Difference between revisions of "Aufgaben:Exercise 4.3: Pointer Diagram Representation"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=*Buch*/*Kapitel* }} 250px|right|* ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |type="[]"} - Falsch +…“)
 
 
(34 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=*Buch*/*Kapitel*
+
{{quiz-Header|Buchseite=Signal_Representation/Analytical_Signal_and_Its_Spectral_Function
 
}}
 
}}
  
[[File:*|250px|right|*]]
+
[[File:P_ID716__Sig_A_4_3.png|250px|right|frame|Pointer diagram of a harmonic]]
  
 +
We consider an analytical signal&nbsp; $x_+(t)$, which is defined by the drawn diagram in the complex plane.&nbsp; Depending on the choice of signal parameters, this results in three physical band-pass signals&nbsp; $x_1(t)$,&nbsp; $x_2(t)$&nbsp; and&nbsp; $x_3(t)$, which differ by different starting points&nbsp; $S_i = x_i(t = 0)$.
  
===Fragebogen===
+
In addition, the angular velocities of the three constellations&nbsp; (blue, green and red point)&nbsp; are also different:
 +
*The (blue) analytical signal&nbsp; $x_{1+}(t)$&nbsp; starts at&nbsp; $S_1 = 3 \ \rm V$.&nbsp; The angular velocity is&nbsp; $\omega_1 = \pi \cdot 10^{4} \ 1/\text{s}$.
 +
*The signal&nbsp; $x_{2+}(t)$&nbsp; starts at the green starting point&nbsp; $S_2 = {\rm j} \cdot 3 \ \text{V}$&nbsp; and, compared to&nbsp; $x_{1+}(t)$&nbsp;, rotates with twice the angular velocity&nbsp; &rArr; &nbsp; $\omega_2 = 2 \cdot \omega_1$.
 +
*The signal $x_{3+}(t)$ starts at the red starting point&nbsp; $S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}\hspace{0.05cm}\cdot\hspace{0.05cm}\pi /3}$&nbsp; and rotates with same speed as the signal&nbsp; $x_{2+}(t)$.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter&nbsp; [[Signal_Representation/Analytical_Signal_and_Its_Spectral_Function|Analytical Signal and its Spectral Function]].
 +
*The interactive applet&nbsp; [[Applets:Physical_Signal_%26_Analytic_Signal|Physical and Analytical Signal]]&nbsp; illustrates the topic covered here.
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{What are the amplitudes of all signals considered?
|type="[]"}
+
|type="{}"}
- Falsch
+
$A\ = \ $  { 3 3% } &nbsp;$\text{V}$
+ Richtig
 
  
 +
{What are the frequency and phase values of the signal&nbsp; $x_1(t)$?
 +
|type="{}"}
 +
$f_1\ = \ $  { 5 3% } &nbsp;$\text{kHz}$
 +
$\varphi_1\ = \ $  { 0. } &nbsp;$\text{deg}$
  
{Input-Box Frage
+
{What are the frequency and phase values of the signal&nbsp; $x_2(t)$?
 
|type="{}"}
 
|type="{}"}
<math> \alpha = </math> { 0.3 _5 }
+
$f_2\ = \ $  { 10 3% } &nbsp;$\text{kHz}$
 +
$\varphi_2\ = \ $  { -91--89 } &nbsp;$\text{deg}$
  
 +
{What are the frequency and phase values of the signal &nbsp; $x_3(t)$?
 +
|type="{}"}
 +
$f_3\ = \ $  { 10 3% } &nbsp;$\text{kHz}$
 +
$\varphi_3\ = \ $  { 60 3% } &nbsp;$\text{deg}$
 +
 +
{After what time&nbsp; $t_1$&nbsp; is the analytical signal&nbsp; $x_{3+}(t)$&nbsp; for the first time again equal to the initial value&nbsp; $x_{3+}(t = 0)$?
 +
|type="{}"}
 +
$t_1\ = \ $  { 0.1 3% } &nbsp;$\text{ms}$
 +
 +
{After what time&nbsp; $t_2$&nbsp; is the physical signal&nbsp; $x_3(t)$&nbsp; for the first time again as large as at time&nbsp; $t = 0$?
 +
|type="{}"}
 +
$t_2\ = \ $  { 0.033 3% } &nbsp;$\text{ms}$
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Antwort 1
+
'''(1)'''&nbsp;  The amplitude of the harmonic oscillation is equal to the pointer length.&nbsp; For all signals&nbsp; $A \; \underline{= 3 \ \text{V}}$.
 +
 
 +
 
 +
'''(2)'''&nbsp;  The sought frequency is given by&nbsp; $f_1 = \omega_1/(2\pi ) \; \underline{= 5 \ \text{kHz}}$.
 +
*The phase can be determined from&nbsp; $S_1 = 3 \ \text{V} \cdot \text{e}^{–\text{j} \hspace{0.05cm}\cdot \hspace{0.05cm} \varphi_1}$&nbsp; and is&nbsp; $\varphi_1 \; \underline{= 0}$.
 +
*In total this gives
 +
 +
:$$x_1(t) = 3\hspace{0.05cm}{\rm V}
 +
\cdot  {\cos} ( 2 \pi \cdot {\rm 5 \hspace{0.05cm} kHz}\cdot t) .$$
 +
 
 +
 
 +
'''(3)'''&nbsp;  Because of&nbsp; $\omega_2 = 2\cdot \omega_1$&nbsp;, the frequency is now&nbsp; $f_2 = 2 \cdot f_1 \; \underline{= 10 \ \text{kHz}}$.
 +
*The phase is obtained with the starting time&nbsp; $S_2$&nbsp; at&nbsp; $\text{e}^{–\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}\varphi_2} = \text{j}$ &nbsp; &rArr; &nbsp; $\varphi_2 \; \underline{= -\pi /2 \; (-90^{\circ})}$.
 +
*Thus the time function is:
 +
 +
:$$x_2(t) = 3\hspace{0.05cm}{\rm V}
 +
\cdot  {\cos} ( 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot t + 90^\circ) = -3\hspace{0.05cm}{\rm V}
 +
\cdot {\sin} ( 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot t ).$$
 +
 
 +
This signal is "minus-sine", which can also be read directly from the pointer diagram:
 +
*The real part of&nbsp; $x_{2+}(t)$&nbsp; at time&nbsp; $t = 0$&nbsp; is zero.&nbsp; Since the pointer turns counterclockwise, the real part is negative at first.
 +
*After a quarter turn,&nbsp; $x_2(T/4) = - 3 \ \text{V}$.
 +
*If one continues to turn counterclockwise in steps of&nbsp; $90^\circ$, the signal values&nbsp; $0 \ \text{V}$,&nbsp; $3 \ \text{V}$&nbsp; and&nbsp; $0 \ \text{V}$ result.
 +
 
 +
 
 +
'''(4)'''&nbsp; This sub-task can be solved analogously to sub-tasks&nbsp; '''(2)'''&nbsp; and '''(3)''' : &nbsp;
 +
:$$f_3  \; \underline{= 10 \ \text{kHz}}, \ \varphi_3 \; \underline{= 60^\circ}.$$
 +
 
 +
 
 +
'''(5)'''&nbsp;  The pointer requires exactly the period&nbsp; $T_3 = 1/f_3  \; \underline{= 0.1 \ \text{ms}} \;(= t_1)$ for one rotation.
 +
 
 +
 
 +
'''(6)'''&nbsp;  The analytical signal starts at&nbsp; $S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}60^{\circ}}$.
 +
*If the signal rotates further by&nbsp; $120^\circ$,&nbsp; exactly the same real part results.
 +
*The following relationship then applies with&nbsp; $t_2 = t_1/3 \; \underline{= 0.033 \ \text{ms}} $&nbsp;:
 +
 +
:$$x_3(t = t_2) = x_3(t = 0) = 3\hspace{0.05cm}{\rm V}
 +
\cdot  {\cos} ( 60^\circ) = 1.5\hspace{0.05cm}{\rm V}
 +
.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^4. Bandpassartige Signale^]]
+
[[Category:Signal Representation: Exercises|^4.2 Analytical Signal and its Spectral Function^]]

Latest revision as of 15:02, 6 May 2021

Pointer diagram of a harmonic

We consider an analytical signal  $x_+(t)$, which is defined by the drawn diagram in the complex plane.  Depending on the choice of signal parameters, this results in three physical band-pass signals  $x_1(t)$,  $x_2(t)$  and  $x_3(t)$, which differ by different starting points  $S_i = x_i(t = 0)$.

In addition, the angular velocities of the three constellations  (blue, green and red point)  are also different:

  • The (blue) analytical signal  $x_{1+}(t)$  starts at  $S_1 = 3 \ \rm V$.  The angular velocity is  $\omega_1 = \pi \cdot 10^{4} \ 1/\text{s}$.
  • The signal  $x_{2+}(t)$  starts at the green starting point  $S_2 = {\rm j} \cdot 3 \ \text{V}$  and, compared to  $x_{1+}(t)$ , rotates with twice the angular velocity  ⇒   $\omega_2 = 2 \cdot \omega_1$.
  • The signal $x_{3+}(t)$ starts at the red starting point  $S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}\hspace{0.05cm}\cdot\hspace{0.05cm}\pi /3}$  and rotates with same speed as the signal  $x_{2+}(t)$.





Hints:


Questions

1

What are the amplitudes of all signals considered?

$A\ = \ $

 $\text{V}$

2

What are the frequency and phase values of the signal  $x_1(t)$?

$f_1\ = \ $

 $\text{kHz}$
$\varphi_1\ = \ $

 $\text{deg}$

3

What are the frequency and phase values of the signal  $x_2(t)$?

$f_2\ = \ $

 $\text{kHz}$
$\varphi_2\ = \ $

 $\text{deg}$

4

What are the frequency and phase values of the signal   $x_3(t)$?

$f_3\ = \ $

 $\text{kHz}$
$\varphi_3\ = \ $

 $\text{deg}$

5

After what time  $t_1$  is the analytical signal  $x_{3+}(t)$  for the first time again equal to the initial value  $x_{3+}(t = 0)$?

$t_1\ = \ $

 $\text{ms}$

6

After what time  $t_2$  is the physical signal  $x_3(t)$  for the first time again as large as at time  $t = 0$?

$t_2\ = \ $

 $\text{ms}$


Solution

(1)  The amplitude of the harmonic oscillation is equal to the pointer length.  For all signals  $A \; \underline{= 3 \ \text{V}}$.


(2)  The sought frequency is given by  $f_1 = \omega_1/(2\pi ) \; \underline{= 5 \ \text{kHz}}$.

  • The phase can be determined from  $S_1 = 3 \ \text{V} \cdot \text{e}^{–\text{j} \hspace{0.05cm}\cdot \hspace{0.05cm} \varphi_1}$  and is  $\varphi_1 \; \underline{= 0}$.
  • In total this gives
$$x_1(t) = 3\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi \cdot {\rm 5 \hspace{0.05cm} kHz}\cdot t) .$$


(3)  Because of  $\omega_2 = 2\cdot \omega_1$ , the frequency is now  $f_2 = 2 \cdot f_1 \; \underline{= 10 \ \text{kHz}}$.

  • The phase is obtained with the starting time  $S_2$  at  $\text{e}^{–\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}\varphi_2} = \text{j}$   ⇒   $\varphi_2 \; \underline{= -\pi /2 \; (-90^{\circ})}$.
  • Thus the time function is:
$$x_2(t) = 3\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot t + 90^\circ) = -3\hspace{0.05cm}{\rm V} \cdot {\sin} ( 2 \pi \cdot {\rm 10 \hspace{0.05cm} kHz}\cdot t ).$$

This signal is "minus-sine", which can also be read directly from the pointer diagram:

  • The real part of  $x_{2+}(t)$  at time  $t = 0$  is zero.  Since the pointer turns counterclockwise, the real part is negative at first.
  • After a quarter turn,  $x_2(T/4) = - 3 \ \text{V}$.
  • If one continues to turn counterclockwise in steps of  $90^\circ$, the signal values  $0 \ \text{V}$,  $3 \ \text{V}$  and  $0 \ \text{V}$ result.


(4)  This sub-task can be solved analogously to sub-tasks  (2)  and (3) :  

$$f_3 \; \underline{= 10 \ \text{kHz}}, \ \varphi_3 \; \underline{= 60^\circ}.$$


(5)  The pointer requires exactly the period  $T_3 = 1/f_3 \; \underline{= 0.1 \ \text{ms}} \;(= t_1)$ for one rotation.


(6)  The analytical signal starts at  $S_3 = 3 \ \text{V} \cdot \text{e}^{–\text{j}\hspace{0.05cm} \cdot \hspace{0.05cm}60^{\circ}}$.

  • If the signal rotates further by  $120^\circ$,  exactly the same real part results.
  • The following relationship then applies with  $t_2 = t_1/3 \; \underline{= 0.033 \ \text{ms}} $ :
$$x_3(t = t_2) = x_3(t = 0) = 3\hspace{0.05cm}{\rm V} \cdot {\cos} ( 60^\circ) = 1.5\hspace{0.05cm}{\rm V} .$$