\circ}} \hspace{0.05cm}.$$
  • The carrier frequency  $f_{\rm T} $  at the transmitter can be determined from the transmission spectrum  $S(f)$.  In the case of perfect synchronisation:
$$v(t) = {A_{\rm E}}/{2} \cdot q(t) + {A_{\rm E}}/{2} \cdot q(t)\cdot \cos(2 \cdot \omega_{\rm T} \cdot t ) \hspace{0.05cm}.$$
  • The second term is removed by the low-pass filter.  Thus,  with  $A_{\rm E}\hspace{0.15cm}\underline{ = 2}$,  $v(t) = q(t)$ holds.


(3)  In the theory section,  it was shown that in general for DSB-AM and synchronous demodulation:

$$v(t) = \cos(\Delta \phi_{\rm T}) \cdot q(t) \hspace{0.05cm}.$$
  • Even insufficient phase synchronisation does not lead to distortions,  only to a frequency-independent attenuation.
  • With  $ϕ_{\rm T} =-90^\circ$  and  $ϕ_{\rm E} = -120^\circ$  ⇒   $Δϕ_{\rm T} = -30^\circ$:
$$ v(t) = \cos(30^{\circ}) \cdot q(t)= 0.866 \cdot q(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t= 0) = 0.866 \cdot A_1 \hspace{0.15cm}\underline {= 1.732\,{\rm V}}\hspace{0.05cm}.$$


(4)  Now the phase difference is   $Δϕ_{\rm T} = 90^\circ$  and we get  $v(t) \equiv 0$.

  • It is pointless to discuss whether this is still a distortion-free system.
  • The result  $v(t) \equiv 0$  is due to the fact that cosine and sine are orthogonal functions.
  • This principle is made use of,  for example,  in what is known as   quadrature amplitude modulation..


(5)  The equation for the signal after multiplication is:

$$b(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t - 90^{\circ}) \cdot 2 \cdot \cos(\omega_{\rm E} \cdot t - 90^{\circ})= 2 \cdot q(t) \cdot \sin(\omega_{\rm T} \cdot t ) \cdot \sin(\omega_{\rm E} \cdot t )\hspace{0.05cm}.$$
  • This result can also be rewritten using the trigonometric transformation
$$\sin(\alpha)\cdot \sin(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) - \cos(\alpha+\beta)\right]$$
as follows:
$$ b(t) = q(t) \cdot \cos((\omega_{\rm T} - \omega_{\rm E}) \cdot t ) + q(t) \cdot \cos((\omega_{\rm T} + \omega_{\rm E}) \cdot t ) \hspace{0.05cm}.$$
  • The second term lies in the vicinity of   $2f_{\rm T}$  for   $f_{\rm E} = f_{\rm T}$  and is removed by the low-pass.
  • With the frequency difference   $Δ\hspace{-0.05cm}f_{\rm T} = f_{\rm E} - f_{\rm T}= 1$ kHz,  this leaves:
$$ v(t) = q(t) \cdot \cos(2 \pi \cdot \Delta \hspace{-0.05cm}f_{\rm T} \cdot t) \hspace{0.05cm}.$$
  • The first statement is correct.  This states that now the signal   $v(t)$  becomes quieter and louder again after demodulation according to a cosine function  (a  "beat").
  • The cosine component of   $q(t)$  with frequency   $f_1 = 2\text{ kHz}$  now becomes two components  (each of half the amplitude)  at   $1\text{ kHz}$ and $3\text{ kHz}$.
  • Similarly,  the sink signal does not include a component at  $f_2 = 5\text{ kHz}$,  only components at   $4\text{ kHz}$  and at  $6\text{ kHz}$:
$$1\,{\rm V} \cdot \sin(2 \pi \cdot 5\,{\rm kHz} \cdot t)\cdot \cos(2 \pi \cdot 1\,{\rm kHz} \cdot t) = 0.5\,{\rm V} \cdot \sin(2 \pi \cdot 4\,{\rm kHz} \cdot t) + 0.5\,{\rm V} \cdot \sin(2 \pi \cdot 6\,{\rm kHz} \cdot t)\hspace{0.05cm}.$$

Answers 1, 3 and 4  are correct.