Difference between revisions of "Aufgaben:Exercise 2.4: Frequency and Phase Offset"
m |
m |
||
(12 intermediate revisions by 2 users not shown) | |||
Line 7: | Line 7: | ||
:$$ A_1 = 2\,{\rm V}, \hspace{0.15cm}f_1 = 2\,{\rm kHz} \hspace{0.05cm},$$ | :$$ A_1 = 2\,{\rm V}, \hspace{0.15cm}f_1 = 2\,{\rm kHz} \hspace{0.05cm},$$ | ||
:$$A_2 = 1\,{\rm V}, \hspace{0.15cm}f_2 = 5\,{\rm kHz}\hspace{0.05cm}.$$ | :$$A_2 = 1\,{\rm V}, \hspace{0.15cm}f_2 = 5\,{\rm kHz}\hspace{0.05cm}.$$ | ||
− | This signal is DSB | + | This signal is DSB amplitude-modulated. |
− | Thus, the modulated signal $s(t)$ has spectral components at $±45$ kHz, $±48$ kHz, $±52$ kHz and $±55$ kHz. It is also known | + | *Thus, the modulated signal $s(t)$ has spectral components at $±45$ kHz, $±48$ kHz, $±52$ kHz and $±55$ kHz. |
+ | *It is also known that the transmitter-side carrier $z(t)$ is sinusoidal $(ϕ_{\rm T} = -90^\circ)$. | ||
− | |||
− | |||
− | |||
− | |||
+ | The demodulation to be performed with the circuit sketched here, which is defined by the following parameters <br>("E" ⇒ "empfägerseitig" ⇒ "receiver-side"): | ||
+ | # Amplitude $A_{\rm E}$ (no unit), | ||
+ | # frequency $f_{\rm E}$, | ||
+ | # phase $ϕ_{\rm E}$. | ||
− | |||
+ | The $H_{\rm E}(f)$ block represents an ideal, rectangular low-pass filter, which is suitably dimensioned. | ||
− | + | Hints: | |
− | |||
− | |||
− | |||
− | |||
*This exercise belongs to the chapter [[Modulation_Methods/Synchronous_Demodulation|Synchronous Demodulation]]. | *This exercise belongs to the chapter [[Modulation_Methods/Synchronous_Demodulation|Synchronous Demodulation]]. | ||
− | *Particular reference is made to the pages [[Modulation_Methods/Synchronous_Demodulation | + | *Particular reference is made to the pages [[Modulation_Methods/Synchronous_Demodulation#Influence_of_a_frequency_offset|Influence of a frequency offset]] and [[Modulation_Methods/Synchronous_Demodulation#Influence_of_a_phase_offset|Influence of a phase offset]]. |
*Take the following trigonometric transformations into account: | *Take the following trigonometric transformations into account: | ||
Line 43: | Line 40: | ||
- The demodulator would work better for DSB-AM with carrier. | - The demodulator would work better for DSB-AM with carrier. | ||
+ The carrier would unnecessarily increase the transmit power. | + The carrier would unnecessarily increase the transmit power. | ||
− | + The correct | + | + The correct dimensioning of the low-pass $H_{\rm E}(f)$ is essential. |
- One could also use an envelope demodulator. | - One could also use an envelope demodulator. | ||
+ Envelope demodulation is only applicable for $m \le 1$ . | + Envelope demodulation is only applicable for $m \le 1$ . | ||
Line 49: | Line 46: | ||
− | {How should the signal parameters of the receiver-side carrier signal $z_{\rm E}(t)$ be chosen, so that $v(t) = q(t)$ holds? | + | {How should the signal parameters of the receiver-side carrier signal $z_{\rm E}(t)$ be chosen, so that $v(t) = q(t)$ holds? |
|type="{}"} | |type="{}"} | ||
$A_{\rm E} \ = \ $ { 2 3% } | $A_{\rm E} \ = \ $ { 2 3% } | ||
$f_{\rm E} \ \hspace{0.05cm} = \ $ { 50 3% } $\ \text{kHz}$ | $f_{\rm E} \ \hspace{0.05cm} = \ $ { 50 3% } $\ \text{kHz}$ | ||
− | $\phi_{\rm E} \ = \ $ { -94--86 } $\ \text{ | + | $\phi_{\rm E} \ = \ $ { -94--86 } $\ \text{deg}$ |
{Let $f_{\rm E} = f_{\rm T}$ (no frequency offset). Which sink signal $v(t)$ results with $ϕ_{\rm E} = - 120^\circ$? <br>Give its signal value at $t = 0$ . | {Let $f_{\rm E} = f_{\rm T}$ (no frequency offset). Which sink signal $v(t)$ results with $ϕ_{\rm E} = - 120^\circ$? <br>Give its signal value at $t = 0$ . | ||
Line 60: | Line 57: | ||
− | { | + | {Let $f_{\rm E} = f_{\rm T}$ again. Which sink signal $v(t)$ results with $ϕ_{\rm E} = 0^\circ$? <br>Give the signal value at $t = 0$. |
|type="{}"} | |type="{}"} | ||
$v(t = 0)\ = \ $ { 0. } $\ \text{V}$ | $v(t = 0)\ = \ $ { 0. } $\ \text{V}$ | ||
Line 76: | Line 73: | ||
===Solution=== | ===Solution=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' <u>Answers 2, 3 and 5</u> are correct: | + | '''(1)''' <u>Answers 2, 3 and 5</u> are correct: |
− | * | + | *Envelope demodulation is not applicable for DSB-AM without carrier and a modulation depth of $m > 1$. |
− | * | + | *The performance of the synchronous demodulator is not increased by the additional carrier component, but only leads to an unnecessary increase in the transmit power to be applied. |
− | * | + | *The third statement is also correct. The solution to [[Aufgaben:Exercise_2.4Z:__Low-pass_Influence_with_Synchronous_Demodulation|Exercise 2.4Z]] shows the effects of omitting or incorrectly dimensioning $H_{\rm E} (f)$. |
− | '''(2)''' | + | '''(2)''' As the name "synchronous demodulator" already implies, the signals $z(t)$ and $z_{\rm E} (t)$ |
+ | must be synchronous in frequency and phase: | ||
:$$f_{\rm E} = f_{\rm T} \hspace{0.15cm}\underline {= 50\,{\rm kHz}}, \hspace{0.15cm}\phi_{\rm E} = \phi_{\rm T} \hspace{0.15cm}\underline {= - 90^{\circ}} \hspace{0.05cm}.$$ | :$$f_{\rm E} = f_{\rm T} \hspace{0.15cm}\underline {= 50\,{\rm kHz}}, \hspace{0.15cm}\phi_{\rm E} = \phi_{\rm T} \hspace{0.15cm}\underline {= - 90^{\circ}} \hspace{0.05cm}.$$ | ||
− | * | + | *The carrier frequency $f_{\rm T} $ at the transmitter can be determined from the transmission spectrum $S(f)$. In the case of perfect synchronisation: |
:$$v(t) = {A_{\rm E}}/{2} \cdot q(t) + {A_{\rm E}}/{2} \cdot q(t)\cdot \cos(2 \cdot \omega_{\rm T} \cdot t ) \hspace{0.05cm}.$$ | :$$v(t) = {A_{\rm E}}/{2} \cdot q(t) + {A_{\rm E}}/{2} \cdot q(t)\cdot \cos(2 \cdot \omega_{\rm T} \cdot t ) \hspace{0.05cm}.$$ | ||
− | * | + | *The second term is removed by the low-pass filter. Thus, with $A_{\rm E}\hspace{0.15cm}\underline{ = 2}$, $v(t) = q(t)$ holds. |
− | '''(3)''' | + | '''(3)''' In the theory section, it was shown that in general for DSB-AM and synchronous demodulation: |
:$$v(t) = \cos(\Delta \phi_{\rm T}) \cdot q(t) \hspace{0.05cm}.$$ | :$$v(t) = \cos(\Delta \phi_{\rm T}) \cdot q(t) \hspace{0.05cm}.$$ | ||
− | * | + | *Even insufficient phase synchronisation does not lead to distortions, only to a frequency-independent attenuation. |
− | * | + | *With $ϕ_{\rm T} =-90^\circ$ and $ϕ_{\rm E} = -120^\circ$ ⇒ $Δϕ_{\rm T} = -30^\circ$: |
:$$ v(t) = \cos(30^{\circ}) \cdot q(t)= 0.866 \cdot q(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t= 0) = 0.866 \cdot A_1 \hspace{0.15cm}\underline {= 1.732\,{\rm V}}\hspace{0.05cm}.$$ | :$$ v(t) = \cos(30^{\circ}) \cdot q(t)= 0.866 \cdot q(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t= 0) = 0.866 \cdot A_1 \hspace{0.15cm}\underline {= 1.732\,{\rm V}}\hspace{0.05cm}.$$ | ||
− | '''(4)''' | + | '''(4)''' Now the phase difference is $Δϕ_{\rm T} = 90^\circ$ and we get $v(t) \equiv 0$. |
− | * | + | *It is pointless to discuss whether this is still a distortion-free system. |
+ | *The result $v(t) \equiv 0$ is due to the fact that cosine and sine are orthogonal functions. | ||
+ | *This principle is made use of, for example, in what is known as [[Modulation_Methods/Quadrature_Amplitude_Modulation|quadrature amplitude modulation.]]. | ||
− | |||
− | |||
− | + | '''(5)''' The equation for the signal after multiplication is: | |
− | '''(5)''' | ||
:$$b(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t - 90^{\circ}) \cdot 2 \cdot \cos(\omega_{\rm E} \cdot t - 90^{\circ})= 2 \cdot q(t) \cdot \sin(\omega_{\rm T} \cdot t ) \cdot \sin(\omega_{\rm E} \cdot t )\hspace{0.05cm}.$$ | :$$b(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t - 90^{\circ}) \cdot 2 \cdot \cos(\omega_{\rm E} \cdot t - 90^{\circ})= 2 \cdot q(t) \cdot \sin(\omega_{\rm T} \cdot t ) \cdot \sin(\omega_{\rm E} \cdot t )\hspace{0.05cm}.$$ | ||
− | * | + | *This result can also be rewritten using the trigonometric transformation |
:$$\sin(\alpha)\cdot \sin(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) - \cos(\alpha+\beta)\right]$$ | :$$\sin(\alpha)\cdot \sin(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) - \cos(\alpha+\beta)\right]$$ | ||
− | : | + | :as follows: |
:$$ b(t) = q(t) \cdot \cos((\omega_{\rm T} - \omega_{\rm E}) \cdot t ) + q(t) \cdot \cos((\omega_{\rm T} + \omega_{\rm E}) \cdot t ) \hspace{0.05cm}.$$ | :$$ b(t) = q(t) \cdot \cos((\omega_{\rm T} - \omega_{\rm E}) \cdot t ) + q(t) \cdot \cos((\omega_{\rm T} + \omega_{\rm E}) \cdot t ) \hspace{0.05cm}.$$ | ||
− | * | + | *The second term lies in the vicinity of $2f_{\rm T}$ for $f_{\rm E} = f_{\rm T}$ and is removed by the low-pass. |
− | + | *With the frequency difference $Δ\hspace{-0.05cm}f_{\rm T} = f_{\rm E} - f_{\rm T}= 1$ kHz, this leaves: | |
− | |||
− | |||
:$$ v(t) = q(t) \cdot \cos(2 \pi \cdot \Delta \hspace{-0.05cm}f_{\rm T} \cdot t) \hspace{0.05cm}.$$ | :$$ v(t) = q(t) \cdot \cos(2 \pi \cdot \Delta \hspace{-0.05cm}f_{\rm T} \cdot t) \hspace{0.05cm}.$$ | ||
− | * | + | *The first statement is correct. This states that now the signal $v(t)$ becomes quieter and louder again after demodulation according to a cosine function (a "beat"). |
− | * | + | *The cosine component of $q(t)$ with frequency $f_1 = 2\text{ kHz}$ now becomes two components (each of half the amplitude) at $1\text{ kHz}$ and $3\text{ kHz}$. |
− | * | + | *Similarly, the sink signal does not include a component at $f_2 = 5\text{ kHz}$, only components at $4\text{ kHz}$ and at $6\text{ kHz}$: |
:$$1\,{\rm V} \cdot \sin(2 \pi \cdot 5\,{\rm kHz} \cdot t)\cdot \cos(2 \pi \cdot 1\,{\rm kHz} \cdot t) = | :$$1\,{\rm V} \cdot \sin(2 \pi \cdot 5\,{\rm kHz} \cdot t)\cdot \cos(2 \pi \cdot 1\,{\rm kHz} \cdot t) = | ||
0.5\,{\rm V} \cdot \sin(2 \pi \cdot 4\,{\rm kHz} \cdot t) | 0.5\,{\rm V} \cdot \sin(2 \pi \cdot 4\,{\rm kHz} \cdot t) | ||
+ 0.5\,{\rm V} \cdot \sin(2 \pi \cdot 6\,{\rm kHz} \cdot t)\hspace{0.05cm}.$$ | + 0.5\,{\rm V} \cdot \sin(2 \pi \cdot 6\,{\rm kHz} \cdot t)\hspace{0.05cm}.$$ | ||
− | + | <u>Answers 1, 3 and 4</u> are correct. | |
{{ML-Fuß}} | {{ML-Fuß}} |
Latest revision as of 16:25, 25 March 2022
Consider the source signal $q(t) = A_{\rm 1} \cdot \cos(2 \pi f_{\rm 1} t ) +A_{\rm 2} \cdot \sin(2 \pi f_{\rm 2} t )$ with the signal parameters
- $$ A_1 = 2\,{\rm V}, \hspace{0.15cm}f_1 = 2\,{\rm kHz} \hspace{0.05cm},$$
- $$A_2 = 1\,{\rm V}, \hspace{0.15cm}f_2 = 5\,{\rm kHz}\hspace{0.05cm}.$$
This signal is DSB amplitude-modulated.
- Thus, the modulated signal $s(t)$ has spectral components at $±45$ kHz, $±48$ kHz, $±52$ kHz and $±55$ kHz.
- It is also known that the transmitter-side carrier $z(t)$ is sinusoidal $(ϕ_{\rm T} = -90^\circ)$.
The demodulation to be performed with the circuit sketched here, which is defined by the following parameters
("E" ⇒ "empfägerseitig" ⇒ "receiver-side"):
- Amplitude $A_{\rm E}$ (no unit),
- frequency $f_{\rm E}$,
- phase $ϕ_{\rm E}$.
The $H_{\rm E}(f)$ block represents an ideal, rectangular low-pass filter, which is suitably dimensioned.
Hints:
- This exercise belongs to the chapter Synchronous Demodulation.
- Particular reference is made to the pages Influence of a frequency offset and Influence of a phase offset.
- Take the following trigonometric transformations into account:
- $$\cos(\alpha)\cdot \cos(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) + \cos(\alpha+\beta)\right] \hspace{0.05cm},$$
- $$\sin(\alpha)\cdot \cos(\beta) = {1}/{2} \cdot \left[ \sin(\alpha-\beta) + \sin(\alpha+\beta)\right] \hspace{0.05cm},$$
- $$\sin(\alpha)\cdot \sin(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) - \cos(\alpha+\beta)\right] \hspace{0.05cm}.$$
Questions
Solution
- Envelope demodulation is not applicable for DSB-AM without carrier and a modulation depth of $m > 1$.
- The performance of the synchronous demodulator is not increased by the additional carrier component, but only leads to an unnecessary increase in the transmit power to be applied.
- The third statement is also correct. The solution to Exercise 2.4Z shows the effects of omitting or incorrectly dimensioning $H_{\rm E} (f)$.
(2) As the name "synchronous demodulator" already implies, the signals $z(t)$ and $z_{\rm E} (t)$ must be synchronous in frequency and phase:
- $$f_{\rm E} = f_{\rm T} \hspace{0.15cm}\underline {= 50\,{\rm kHz}}, \hspace{0.15cm}\phi_{\rm E} = \phi_{\rm T} \hspace{0.15cm}\underline {= - 90^{\circ}} \hspace{0.05cm}.$$
- The carrier frequency $f_{\rm T} $ at the transmitter can be determined from the transmission spectrum $S(f)$. In the case of perfect synchronisation:
- $$v(t) = {A_{\rm E}}/{2} \cdot q(t) + {A_{\rm E}}/{2} \cdot q(t)\cdot \cos(2 \cdot \omega_{\rm T} \cdot t ) \hspace{0.05cm}.$$
- The second term is removed by the low-pass filter. Thus, with $A_{\rm E}\hspace{0.15cm}\underline{ = 2}$, $v(t) = q(t)$ holds.
(3) In the theory section, it was shown that in general for DSB-AM and synchronous demodulation:
- $$v(t) = \cos(\Delta \phi_{\rm T}) \cdot q(t) \hspace{0.05cm}.$$
- Even insufficient phase synchronisation does not lead to distortions, only to a frequency-independent attenuation.
- With $ϕ_{\rm T} =-90^\circ$ and $ϕ_{\rm E} = -120^\circ$ ⇒ $Δϕ_{\rm T} = -30^\circ$:
- $$ v(t) = \cos(30^{\circ}) \cdot q(t)= 0.866 \cdot q(t) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} v(t= 0) = 0.866 \cdot A_1 \hspace{0.15cm}\underline {= 1.732\,{\rm V}}\hspace{0.05cm}.$$
(4) Now the phase difference is $Δϕ_{\rm T} = 90^\circ$ and we get $v(t) \equiv 0$.
- It is pointless to discuss whether this is still a distortion-free system.
- The result $v(t) \equiv 0$ is due to the fact that cosine and sine are orthogonal functions.
- This principle is made use of, for example, in what is known as quadrature amplitude modulation..
(5) The equation for the signal after multiplication is:
- $$b(t) = q(t) \cdot \cos(\omega_{\rm T} \cdot t - 90^{\circ}) \cdot 2 \cdot \cos(\omega_{\rm E} \cdot t - 90^{\circ})= 2 \cdot q(t) \cdot \sin(\omega_{\rm T} \cdot t ) \cdot \sin(\omega_{\rm E} \cdot t )\hspace{0.05cm}.$$
- This result can also be rewritten using the trigonometric transformation
- $$\sin(\alpha)\cdot \sin(\beta) = {1}/{2} \cdot \left[ \cos(\alpha-\beta) - \cos(\alpha+\beta)\right]$$
- as follows:
- $$ b(t) = q(t) \cdot \cos((\omega_{\rm T} - \omega_{\rm E}) \cdot t ) + q(t) \cdot \cos((\omega_{\rm T} + \omega_{\rm E}) \cdot t ) \hspace{0.05cm}.$$
- The second term lies in the vicinity of $2f_{\rm T}$ for $f_{\rm E} = f_{\rm T}$ and is removed by the low-pass.
- With the frequency difference $Δ\hspace{-0.05cm}f_{\rm T} = f_{\rm E} - f_{\rm T}= 1$ kHz, this leaves:
- $$ v(t) = q(t) \cdot \cos(2 \pi \cdot \Delta \hspace{-0.05cm}f_{\rm T} \cdot t) \hspace{0.05cm}.$$
- The first statement is correct. This states that now the signal $v(t)$ becomes quieter and louder again after demodulation according to a cosine function (a "beat").
- The cosine component of $q(t)$ with frequency $f_1 = 2\text{ kHz}$ now becomes two components (each of half the amplitude) at $1\text{ kHz}$ and $3\text{ kHz}$.
- Similarly, the sink signal does not include a component at $f_2 = 5\text{ kHz}$, only components at $4\text{ kHz}$ and at $6\text{ kHz}$:
- $$1\,{\rm V} \cdot \sin(2 \pi \cdot 5\,{\rm kHz} \cdot t)\cdot \cos(2 \pi \cdot 1\,{\rm kHz} \cdot t) = 0.5\,{\rm V} \cdot \sin(2 \pi \cdot 4\,{\rm kHz} \cdot t) + 0.5\,{\rm V} \cdot \sin(2 \pi \cdot 6\,{\rm kHz} \cdot t)\hspace{0.05cm}.$$
Answers 1, 3 and 4 are correct.