Difference between revisions of "Aufgaben:Exercise 1.4: 2S/3E Channel Model"

From LNTwww
 
(One intermediate revision by the same user not shown)
Line 4: Line 4:
 
[[File:EN_Sto_A_1_4.png|right|frame|$\rm 2S/3E$  channel model]]
 
[[File:EN_Sto_A_1_4.png|right|frame|$\rm 2S/3E$  channel model]]
 
A transmitter  (German:  "Sender"   ⇒   subscript  "S")  emits the binary symbols  $\rm L$  $($event  $S_{\rm L})$  and  $\rm H$  $($event  $S_{\rm H})$ .
 
A transmitter  (German:  "Sender"   ⇒   subscript  "S")  emits the binary symbols  $\rm L$  $($event  $S_{\rm L})$  and  $\rm H$  $($event  $S_{\rm H})$ .
*If conditions are good, the digital receiver  (German:  "Empfänger"   ⇒   subscript  "E")  also decides only on the binary symbols  $\rm L$  $($event  $E_{\rm L})$  or  $\rm H$  $($event  $E_{\rm H})$.  
+
*If conditions are good,  the digital receiver  (German:  "Empfänger"   ⇒   subscript  "E")  also decides only on the binary symbols  $\rm L$  $($event  $E_{\rm L})$  or  $\rm H$  $($event  $E_{\rm H})$.  
 
*However,&nbsp;  if the receiver can suspect that an error has occurred during transmission,&nbsp; it makes no decision&nbsp; $($event&nbsp; $E_{\rm K})$;&nbsp; <br>$\rm K$&nbsp; here stands for&nbsp; "No decision".
 
*However,&nbsp;  if the receiver can suspect that an error has occurred during transmission,&nbsp; it makes no decision&nbsp; $($event&nbsp; $E_{\rm K})$;&nbsp; <br>$\rm K$&nbsp; here stands for&nbsp; "No decision".
  
Line 11: Line 11:
 
*It can be seen that a transmitted&nbsp; $\rm L$&nbsp; may well be received as a symbol&nbsp; $\rm H$.&nbsp;  
 
*It can be seen that a transmitted&nbsp; $\rm L$&nbsp; may well be received as a symbol&nbsp; $\rm H$.&nbsp;  
 
*In contrast,&nbsp; the transition from&nbsp; $\rm H$&nbsp; to&nbsp; $\rm L$&nbsp; is not possible.
 
*In contrast,&nbsp; the transition from&nbsp; $\rm H$&nbsp; to&nbsp; $\rm L$&nbsp; is not possible.
*Let the symbol appearance probabilities at the transmitter be&nbsp; ${\rm Pr}(S_{\rm L}) = 0.3$&nbsp; and&nbsp; ${\rm Pr}(S_{\rm H}) = 0.7$.
+
*Let the symbol probabilities at the transmitter be&nbsp; ${\rm Pr}(S_{\rm L}) = 0.3$&nbsp; and&nbsp; ${\rm Pr}(S_{\rm H}) = 0.7$.
  
  
Line 23: Line 23:
 
   
 
   
 
*The topic of this chapter is illustrated with examples in the&nbsp;  (German language)&nbsp;  learning video
 
*The topic of this chapter is illustrated with examples in the&nbsp;  (German language)&nbsp;  learning video
:[[Statistische_Abhängigkeit_und_Unabhängigkeit_(Lernvideo)|Statistische Abhängigkeit und Unabhängigkeit]] &nbsp; $\Rightarrow$ &nbsp; "Statistical dependence and independence".
+
::[[Statistische_Abhängigkeit_und_Unabhängigkeit_(Lernvideo)|Statistische Abhängigkeit und Unabhängigkeit]] &nbsp; $\Rightarrow$ &nbsp; "Statistical dependence and independence".
  
  
Line 64: Line 64:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Only if the symbol&nbsp; $\rm L$&nbsp; was sent, the receiver can decide for the symbol&nbsp; $\rm L$&nbsp; at the given channel.  
+
'''(1)'''&nbsp; Only if the symbol&nbsp; $\rm L$&nbsp; was sent,&nbsp; the receiver can decide for the symbol&nbsp; $\rm L$&nbsp; at the given channel.  
  
*However, the probability for a received&nbsp; $\rm L$&nbsp; is smaller by a factor of&nbsp; $0.7$&nbsp; than for a sent one. From this follows:   
+
*However,&nbsp; the probability for a received&nbsp; $\rm L$&nbsp; is smaller by a factor of&nbsp; $0.7$&nbsp; than for a sent one.&nbsp; From this follows:   
 
:$${\rm Pr} (E_{\rm L}) = {\rm Pr}(S_{\rm L}) \cdot {\rm Pr} (E_{\rm L}\hspace{0.05cm}|\hspace{0.05cm}S_{\rm L}) = 0.3 \cdot 0.7 \hspace{0.15cm}\underline {= \rm 0.21}.$$
 
:$${\rm Pr} (E_{\rm L}) = {\rm Pr}(S_{\rm L}) \cdot {\rm Pr} (E_{\rm L}\hspace{0.05cm}|\hspace{0.05cm}S_{\rm L}) = 0.3 \cdot 0.7 \hspace{0.15cm}\underline {= \rm 0.21}.$$
  
  
  
'''(2)'''&nbsp; To the event&nbsp; $E_{\rm H}$&nbsp; one comes from&nbsp;  $S_{\rm H}$&nbsp; as well as from&nbsp; $S_{\rm L}$&nbsp;. Therefore holds:
+
'''(2)'''&nbsp; To the event&nbsp; $E_{\rm H}$&nbsp; one comes from&nbsp;  $S_{\rm H}$&nbsp; as well as from&nbsp; $S_{\rm L}$.&nbsp; Therefore holds:
 
:$${\rm Pr} (E_{\rm H}) = {\rm Pr} (S_{\rm H}) \cdot {\rm Pr}  (E_{\rm H}\hspace{0.05cm}|\hspace{0.05cm}S_{\rm H}) + {\rm Pr} (S_{\rm L}) \cdot {\rm Pr}  (E_{\rm H}\hspace{0.05cm}|\hspace{0.05cm} S_{\rm L})= \rm 0.7 \cdot 0.9 + 0.3 \cdot 0.1\hspace{0.15cm}\underline { =  \rm 0.66}.$$
 
:$${\rm Pr} (E_{\rm H}) = {\rm Pr} (S_{\rm H}) \cdot {\rm Pr}  (E_{\rm H}\hspace{0.05cm}|\hspace{0.05cm}S_{\rm H}) + {\rm Pr} (S_{\rm L}) \cdot {\rm Pr}  (E_{\rm H}\hspace{0.05cm}|\hspace{0.05cm} S_{\rm L})= \rm 0.7 \cdot 0.9 + 0.3 \cdot 0.1\hspace{0.15cm}\underline { =  \rm 0.66}.$$
  
  
  
'''(3)'''&nbsp; The events&nbsp; $E_{\rm H}$,&nbsp; $E_{\rm L}$&nbsp; and&nbsp; $E_{\rm K}$&nbsp; together form a complete system. It follows that:
+
'''(3)'''&nbsp; The events&nbsp; $E_{\rm H}$,&nbsp; $E_{\rm L}$&nbsp; and&nbsp; $E_{\rm K}$&nbsp; together form a complete system.&nbsp; It follows that:
 
:$${\rm Pr} (E_{\rm K}) = 1 - {\rm Pr}  (E_{\rm L}) - {\rm Pr} (E_{\rm H}) \hspace{0.15cm}\underline {= \rm 0.13}.$$
 
:$${\rm Pr} (E_{\rm K}) = 1 - {\rm Pr}  (E_{\rm L}) - {\rm Pr} (E_{\rm H}) \hspace{0.15cm}\underline {= \rm 0.13}.$$
  
Line 87: Line 87:
  
  
'''(5)'''&nbsp; If the symbol&nbsp; $\rm L$&nbsp; was received, only&nbsp; $\rm L$&nbsp; could have been sent. It follows that:  
+
'''(5)'''&nbsp; If the symbol&nbsp; $\rm L$&nbsp; was received,&nbsp; only&nbsp; $\rm L$&nbsp; could have been sent. It follows that:  
 
:$${\rm Pr} (S_{\rm L} \hspace{0.05cm}|\hspace{0.05cm} E_{\rm L}) \hspace{0.15cm}\underline {= \rm 1}.$$
 
:$${\rm Pr} (S_{\rm L} \hspace{0.05cm}|\hspace{0.05cm} E_{\rm L}) \hspace{0.15cm}\underline {= \rm 1}.$$
  
  
  
'''(6)'''&nbsp; For example, Bayes' theorem is suitable for solving this problem:
+
'''(6)'''&nbsp; For example,&nbsp; Bayes' theorem is suitable for solving this problem:
 
:$${\rm Pr} (S_{\rm L}\hspace{0.05cm}|\hspace{0.05cm} E_{\rm K}) =\frac{ {\rm Pr} ( E_{\rm K} \hspace{0.05cm}|\hspace{0.05cm} S_{\rm L}) \cdot {\rm Pr} (S_{\rm L})}{{\rm Pr} (E_{\rm K})} =\frac{ \rm 0.2 \cdot 0.3}{\rm 0.13} = \frac{\rm 6}{\rm 13}\hspace{0.15cm}\underline { \approx \rm 0.462}.$$
 
:$${\rm Pr} (S_{\rm L}\hspace{0.05cm}|\hspace{0.05cm} E_{\rm K}) =\frac{ {\rm Pr} ( E_{\rm K} \hspace{0.05cm}|\hspace{0.05cm} S_{\rm L}) \cdot {\rm Pr} (S_{\rm L})}{{\rm Pr} (E_{\rm K})} =\frac{ \rm 0.2 \cdot 0.3}{\rm 0.13} = \frac{\rm 6}{\rm 13}\hspace{0.15cm}\underline { \approx \rm 0.462}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 15:17, 30 November 2021

$\rm 2S/3E$  channel model

A transmitter  (German:  "Sender"   ⇒   subscript  "S")  emits the binary symbols  $\rm L$  $($event  $S_{\rm L})$  and  $\rm H$  $($event  $S_{\rm H})$ .

  • If conditions are good,  the digital receiver  (German:  "Empfänger"   ⇒   subscript  "E")  also decides only on the binary symbols  $\rm L$  $($event  $E_{\rm L})$  or  $\rm H$  $($event  $E_{\rm H})$.
  • However,  if the receiver can suspect that an error has occurred during transmission,  it makes no decision  $($event  $E_{\rm K})$; 
    $\rm K$  here stands for  "No decision".


The diagram shows a simple channel model in terms of transition probabilities. 

  • It can be seen that a transmitted  $\rm L$  may well be received as a symbol  $\rm H$. 
  • In contrast,  the transition from  $\rm H$  to  $\rm L$  is not possible.
  • Let the symbol probabilities at the transmitter be  ${\rm Pr}(S_{\rm L}) = 0.3$  and  ${\rm Pr}(S_{\rm H}) = 0.7$.




Hints:

  • The topic of this chapter is illustrated with examples in the  (German language)  learning video
Statistische Abhängigkeit und Unabhängigkeit   $\Rightarrow$   "Statistical dependence and independence".


Questions

1

What is the probability that the receiver chooses the symbol  $\rm L$?

${\rm Pr}(E_{\rm L}) \ = \ $

2

What is the probability that the receiver chooses the symbol  $\rm H$?

${\rm Pr}(E_{\rm H}) \ = \ $

3

What is the probability that the receiver does not make a decision?

${\rm Pr}(E_{\rm K}) \ = \ $

4

What is the probability that the receiver makes a wrong decision?

$\text{Pr(wrong decision)} \ = \ $

5

What is the probability that symbol  $\rm L$  was actually sent if the receiver decided to use symbol  $\rm L$?

${\rm Pr}(S_{\rm L}\hspace{0.05cm}|\hspace{0.05cm}E_{\rm L} ) \ = \ $

6

What is the probability that symbol  $\rm L$  was sent if the receiver does not make a decision?

${\rm Pr}(S_{\rm L}\hspace{0.05cm}|\hspace{0.05cm}E_{\rm K} ) \ =\ $


Solution

(1)  Only if the symbol  $\rm L$  was sent,  the receiver can decide for the symbol  $\rm L$  at the given channel.

  • However,  the probability for a received  $\rm L$  is smaller by a factor of  $0.7$  than for a sent one.  From this follows:
$${\rm Pr} (E_{\rm L}) = {\rm Pr}(S_{\rm L}) \cdot {\rm Pr} (E_{\rm L}\hspace{0.05cm}|\hspace{0.05cm}S_{\rm L}) = 0.3 \cdot 0.7 \hspace{0.15cm}\underline {= \rm 0.21}.$$


(2)  To the event  $E_{\rm H}$  one comes from  $S_{\rm H}$  as well as from  $S_{\rm L}$.  Therefore holds:

$${\rm Pr} (E_{\rm H}) = {\rm Pr} (S_{\rm H}) \cdot {\rm Pr} (E_{\rm H}\hspace{0.05cm}|\hspace{0.05cm}S_{\rm H}) + {\rm Pr} (S_{\rm L}) \cdot {\rm Pr} (E_{\rm H}\hspace{0.05cm}|\hspace{0.05cm} S_{\rm L})= \rm 0.7 \cdot 0.9 + 0.3 \cdot 0.1\hspace{0.15cm}\underline { = \rm 0.66}.$$


(3)  The events  $E_{\rm H}$,  $E_{\rm L}$  and  $E_{\rm K}$  together form a complete system.  It follows that:

$${\rm Pr} (E_{\rm K}) = 1 - {\rm Pr} (E_{\rm L}) - {\rm Pr} (E_{\rm H}) \hspace{0.15cm}\underline {= \rm 0.13}.$$


(4)  A wrong decision can be characterized in set-theoretic terms as follows:

$${\rm Pr} \text{(wrong decision)} = {\rm Pr} \big [(S_{\rm L} \cap E_{\rm H}) \cup (S_{\rm H} \cap E_{\rm L})\big ] = \rm 0.3 \cdot 0.1 + 0.7\cdot 0 \hspace{0.15cm}\underline {= \rm 0.03}.$$


(5)  If the symbol  $\rm L$  was received,  only  $\rm L$  could have been sent. It follows that:

$${\rm Pr} (S_{\rm L} \hspace{0.05cm}|\hspace{0.05cm} E_{\rm L}) \hspace{0.15cm}\underline {= \rm 1}.$$


(6)  For example,  Bayes' theorem is suitable for solving this problem:

$${\rm Pr} (S_{\rm L}\hspace{0.05cm}|\hspace{0.05cm} E_{\rm K}) =\frac{ {\rm Pr} ( E_{\rm K} \hspace{0.05cm}|\hspace{0.05cm} S_{\rm L}) \cdot {\rm Pr} (S_{\rm L})}{{\rm Pr} (E_{\rm K})} =\frac{ \rm 0.2 \cdot 0.3}{\rm 0.13} = \frac{\rm 6}{\rm 13}\hspace{0.15cm}\underline { \approx \rm 0.462}.$$