Difference between revisions of "Aufgaben:Exercise 2.10: SSB-AM with Channel Distortions"

From LNTwww
m
m
 
(14 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Einseitenbandmodulation
+
{{quiz-Header|Buchseite=Modulation_Methods/Single-Sideband_Modulation
 
}}
 
}}
  
Line 6: Line 6:
 
Let us consider the transmission of the source signal
 
Let us consider the transmission of the source signal
 
:$$q(t) = 2\,{\rm V} \cdot \cos(2 \pi f_2 t) + 2\,{\rm V} \cdot \cos(2 \pi f_4 t)$$
 
:$$q(t) = 2\,{\rm V} \cdot \cos(2 \pi f_2 t) + 2\,{\rm V} \cdot \cos(2 \pi f_4 t)$$
over a Gaussian bandpass channel with center frequency   $f_{\rm M} = 48 \ \rm  kHz$.  This is different from the carrier frequency  $f_{\rm T} = 50 \ \rm  kHz$ used in modulation.  The frequencies  $f_2$  and  $f_4$  stand fro  $f = 2 \ \rm  kHz$  und  $f = 4 \ \rm  kHz$, respectively.
+
over a Gaussian bandpass channel with center frequency   $f_{\rm M} = 48 \ \rm  kHz$.   
 +
*This is different from the carrier frequency  $f_{\rm T} = 50 \ \rm  kHz$  used in modulation.   
 +
*The frequencies  $f_2$  and  $f_4$  stand for  $f = 2 \ \rm  kHz$  und  $f = 4 \ \rm  kHz$,  resp.
 +
 
  
 
We will now investigate the following modulation methods with respect to the spectrum  $S_+(f)$  of the analytical signal as shown in the upper graph:
 
We will now investigate the following modulation methods with respect to the spectrum  $S_+(f)$  of the analytical signal as shown in the upper graph:
* DSB–AM  $($all four spectral lines at  $46 \ \rm  kHz$,  $48 \ \rm  kHz$,  $52 \ \rm  kHz$  and  $54 \ \rm  kHz)$,
+
* DSB–AM  $($all four spectral lines at  $46 \ \rm  kHz$,  $48 \ \rm  kHz$,  $52 \ \rm  kHz$  and  $54 \ \rm  kHz)$   ⇒   "double-sideband" ,
*USB–AM  $($only blue spectral lines at  $52 \ \rm  kHz$  and  $54 \ \rm  kHz)$,
+
*USB–AM  $($only blue spectral lines at  $52 \ \rm  kHz$  and  $54 \ \rm  kHz)$  ⇒   "upper-sideband",
* LSB–AM  $($only green spectral lines at  $46 \ \rm  kHz$  and  $48 \ \rm  kHz)$.
+
*LSB–AM  $($only green spectral lines at  $46 \ \rm  kHz$  and  $48 \ \rm  kHz)$  ⇒   "lower-sideband".
  
  
In each case, a synchronous demodulator is used to first convert the receiver-side carrier signal
+
In each case,   a synchronous demodulator is used to first convert the receiver-side carrier signal
:$$ z_{\rm E} (t) = \left\{ \begin{array}{c} 2 \cdot z(t) \\ 4 \cdot z(t) \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{bei}} \\ {\rm{with}} \\ \end{array}\begin{array}{*{20}c} {\rm ZSB} \hspace{0.05cm}, \\ {\rm USB, LSB} \hspace{0.05cm} \\ \end{array}$$
+
:$$ z_{\rm E} (t) = \left\{ \begin{array}{c} 2 \cdot z(t) \\ 4 \cdot z(t) \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} {\rm DSB} \hspace{0.05cm}, \\ {\rm USB, LSB} \hspace{0.05cm} \\ \end{array}$$
by multiplication and then completely suppresses the components by twice the carrier frequency.  Thus, with an ideal channel  $H_{\rm K}(f) = 1$ ,  $v(t) = q(t)$  would hold in all cases.  
+
by multiplication and then completely suppresses the components at twice the carrier frequency.  With an ideal channel  $H_{\rm K}(f) = 1$ ,  $v(t) = q(t)$  would hold in all cases.  
  
 
The Gaussian channel considered here is given by the following auxiliary values:
 
The Gaussian channel considered here is given by the following auxiliary values:
 
:$$ H_{\rm K}(f = 46\ {\rm kHz}) = 0.968,\hspace{0.3cm}H_{\rm K}(f = 48\ {\rm kHz}) = 1.000,\hspace{0.3cm}
 
:$$ H_{\rm K}(f = 46\ {\rm kHz}) = 0.968,\hspace{0.3cm}H_{\rm K}(f = 48\ {\rm kHz}) = 1.000,\hspace{0.3cm}
 
  H_{\rm K}(f = 52\ {\rm kHz}) = 0.882,\hspace{0.3cm}H_{\rm K}(f = 54\ {\rm kHz}) = 0.754\hspace{0.05cm}.$$
 
  H_{\rm K}(f = 52\ {\rm kHz}) = 0.882,\hspace{0.3cm}H_{\rm K}(f = 54\ {\rm kHz}) = 0.754\hspace{0.05cm}.$$
In each case, write the sink signal in the form.
+
In each case,  write the sink signal in the form
 
:$$v(t) = A_2 \cdot \cos(2 \pi f_2 \cdot (t - \tau_2)) + A_4 \cdot \cos(2 \pi f_4 \cdot (t - \tau_4))\hspace{0.05cm}.$$
 
:$$v(t) = A_2 \cdot \cos(2 \pi f_2 \cdot (t - \tau_2)) + A_4 \cdot \cos(2 \pi f_4 \cdot (t - \tau_4))\hspace{0.05cm}.$$
All calculations are to be carried out for both a perfect phase synchronization  $(Δϕ_{\rm T} = 0)$  as well as for a phase offset of  $Δϕ_{\rm T} = 30^\circ$ .  This is present, for example, if the transmit-side carrier signal is cosine-shaped and the receiver-side carrier is:
+
All calculations are to be carried out for both a perfect phase synchronization  $(Δϕ_{\rm T} = 0)$  as well as for a phase offset of  $Δϕ_{\rm T} = 30^\circ$.  This is present,  for example,  if the transmit-side carrier signal is cosine-shaped and the receiver-side carrier is:
 
:$$ z_{\rm E} (t) = A_{\rm E} \cdot \cos(\omega_{\rm T} \cdot t - 30^\circ) . $$
 
:$$ z_{\rm E} (t) = A_{\rm E} \cdot \cos(\omega_{\rm T} \cdot t - 30^\circ) . $$
  
Line 29: Line 32:
  
  
 
+
Hints:  
 
+
*This exercise belongs to the chapter  [[Modulation_Methods/Single-Sideband_Modulation|Single-Sideband Modulation]].
 
+
*Reference will also be made to the chapter   [[Modulation_Methods/Synchronous_Demodulation|Synchronous Demodulation]].
 
 
''Hints:''
 
*This exercise belongs to the chapter   [[Modulation_Methods/Single-Sideband_Modulation|Single-Sideband Modulation]].
 
*Reference will also be made to the chapter nbsp;  [[Modulation_Methods/Synchronous_Demodulation|Synchronous Demodulation]].
 
 
   
 
   
  
Line 44: Line 43:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Calculate the amplitudes for &nbsp; <u>DSB–AM</u>&nbsp; and&nbsp; <u>perfect synchronization</u> &nbsp;$(Δϕ_{\rm T} = 0)$.
+
{Calculate the amplitudes for &nbsp; <u>double-sideband AM</u>&nbsp; and&nbsp; <u>perfect synchronization</u> &nbsp;$(Δϕ_{\rm T} = 0)$.
 
|type="{}"}
 
|type="{}"}
 
$A_2 \ = \ $ { 1.882 3% } $\ \rm V$
 
$A_2 \ = \ $ { 1.882 3% } $\ \rm V$
 
$A_4 \ = \ $ { 1.722 3% } $\ \rm V$
 
$A_4 \ = \ $ { 1.722 3% } $\ \rm V$
  
{What aWie lauten die Größen &nbsp;$A_2$&nbsp; und &nbsp;$τ_2$&nbsp; bei&nbsp; <u>ZSB–AM</u>&nbsp; und&nbsp; <u>Phasenversatz</u> &nbsp;$(Δϕ_{\rm T} = 30^\circ)$?
+
{What are the values for &nbsp;$A_2$&nbsp; and &nbsp;$τ_2$&nbsp; for&nbsp; <u>double-sideband AM</u>&nbsp; and a&nbsp; <u>phase offset</u> &nbsp;$(Δϕ_{\rm T} = 30^\circ)$?
 
|type="{}"}
 
|type="{}"}
 
$A_2 \ = \ $ { 1.63 3% } $\ \rm V$  
 
$A_2 \ = \ $ { 1.63 3% } $\ \rm V$  
 
$τ_2 \hspace{0.25cm} = \ $ { 0. } $\ \rm &micro; s$
 
$τ_2 \hspace{0.25cm} = \ $ { 0. } $\ \rm &micro; s$
  
{Berechnen Sie die Amplituden &nbsp;$A_2$&nbsp; und &nbsp;$A_4$&nbsp; bei&nbsp; <u>OSB–AM</u>&nbsp; und&nbsp; <u>perfekter Synchronisation</u>&nbsp; &nbsp;$(Δϕ_{\rm T} = 0)$.
+
{Calculate the amplitudes&nbsp;$A_2$&nbsp; and &nbsp;$A_4$&nbsp; for&nbsp; <u>upper-sideband AM</u>&nbsp; and&nbsp; <u>perfect synchronization</u>&nbsp; $(Δϕ_{\rm T} = 0)$.
 
|type="{}"}
 
|type="{}"}
 
$A_2 \ = \ $ { 1.764 3% } $\ \rm V$
 
$A_2 \ = \ $ { 1.764 3% } $\ \rm V$
 
$A_4 \ = \ $ { 1.508 3% } $\ \rm V$
 
$A_4 \ = \ $ { 1.508 3% } $\ \rm V$
  
{Geben Sie die Signalsamplituden für&nbsp; <u>USB–AM</u>&nbsp; und&nbsp; <u>perfekte Synchronisation</u> an &nbsp;$(Δϕ_{\rm T} = 0)$.
+
{Give the signal amplitudes for &nbsp; <u>lower-sideband AM</u>&nbsp; and&nbsp; <u>perfect synchronization</u> &nbsp;$(Δϕ_{\rm T} = 0)$.
 
|type="{}"}
 
|type="{}"}
 
$A_2 \ = \ $ { 2 3% } $\ \rm V$
 
$A_2 \ = \ $ { 2 3% } $\ \rm V$
 
$A_4 \ = \ $ { 1.936 3% } $\ \rm V$
 
$A_4 \ = \ $ { 1.936 3% } $\ \rm V$
  
{Wie lauten dagegen die Signalparameter bei&nbsp; <u>USB–AM</u>&nbsp; und&nbsp; <u>Phasenversatz</u>&nbsp; &nbsp;$(Δϕ_{\rm T} = 30^\circ)$?
+
{In contrast,&nbsp; what are the signal parameters for&nbsp; <u>lower-sideband AM</u>&nbsp; and a&nbsp; <u>phase offset</u> &nbsp;$(Δϕ_{\rm T} = 30^\circ)$?
 
|type="{}"}
 
|type="{}"}
 
$A_2 \ = \ $  { 2 3% } $\ \rm V$
 
$A_2 \ = \ $  { 2 3% } $\ \rm V$
Line 71: Line 70:
 
$τ_4 \hspace{0.25cm} = \ $ { 20.8 3% } $\ \rm &micro;  s$
 
$τ_4 \hspace{0.25cm} = \ $ { 20.8 3% } $\ \rm &micro;  s$
  
{Welche dieser Aussagen sind nach Ihren Ergebnissen zutreffend?&nbsp; Hierbei sollen unter „Kanalverzerrungen” stets Dämpfungsverzerrungen verstanden werden.
+
{Which of these statements are true given your results?&nbsp; Here,&nbsp; "channel distortions"&nbsp; should always be understood as a kind of attenuation distortion.  
 
|type="[]"}
 
|type="[]"}
+ Jede Kanalverzerrung führt bei ZSB-AM zu Dämpfungsverzerrungen.
+
+ In&nbsp; "double-sideband AM",&nbsp; each channel distortion leads to attenuation distortions.
- Jede Kanalverzerrung führt bei ESB–AM zu Phasenverzerrungen.
+
- In&nbsp; "single-sideband AM",&nbsp; each channel distortion leads to phase distortions.
- Ein Phasenversatz führt bei ZSB–AM zu Dämpfungsverzerrungen.
+
- In&nbsp; "double-sideband AM",&nbsp; a phase offset leads to attenuation distortions.
+ Ein Phasenversatz führt bei ESB–AM zu Phasenverzerrungen.
+
+ In&nbsp; "single-sideband AM",&nbsp; a phase offset leads to phase distortions.
  
  
Line 82: Line 81:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Bei der ZSB–AM sind folgende Dämpfungsfaktoren zu berücksichtigen:
+
'''(1)'''&nbsp; For DSB–AM,&nbsp; the following attenuation factors are to be taken into account:
 
:$$\alpha_2  =  {1}/{2} \cdot \left[ H_{\rm K}(f = 48\,{\rm kHz}) + H_{\rm K}(f = 52\,{\rm kHz})\right] = 0.981,$$  
 
:$$\alpha_2  =  {1}/{2} \cdot \left[ H_{\rm K}(f = 48\,{\rm kHz}) + H_{\rm K}(f = 52\,{\rm kHz})\right] = 0.981,$$  
 
:$$\alpha_4  =  {1}{2} \cdot \left[ H_{\rm K}(f = 46\,{\rm kHz}) + H_{\rm K}(f = 54\,{\rm kHz})\right] = 0.861\hspace{0.05cm}.$$
 
:$$\alpha_4  =  {1}{2} \cdot \left[ H_{\rm K}(f = 46\,{\rm kHz}) + H_{\rm K}(f = 54\,{\rm kHz})\right] = 0.861\hspace{0.05cm}.$$
*Damit ergeben sich die Amplituden&nbsp; $A_2\hspace{0.15cm}\underline{ = 1.882 \ \rm V}$&nbsp; und&nbsp; $A_4\hspace{0.15cm}\underline{ = 1.722 \ \rm V}$.
+
*Thus,&nbsp; we get the amplitudes &nbsp; $A_2\hspace{0.15cm}\underline{ = 1.882 \ \rm V}$&nbsp; and&nbsp; $A_4\hspace{0.15cm}\underline{ = 1.722 \ \rm V}$.
  
  
  
'''(2)'''&nbsp; Bei ZSB führt ein Phasenversatz zwischen den Trägerfrequenzen von Sender und Empfänger nur zu einer für alle Frequenzen gleichen Dämpfung:
+
'''(2)'''&nbsp; For DSB-AM,&nbsp; a phase offset between the carrier frequencies at transmitter and receiver, resp.,&nbsp; leads to one and the same attenuation for all frequencies:
 
:$$A_2  =  \cos (30^\circ) \cdot 1.882\,{\rm V} \hspace{0.15cm}\underline {= 1.630\,{\rm V}},$$  
 
:$$A_2  =  \cos (30^\circ) \cdot 1.882\,{\rm V} \hspace{0.15cm}\underline {= 1.630\,{\rm V}},$$  
 
:$$A_4  =  \cos (30^\circ) \cdot 1.722\,{\rm V} = 1.491\,{\rm V}\hspace{0.05cm}.$$
 
:$$A_4  =  \cos (30^\circ) \cdot 1.722\,{\rm V} = 1.491\,{\rm V}\hspace{0.05cm}.$$
*Die Laufzeiten sind&nbsp; $τ_2\hspace{0.15cm}\underline {= 0}$&nbsp; und&nbsp; $τ_4 = 0$.
+
*The delay times are &nbsp; $τ_2\hspace{0.15cm}\underline {= 0}$&nbsp; and&nbsp; $τ_4 = 0$.
  
  
  
'''(3)'''&nbsp; Bei OSB–AM wird der Dämpfungsfaktor&nbsp; $α_2$&nbsp; allein von&nbsp; $H_{\rm K}(f = 52\ \rm  kHz)$&nbsp; bestimmt.  
+
'''(3)'''&nbsp; For USB–AM,&nbsp; the attenuation factor &nbsp; $α_2$&nbsp; is only determined by &nbsp; $H_{\rm K}(f = 52\ \rm  kHz)$.  
*Da der prinzipielle Amplitudenverlust der OSB um den Faktor&nbsp; $2$&nbsp; durch eine größere Trägeramplitude ausgeglichen wird, gilt:
+
*Since the principal USB amplitude loss by a factor of &nbsp; $2$&nbsp; is compensated for by a larger carrier amplitude,&nbsp; the following holds:
 
:$$A_2  =  0.882 \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.764\,{\rm V}},$$  
 
:$$A_2  =  0.882 \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.764\,{\rm V}},$$  
 
:$$A_4  =  0.754 \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.508\,{\rm V}} \hspace{0.05cm}.$$
 
:$$A_4  =  0.754 \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.508\,{\rm V}} \hspace{0.05cm}.$$
Line 105: Line 104:
  
  
'''(4)'''&nbsp; Analog zur Lösung der Teilaufgabe&nbsp; '''(3)'''&nbsp; erhält man hier:
+
'''(4)'''&nbsp; Analogous to the solution in subtask&nbsp; '''(3)''',&nbsp; we obtain here:
 
:$$ A_2  =  H_{\rm K}(f = 48\,{\rm kHz}) \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 2\,{\rm V}},$$  
 
:$$ A_2  =  H_{\rm K}(f = 48\,{\rm kHz}) \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 2\,{\rm V}},$$  
 
:$$A_4  =  H_{\rm K}(f = 46\,{\rm kHz}) \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.936\,{\rm V}} \hspace{0.05cm}.$$
 
:$$A_4  =  H_{\rm K}(f = 46\,{\rm kHz}) \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.936\,{\rm V}} \hspace{0.05cm}.$$
Line 111: Line 110:
  
  
'''(5)'''&nbsp; Bei der USB–AM lautet das Empfangssignal:
+
'''(5)'''&nbsp; For LSB–AM,&nbsp; the received signal is:
 
:$$r(t) = 1\,{\rm V} \cdot \cos( \omega_{\rm 48} \cdot t) + 0.968\,{\rm V} \cdot \cos( \omega_{\rm 46} \cdot t)\hspace{0.05cm}.$$
 
:$$r(t) = 1\,{\rm V} \cdot \cos( \omega_{\rm 48} \cdot t) + 0.968\,{\rm V} \cdot \cos( \omega_{\rm 46} \cdot t)\hspace{0.05cm}.$$
*Durch Multiplikation mit dem empfangsseitigen Trägersignal&nbsp; $z_{\rm E}(t) = 4 \cdot \cos( \omega_{\rm 50} \cdot t - \Delta \phi_{\rm T})$&nbsp; erhält man nach Anwendung des trigonometrischen Additionstheorems:
+
*By multiplication with the receiver-side carrier signal &nbsp; $z_{\rm E}(t) = 4 \cdot \cos( \omega_{\rm 50} \cdot t - \Delta \phi_{\rm T})$,&nbsp; applying the trigonometric addition theorem gives:
 
:$$v(t) = r(t) \cdot z_{\rm E}(t) =  \hspace{0.15cm}\underline { 2.000\,{\rm V}} \cdot \cos( \omega_{\rm 2} \cdot t - \Delta \phi_{\rm T})+\hspace{0.15cm}\underline { 1.936\,{\rm V}} \cdot \cos( \omega_{\rm 4} \cdot t - \Delta \phi_{\rm T})
 
:$$v(t) = r(t) \cdot z_{\rm E}(t) =  \hspace{0.15cm}\underline { 2.000\,{\rm V}} \cdot \cos( \omega_{\rm 2} \cdot t - \Delta \phi_{\rm T})+\hspace{0.15cm}\underline { 1.936\,{\rm V}} \cdot \cos( \omega_{\rm 4} \cdot t - \Delta \phi_{\rm T})
  +  {\rm Anteile \hspace{0.15cm}um \hspace{0.15cm}} 2f_{\rm T}\hspace{0.05cm}$$
+
  +  {\rm components \hspace{0.15cm}around\hspace{0.15cm}} 2f_{\rm T}\hspace{0.05cm}$$
 
:$$ \Rightarrow \hspace{0.3cm} A_2 \hspace{0.15cm}\underline {= 2\,{\rm V}},\hspace{0.5cm} A_4 \hspace{0.15cm}\underline {= 1.936\,{\rm V}}.$$  
 
:$$ \Rightarrow \hspace{0.3cm} A_2 \hspace{0.15cm}\underline {= 2\,{\rm V}},\hspace{0.5cm} A_4 \hspace{0.15cm}\underline {= 1.936\,{\rm V}}.$$  
*Unter Berücksichtigung des nachfolgenden Tiefpassfilters kann hierfür auch geschrieben werden:
+
*Considering the downstream lowpass filter,&nbsp; this can also be written as:
 
:$$ v(t) = A_2 \cdot \cos( \omega_{\rm 2} \cdot (t - \tau_2))+ A_4 \cdot \cos( \omega_{\rm 4} \cdot (t - \tau_4))\hspace{0.05cm}.$$
 
:$$ v(t) = A_2 \cdot \cos( \omega_{\rm 2} \cdot (t - \tau_2))+ A_4 \cdot \cos( \omega_{\rm 4} \cdot (t - \tau_4))\hspace{0.05cm}.$$
*Die Amplituden sind gegenüber Teilaufgabe&nbsp; '''(4)'''&nbsp; unverändert.&nbsp; Für die Laufzeiten erhält man mit&nbsp; $Δϕ_{\rm T} = π/6$:
+
*The amplitudes are unchanged compared to subtask&nbsp; '''(4)'''.&nbsp; For the delay times when &nbsp; $Δϕ_{\rm T} = π/6$,&nbsp; we get:
 
:$$ \tau_2  =  \frac {\Delta \phi_{\rm T}}{2 \pi \cdot f_2} = \frac {\pi /6}{2 \pi \cdot 2\,{\rm kHz}} \hspace{0.15cm}\underline {\approx 41.6\,{\rm &micro; s}},\hspace{0.5cm} \tau_4  =  \frac {\Delta \phi_{\rm T}}{2 \pi \cdot f_4}= \frac {\tau_2}{2}\hspace{0.15cm}\underline {\approx 20.8\,{\rm &micro; s}} \hspace{0.05cm}.$$
 
:$$ \tau_2  =  \frac {\Delta \phi_{\rm T}}{2 \pi \cdot f_2} = \frac {\pi /6}{2 \pi \cdot 2\,{\rm kHz}} \hspace{0.15cm}\underline {\approx 41.6\,{\rm &micro; s}},\hspace{0.5cm} \tau_4  =  \frac {\Delta \phi_{\rm T}}{2 \pi \cdot f_4}= \frac {\tau_2}{2}\hspace{0.15cm}\underline {\approx 20.8\,{\rm &micro; s}} \hspace{0.05cm}.$$
  
  
  
'''(6)'''&nbsp; Richtig sind <u>der erste und der letzte Lösungsvorschlag</u>:  
+
'''(6)'''&nbsp; The&nbsp; <u>first and last answers</u>&nbsp; are correct:  
*Auch bei ESB führen Dämpfungsverzerrungen auf dem Kanal ausschließlich zu Dämpfungsverzerrungen bezüglich&nbsp; $v(t)$.
+
*Also for&nbsp; "single-sideband AM"&nbsp;:&nbsp; Attenuation distortions on the channel lead only to attenuation distortions with respect to&nbsp; $v(t)$.
* Phasenverzerrungen gibt es nur bei einem Demodulator mit Phasenversatz bei eine Einseitenbandmodulation.  
+
*Phase distortions are only present for a demodulator with a phase offset in the case of&nbsp; "single-sideband AM".  
*Bei der ZSB–AM hätte ein solcher Phasenversatz keine Verzerrungen zur Folge, sondern nur eine frequenzunabhängige Dämpfung.
+
*For&nbsp; "double-sideband AM",&nbsp; such a phase offset would not result in any distortions,&nbsp; but only in frequency-independent attenuation.
*Zu Phasenverzerrungen bezüglich&nbsp; $v(t)$&nbsp; kommt es bei ZSB–AM und ESB–AM auch, wenn solche bereits auf dem Kanal auftreten.
+
*Phase distortions with respect to&nbsp; $v(t)$&nbsp; can also arise in&nbsp; "DSB–AM"&nbsp; and&nbsp; "SSB–AM",&nbsp; if these already occur on the channel.
  
  

Latest revision as of 16:55, 31 March 2022

Transmission spectrum of the analytical signal and channel frequency response

Let us consider the transmission of the source signal

$$q(t) = 2\,{\rm V} \cdot \cos(2 \pi f_2 t) + 2\,{\rm V} \cdot \cos(2 \pi f_4 t)$$

over a Gaussian bandpass channel with center frequency  $f_{\rm M} = 48 \ \rm kHz$. 

  • This is different from the carrier frequency  $f_{\rm T} = 50 \ \rm kHz$  used in modulation. 
  • The frequencies  $f_2$  and  $f_4$  stand for  $f = 2 \ \rm kHz$  und  $f = 4 \ \rm kHz$,  resp.


We will now investigate the following modulation methods with respect to the spectrum  $S_+(f)$  of the analytical signal as shown in the upper graph:

  • DSB–AM  $($all four spectral lines at  $46 \ \rm kHz$,  $48 \ \rm kHz$,  $52 \ \rm kHz$  and  $54 \ \rm kHz)$   ⇒   "double-sideband" ,
  • USB–AM  $($only blue spectral lines at  $52 \ \rm kHz$  and  $54 \ \rm kHz)$  ⇒   "upper-sideband",
  • LSB–AM  $($only green spectral lines at  $46 \ \rm kHz$  and  $48 \ \rm kHz)$  ⇒   "lower-sideband".


In each case,  a synchronous demodulator is used to first convert the receiver-side carrier signal

$$ z_{\rm E} (t) = \left\{ \begin{array}{c} 2 \cdot z(t) \\ 4 \cdot z(t) \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} {\rm DSB} \hspace{0.05cm}, \\ {\rm USB, LSB} \hspace{0.05cm} \\ \end{array}$$

by multiplication and then completely suppresses the components at twice the carrier frequency.  With an ideal channel  $H_{\rm K}(f) = 1$ ,  $v(t) = q(t)$  would hold in all cases.

The Gaussian channel considered here is given by the following auxiliary values:

$$ H_{\rm K}(f = 46\ {\rm kHz}) = 0.968,\hspace{0.3cm}H_{\rm K}(f = 48\ {\rm kHz}) = 1.000,\hspace{0.3cm} H_{\rm K}(f = 52\ {\rm kHz}) = 0.882,\hspace{0.3cm}H_{\rm K}(f = 54\ {\rm kHz}) = 0.754\hspace{0.05cm}.$$

In each case,  write the sink signal in the form

$$v(t) = A_2 \cdot \cos(2 \pi f_2 \cdot (t - \tau_2)) + A_4 \cdot \cos(2 \pi f_4 \cdot (t - \tau_4))\hspace{0.05cm}.$$

All calculations are to be carried out for both a perfect phase synchronization  $(Δϕ_{\rm T} = 0)$  as well as for a phase offset of  $Δϕ_{\rm T} = 30^\circ$.  This is present,  for example,  if the transmit-side carrier signal is cosine-shaped and the receiver-side carrier is:

$$ z_{\rm E} (t) = A_{\rm E} \cdot \cos(\omega_{\rm T} \cdot t - 30^\circ) . $$



Hints:



Questions

1

Calculate the amplitudes for   double-sideband AM  and  perfect synchronization  $(Δϕ_{\rm T} = 0)$.

$A_2 \ = \ $

$\ \rm V$
$A_4 \ = \ $

$\ \rm V$

2

What are the values for  $A_2$  and  $τ_2$  for  double-sideband AM  and a  phase offset  $(Δϕ_{\rm T} = 30^\circ)$?

$A_2 \ = \ $

$\ \rm V$
$τ_2 \hspace{0.25cm} = \ $

$\ \rm µ s$

3

Calculate the amplitudes $A_2$  and  $A_4$  for  upper-sideband AM  and  perfect synchronization  $(Δϕ_{\rm T} = 0)$.

$A_2 \ = \ $

$\ \rm V$
$A_4 \ = \ $

$\ \rm V$

4

Give the signal amplitudes for   lower-sideband AM  and  perfect synchronization  $(Δϕ_{\rm T} = 0)$.

$A_2 \ = \ $

$\ \rm V$
$A_4 \ = \ $

$\ \rm V$

5

In contrast,  what are the signal parameters for  lower-sideband AM  and a  phase offset  $(Δϕ_{\rm T} = 30^\circ)$?

$A_2 \ = \ $

$\ \rm V$
$τ_2 \hspace{0.25cm} = \ $

$\ \rm µ s$
$A_4 \ = \ $

$\ \rm V$
$τ_4 \hspace{0.25cm} = \ $

$\ \rm µ s$

6

Which of these statements are true given your results?  Here,  "channel distortions"  should always be understood as a kind of attenuation distortion.

In  "double-sideband AM",  each channel distortion leads to attenuation distortions.
In  "single-sideband AM",  each channel distortion leads to phase distortions.
In  "double-sideband AM",  a phase offset leads to attenuation distortions.
In  "single-sideband AM",  a phase offset leads to phase distortions.


Solution

(1)  For DSB–AM,  the following attenuation factors are to be taken into account:

$$\alpha_2 = {1}/{2} \cdot \left[ H_{\rm K}(f = 48\,{\rm kHz}) + H_{\rm K}(f = 52\,{\rm kHz})\right] = 0.981,$$
$$\alpha_4 = {1}{2} \cdot \left[ H_{\rm K}(f = 46\,{\rm kHz}) + H_{\rm K}(f = 54\,{\rm kHz})\right] = 0.861\hspace{0.05cm}.$$
  • Thus,  we get the amplitudes   $A_2\hspace{0.15cm}\underline{ = 1.882 \ \rm V}$  and  $A_4\hspace{0.15cm}\underline{ = 1.722 \ \rm V}$.


(2)  For DSB-AM,  a phase offset between the carrier frequencies at transmitter and receiver, resp.,  leads to one and the same attenuation for all frequencies:

$$A_2 = \cos (30^\circ) \cdot 1.882\,{\rm V} \hspace{0.15cm}\underline {= 1.630\,{\rm V}},$$
$$A_4 = \cos (30^\circ) \cdot 1.722\,{\rm V} = 1.491\,{\rm V}\hspace{0.05cm}.$$
  • The delay times are   $τ_2\hspace{0.15cm}\underline {= 0}$  and  $τ_4 = 0$.


(3)  For USB–AM,  the attenuation factor   $α_2$  is only determined by   $H_{\rm K}(f = 52\ \rm kHz)$.

  • Since the principal USB amplitude loss by a factor of   $2$  is compensated for by a larger carrier amplitude,  the following holds:
$$A_2 = 0.882 \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.764\,{\rm V}},$$
$$A_4 = 0.754 \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.508\,{\rm V}} \hspace{0.05cm}.$$


(4)  Analogous to the solution in subtask  (3),  we obtain here:

$$ A_2 = H_{\rm K}(f = 48\,{\rm kHz}) \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 2\,{\rm V}},$$
$$A_4 = H_{\rm K}(f = 46\,{\rm kHz}) \cdot 2\,{\rm V}\hspace{0.15cm}\underline {= 1.936\,{\rm V}} \hspace{0.05cm}.$$


(5)  For LSB–AM,  the received signal is:

$$r(t) = 1\,{\rm V} \cdot \cos( \omega_{\rm 48} \cdot t) + 0.968\,{\rm V} \cdot \cos( \omega_{\rm 46} \cdot t)\hspace{0.05cm}.$$
  • By multiplication with the receiver-side carrier signal   $z_{\rm E}(t) = 4 \cdot \cos( \omega_{\rm 50} \cdot t - \Delta \phi_{\rm T})$,  applying the trigonometric addition theorem gives:
$$v(t) = r(t) \cdot z_{\rm E}(t) = \hspace{0.15cm}\underline { 2.000\,{\rm V}} \cdot \cos( \omega_{\rm 2} \cdot t - \Delta \phi_{\rm T})+\hspace{0.15cm}\underline { 1.936\,{\rm V}} \cdot \cos( \omega_{\rm 4} \cdot t - \Delta \phi_{\rm T}) + {\rm components \hspace{0.15cm}around\hspace{0.15cm}} 2f_{\rm T}\hspace{0.05cm}$$
$$ \Rightarrow \hspace{0.3cm} A_2 \hspace{0.15cm}\underline {= 2\,{\rm V}},\hspace{0.5cm} A_4 \hspace{0.15cm}\underline {= 1.936\,{\rm V}}.$$
  • Considering the downstream lowpass filter,  this can also be written as:
$$ v(t) = A_2 \cdot \cos( \omega_{\rm 2} \cdot (t - \tau_2))+ A_4 \cdot \cos( \omega_{\rm 4} \cdot (t - \tau_4))\hspace{0.05cm}.$$
  • The amplitudes are unchanged compared to subtask  (4).  For the delay times when   $Δϕ_{\rm T} = π/6$,  we get:
$$ \tau_2 = \frac {\Delta \phi_{\rm T}}{2 \pi \cdot f_2} = \frac {\pi /6}{2 \pi \cdot 2\,{\rm kHz}} \hspace{0.15cm}\underline {\approx 41.6\,{\rm µ s}},\hspace{0.5cm} \tau_4 = \frac {\Delta \phi_{\rm T}}{2 \pi \cdot f_4}= \frac {\tau_2}{2}\hspace{0.15cm}\underline {\approx 20.8\,{\rm µ s}} \hspace{0.05cm}.$$


(6)  The  first and last answers  are correct:

  • Also for  "single-sideband AM" :  Attenuation distortions on the channel lead only to attenuation distortions with respect to  $v(t)$.
  • Phase distortions are only present for a demodulator with a phase offset in the case of  "single-sideband AM".
  • For  "double-sideband AM",  such a phase offset would not result in any distortions,  but only in frequency-independent attenuation.
  • Phase distortions with respect to  $v(t)$  can also arise in  "DSB–AM"  and  "SSB–AM",  if these already occur on the channel.