Difference between revisions of "Aufgaben:Exercise 2.6: PN Generator of Length 5"

From LNTwww
 
(2 intermediate revisions by 2 users not shown)
Line 4: Line 4:
  
 
[[File:EN_Sto_A_2_6.png|right|frame|PN generator of length  $L = 5$]]
 
[[File:EN_Sto_A_2_6.png|right|frame|PN generator of length  $L = 5$]]
In the diagram you can see a pseudorandom generator of length  $L = 5$, which can be used to generate a bin  $\langle z_{\nu} \rangle$  to be used.
+
In the graphic you can see a pseudo-random generator of length  $L = 5$,  which can be used to generate a binary random sequence  $\langle z_{\nu} \rangle$.
 
 
*At the start time, let all memory cells be preallocated with ones.
 
*At each clock time, the content of the shift register is shifted one place to the right and the currently generated binary value  $z_{\nu}$  $(0$  or  $1)$  is entered into the first memory cell.  
 
  
 +
*At the start time,  let all memory cells be preallocated with  "ones".
 +
*At each clock time,  the content of the shift register is shifted one place to the right.
 +
* And the currently generated binary value  $z_{\nu}$  $(0$  or  $1)$  is entered into the first memory cell.
 
*Hereby  $z_{\nu}$  results from the modulo-2 addition between  $z_{\nu-3}$  and  $z_{\nu-5}$.
 
*Hereby  $z_{\nu}$  results from the modulo-2 addition between  $z_{\nu-3}$  and  $z_{\nu-5}$.
  
Line 18: Line 18:
  
 
Hints:
 
Hints:
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Generation_of_Discrete_Random_Variables|Generation of Discrete Random Variable]].
+
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Generation_of_Discrete_Random_Variables|Generation of Discrete Random Variables]].
 
   
 
   
*The topic of this chapter is illustrated with examples in the (German language)  learning video   [[Erläuterung_der_PN–Generatoren_an_einem_Beispiel_(Lernvideo)|Erläuterung der PN-Generatoren an einem Beispiel]] $\Rightarrow$ Explanation of PN generators by example.
+
*The topic of this chapter is illustrated with examples in the&nbsp; (German language)&nbsp; learning video: <br> &nbsp; &nbsp; [[Erläuterung_der_PN–Generatoren_an_einem_Beispiel_(Lernvideo)|"Erläuterung der PN-Generatoren an einem Beispiel"]] &nbsp; $\Rightarrow$ &nbsp; "Explanation of PN generators using an example".
  
  
Line 38: Line 38:
  
  
{Assume that the generator polynomial&nbsp; $G(D)$&nbsp; is primitive. <br>Is the initial sequence&nbsp; $〈z_ν \rangle$&nbsp; an M-sequence? How large is its period&nbsp; $P$?
+
{Assume that the generator polynomial&nbsp; $G(D)$&nbsp; is primitive. <br>Is the initial sequence&nbsp; $〈z_ν \rangle$&nbsp; an M-sequence?&nbsp; How large is the period&nbsp; $P$?
 
|type="{}"}
 
|type="{}"}
 
$P\ = \ $ { 31 }
 
$P\ = \ $ { 31 }
  
  
{What octal identifier&nbsp; $O_{\rm R}$&nbsp; describes the polynomial reciprocal to&nbsp; $G(D)$&nbsp; $G_{\rm R}(D)$&nbsp;?
+
{What octal identifier&nbsp; $O_{\rm R}$&nbsp; describes the polynomial&nbsp; $G_{\rm R}(D)$&nbsp; reciprocal to&nbsp; $G(D)$?
 
|type="{}"}
 
|type="{}"}
 
$O_{\rm R} \ = \ $ { 45 } $\ \rm (octal)$
 
$O_{\rm R} \ = \ $ { 45 } $\ \rm (octal)$
Line 62: Line 62:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Correct is the <u>proposed solution 2</u> &nbsp; &#8658; &nbsp; $G(D) = D^5 + D^3 +1$.   
+
'''(1)'''&nbsp; Correct is the&nbsp; <u>proposed solution 2</u> &nbsp; &#8658; &nbsp; $G(D) = D^5 + D^3 +1$.   
*The generator polynomial&nbsp; $G(D)$&nbsp; denotes the returns used for modulo-2 addition.  
+
*The generator polynomial&nbsp; $G(D)$&nbsp; denotes the feedback coefficients used for modulo-2 addition.  
 
*$D$&nbsp; is a formal parameter indicating a delay by one clock.  
 
*$D$&nbsp; is a formal parameter indicating a delay by one clock.  
 
*$D^3$&nbsp; then indicates a delay of three measures.
 
*$D^3$&nbsp; then indicates a delay of three measures.
Line 70: Line 70:
  
 
'''(2)'''&nbsp; It is&nbsp; $g_0 = g_3 = g_5 = 1$.&nbsp;  
 
'''(2)'''&nbsp; It is&nbsp; $g_0 = g_3 = g_5 = 1$.&nbsp;  
*All other R&uuml;ckf&nbsp; coefficients are $0$. It follows that:
+
*All other feedback coefficients are&nbsp; $0$.&nbsp; It follows that:
 
:$$(g_{\rm 5}\hspace{0.1cm}g_{\rm 4}\hspace{0.1cm}g_{\rm 3}\hspace{0.1cm}g_{\rm 2}\hspace{0.1cm}g_{\rm 1}\hspace{0.1cm}g_{\rm 0})=\rm (101001)_{bin}\hspace{0.15cm} \underline{=(51)_{oct}}.$$
 
:$$(g_{\rm 5}\hspace{0.1cm}g_{\rm 4}\hspace{0.1cm}g_{\rm 3}\hspace{0.1cm}g_{\rm 2}\hspace{0.1cm}g_{\rm 1}\hspace{0.1cm}g_{\rm 0})=\rm (101001)_{bin}\hspace{0.15cm} \underline{=(51)_{oct}}.$$
  
  
  
'''(3)'''&nbsp; Since the generator polynomial&nbsp; $G(D)$&nbsp; is primitive, one obtains an M-sequence.  
+
'''(3)'''&nbsp; Since the generator polynomial&nbsp; $G(D)$&nbsp; is primitive,&nbsp; one obtains an&nbsp; "M-sequence".  
*Accordingly, the period is maximal:  
+
*Accordingly,&nbsp; the period is maximal:  
 
:$$P_{\rm max} = 2^{L}-1 \hspace{0.15cm}\underline {= 31}.$$  
 
:$$P_{\rm max} = 2^{L}-1 \hspace{0.15cm}\underline {= 31}.$$  
*In the theory part, the table with PN generators of maximum length (M sequences) for degree&nbsp; $5$&nbsp; lists the configuration&nbsp; $(51)_{\rm oct}$.
+
*In the theory part,&nbsp; the table with PN generators of maximum length&nbsp; ("M-sequences")&nbsp; for degree&nbsp; $L=5$&nbsp; lists the configuration&nbsp; $(51)_{\rm oct}$.
 +
 
  
  
Line 84: Line 85:
 
:$$G_{\rm R}(D)=D^{\rm 5}\cdot(D^{\rm -5}+\D^{\rm -3}+ 1)= D^{\rm 5}+D^{\rm 2}+1.$$
 
:$$G_{\rm R}(D)=D^{\rm 5}\cdot(D^{\rm -5}+\D^{\rm -3}+ 1)= D^{\rm 5}+D^{\rm 2}+1.$$
  
*Thus, the octal identifier für this configuration&nbsp; $\rm (100101)_{bin}\hspace{0.15cm} \underline{=(45)_{oct}}.$  
+
*Thus,&nbsp; the octal identifier für this configuration: &nbsp; $\rm (100101)_{bin}\hspace{0.15cm} \underline{=(45)_{oct}}.$  
  
  
  
'''(5)'''&nbsp; The correct solutions are <u>solutions 1, 3, and 4</u>:
+
'''(5)'''&nbsp; The&nbsp; <u>solutions 1,&nbsp; 3,&nbsp; and&nbsp; 4</u>&nbsp;  are correct:
*The initial sequence of the reciprocal realization&nbsp; $G_{\rm R}(D)$&nbsp; of a primitive polynomial&nbsp; $G(D)$&nbsp; is always also an M-sequence.  
+
*The output sequence of the reciprocal realization&nbsp; $G_{\rm R}(D)$&nbsp; of a primitive polynomial&nbsp; $G(D)$&nbsp; is also an&nbsp; "M-sequence".  
*Both sequences are inverses of each other. This means:  
+
*Both sequences are inverses of each other.&nbsp; This means:  
*The initial sequence of&nbsp; $(45)_{\rm oct}$&nbsp; is equal to the sequence of&nbsp; $(51)_{\rm oct}$ when read from right to left and additionally taking into account a phase (cyclic shift).  
+
*The output sequence of&nbsp; $(45)_{\rm oct}$&nbsp; is equal to the output sequence of&nbsp; $(51)_{\rm oct}$&nbsp; when read from right to left,&nbsp; additionally taking into account a phase&nbsp; ("cyclic shift").  
*A precondition is again that not all memory cells are preallocated with zeros.  
+
*The prerequisite is again that not all memory cells are preallocated with zeros.
*Under this condition, both sequences actually also have the same statistical properties.
+
*Under this condition,&nbsp; both sequences actually have the same statistical properties.
  
  

Latest revision as of 16:04, 28 December 2021

PN generator of length  $L = 5$

In the graphic you can see a pseudo-random generator of length  $L = 5$,  which can be used to generate a binary random sequence  $\langle z_{\nu} \rangle$.

  • At the start time,  let all memory cells be preallocated with  "ones".
  • At each clock time,  the content of the shift register is shifted one place to the right.
  • And the currently generated binary value  $z_{\nu}$  $(0$  or  $1)$  is entered into the first memory cell.
  • Hereby  $z_{\nu}$  results from the modulo-2 addition between  $z_{\nu-3}$  and  $z_{\nu-5}$.




Hints:


Question

1

What is the generator polynomial  $G(D)$  of the PN generator shown?

$G(D) = D^5 + D^2 +1$.
$G(D) = D^5 + D^3 +1$.
$G(D) = D^4 + D^2 +D$.

2

What octal identifier  $O_{\rm G}$  does this PN generator have?

$O_{\rm G} \ = \ $

$\ \rm (octal)$

3

Assume that the generator polynomial  $G(D)$  is primitive.
Is the initial sequence  $〈z_ν \rangle$  an M-sequence?  How large is the period  $P$?

$P\ = \ $

4

What octal identifier  $O_{\rm R}$  describes the polynomial  $G_{\rm R}(D)$  reciprocal to  $G(D)$?

$O_{\rm R} \ = \ $

$\ \rm (octal)$

5

What statements hold for the configuration with the polynomial  $G_{\rm R}(D)$?

It is also a sequence of maximum length.
The output sequence of  $G_{\rm R}(D)$  is the same as that of the generator polynomial  $G(D)$.
The output sequences of  $G_{\rm R}(D)$  and  $G(D)$  are inverses of each other.
Both sequences show the same statistical properties.
In  $G_{\rm R}(D)$  all memory elements can be preallocated with zeros.


Solution

(1)  Correct is the  proposed solution 2   ⇒   $G(D) = D^5 + D^3 +1$.

  • The generator polynomial  $G(D)$  denotes the feedback coefficients used for modulo-2 addition.
  • $D$  is a formal parameter indicating a delay by one clock.
  • $D^3$  then indicates a delay of three measures.


(2)  It is  $g_0 = g_3 = g_5 = 1$. 

  • All other feedback coefficients are  $0$.  It follows that:
$$(g_{\rm 5}\hspace{0.1cm}g_{\rm 4}\hspace{0.1cm}g_{\rm 3}\hspace{0.1cm}g_{\rm 2}\hspace{0.1cm}g_{\rm 1}\hspace{0.1cm}g_{\rm 0})=\rm (101001)_{bin}\hspace{0.15cm} \underline{=(51)_{oct}}.$$


(3)  Since the generator polynomial  $G(D)$  is primitive,  one obtains an  "M-sequence".

  • Accordingly,  the period is maximal:
$$P_{\rm max} = 2^{L}-1 \hspace{0.15cm}\underline {= 31}.$$
  • In the theory part,  the table with PN generators of maximum length  ("M-sequences")  for degree  $L=5$  lists the configuration  $(51)_{\rm oct}$.


(4)  The reciprocal polynomial is:

$$G_{\rm R}(D)=D^{\rm 5}\cdot(D^{\rm -5}+\D^{\rm -3}+ 1)= D^{\rm 5}+D^{\rm 2}+1.$$
  • Thus,  the octal identifier für this configuration:   $\rm (100101)_{bin}\hspace{0.15cm} \underline{=(45)_{oct}}.$


(5)  The  solutions 1,  3,  and  4  are correct:

  • The output sequence of the reciprocal realization  $G_{\rm R}(D)$  of a primitive polynomial  $G(D)$  is also an  "M-sequence".
  • Both sequences are inverses of each other.  This means:
  • The output sequence of  $(45)_{\rm oct}$  is equal to the output sequence of  $(51)_{\rm oct}$  when read from right to left,  additionally taking into account a phase  ("cyclic shift").
  • The prerequisite is again that not all memory cells are preallocated with zeros.
  • Under this condition,  both sequences actually have the same statistical properties.