Difference between revisions of "Aufgaben:Exercise 3.4: Characteristic Function"

From LNTwww
 
(3 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID619__Sto_A_3_4.png|right|frame|Rectangular PDF and trapezoidal PDF]]
+
[[File:P_ID619__Sto_A_3_4.png|right|frame|Rectangular and trapezoidal PDF]]
Given here are the three random variables  $x$,  $y$  and  $z$ , mostly by their respective probability density functions:
+
Given here are three random variables  $x$,  $y$  and  $z$,  mostly by their respective probability density functions:
  
*Nothing else is known about the random variable  $x$  :   This can be both a discrete and a continuous random variable, and can have any PDF  $f_x(x)$  The mean is generally equal  $m_x$.
+
*Nothing else is known about the random variable  $x$:  This can be both a discrete or a continuous random variable,  and can have any PDF  $f_x(x)$  The mean is generally equal  $m_x$.
*The continuous random variable  $y$  can only take values in the range between  $1$  to  $3$  with equal probability.  The mean is  $$m_y = 2.$$
+
*The continuous random variable  $y$  can take values in the range between  $1$  to  $3$  with equal probability.  Mean:  $m_y = 2.$
 
*The random variable  $z$  has the following characteristic function:
 
*The random variable  $z$  has the following characteristic function:
 
:$$C_z ({\it \Omega} ) = {\mathop{\rm si}\nolimits}( {3{\it \Omega}} ) \cdot {\mathop{\rm si}\nolimits} ( {2{\it \Omega} } ).$$
 
:$$C_z ({\it \Omega} ) = {\mathop{\rm si}\nolimits}( {3{\it \Omega}} ) \cdot {\mathop{\rm si}\nolimits} ( {2{\it \Omega} } ).$$
:Besides, the qualitative course of the WDF  $f_z(z)$  according to the blue sketch is assumed to be known.  To be determined are the PDF parameters  $a$,  $b$  and  $c$  of this PDF.
+
:Besides, the qualitative course of the WDF  $f_z(z)$  according to the blue sketch is assumed to be known.  To be determined are the PDF parameters  $a$,  $b$,  $c$  of this PDF.
 
 
 
 
  
  
Line 18: Line 16:
  
 
Hints:  
 
Hints:  
*This exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|expected values and moments]].
+
*This exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|Expected values and moments]].
*Reference is made to the page   [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Characteristic_function|charakteristic funcion]] .
+
*Reference is made to the section   [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments#Characteristic_function|Charakteristic funcion]] .
 
   
 
   
 
*The characteristic function of a between  $\pm a$  uniformly distributed random variable  $z$  is:
 
*The characteristic function of a between  $\pm a$  uniformly distributed random variable  $z$  is:
:$$C_z ( {\it \Omega} ) = {\mathop{\rm si}\nolimits} ( {a {\it \Omega} } )\quad {\rm{with}}\quad {\mathop{\rm si}\nolimits}( x ) = \sin ( x )/x.$$
+
:$$C ( {\it \Omega} ) = {\mathop{\rm si}\nolimits} ( {a {\it \Omega} } )\quad {\rm{with}}\quad {\mathop{\rm si}\nolimits}( x ) = \sin ( x )/x.$$
  
  
Line 28: Line 26:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Which statements are valid with respect to the characteristic function&nbsp; $C_x ( {\it \Omega} )$&nbsp; always &ndash; that is, at any PDF &ndash;?
+
{Which statements are valid with respect to the characteristic function&nbsp; $C_x ( {\it \Omega} )$&nbsp; always &ndash; that is, at any PDF&nbsp;?
 
|type="[]"}
 
|type="[]"}
 
- $C_x ( {\it \Omega} )$&nbsp; is the Fourier transform of&nbsp; $f_x(x)$.
 
- $C_x ( {\it \Omega} )$&nbsp; is the Fourier transform of&nbsp; $f_x(x)$.
Line 34: Line 32:
 
+ The imaginary part of&nbsp; $C_x ( {\it \Omega} )$&nbsp; is an odd function in&nbsp; ${\it \Omega}$.
 
+ The imaginary part of&nbsp; $C_x ( {\it \Omega} )$&nbsp; is an odd function in&nbsp; ${\it \Omega}$.
 
+ The value at location&nbsp; ${\it \Omega} = 0$&nbsp; is always&nbsp; $C_x ( {\it \Omega} ) = 1$.
 
+ The value at location&nbsp; ${\it \Omega} = 0$&nbsp; is always&nbsp; $C_x ( {\it \Omega} ) = 1$.
- For zero mean random variable&nbsp; $(m_x = 0)$&nbsp; is&nbsp; $C_x ( {\it \Omega} )$&nbsp; always real.
+
- For a zero mean random variable&nbsp; $(m_x = 0)$&nbsp; &rArr; &nbsp; $C_x ( {\it \Omega} )$&nbsp; is always real.
  
  
Line 43: Line 41:
  
  
{Determine the characteristics&nbsp; $a$,&nbsp; $b$&nbsp; and&nbsp; $c$&nbsp; of the PDF&nbsp; $f_z(z)$.
+
{Determine the characteristic parameters&nbsp; $a$,&nbsp; $b$&nbsp; and&nbsp; $c$&nbsp; of the PDF&nbsp; $f_z(z)$.
 
|type="{}"}
 
|type="{}"}
 
$a \ = \ $ { 1 3% }
 
$a \ = \ $ { 1 3% }
Line 54: Line 52:
 
===Solutions===
 
===Solutions===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Correct are <u>the proposed solutions 2, 3 and 4</u>:
+
'''(1)'''&nbsp; Correct are&nbsp; <u>the proposed solutions 2, 3 and 4</u>:
* $C_x( {\it \Omega} )$&nbsp; is not the Fourier transform to&nbsp; $f_x(x)$,&nbsp; but the Fourier retransform:
+
* $C_x( {\it \Omega} )$&nbsp; is not the Fourier transform to&nbsp; $f_x(x)$,&nbsp; but the inverse Fourier transform:
:$$C_x( {\it \Omega } ) = \int_{ - \infty }^{ + \infty } {f_x }( x )\cdot {\rm{e}}^{\hspace{0.03cm}{\rm{j}}\hspace{0.03cm}{\it \Omega x}} \hspace{0.1cm}{\rm{d}}x .$$
+
:$$C_x( {\it \Omega } ) = \int_{ - \infty }^{ + \infty } {f_x }( x )\cdot {\rm{e}}^{\hspace{0.03cm}{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega\hspace{0.05cm}\cdot \hspace{0.05cm} x}} \hspace{0.1cm}{\rm{d}}x .$$
*Also for this, the real part is always even and the imaginary part odd.&nbsp; For&nbsp; ${\it \Omega} = 0$&nbsp; holds:
+
*Also for this,&nbsp; the real part is always even and the imaginary part odd.&nbsp; For&nbsp; ${\it \Omega} = 0$&nbsp; holds:
 
:$$C_x( {\it \Omega} = 0 ) = \int_{ - \infty }^{ + \infty } {f_x }( x ) \hspace{0.1cm}{\rm{d}}x = 1.$$
 
:$$C_x( {\it \Omega} = 0 ) = \int_{ - \infty }^{ + \infty } {f_x }( x ) \hspace{0.1cm}{\rm{d}}x = 1.$$
*The last alternative does not always hold: &nbsp; A two-point distributed random variable&nbsp; $x \in \{-1, +3\}$&nbsp; with probabilities&nbsp; $0.75$&nbsp; and&nbsp; $0.25$&nbsp; is zero mean&nbsp; $(m_x = 0)$, but still has a complex characteristic function.  
+
*The last alternative does not always hold: &nbsp; A two-point distributed random variable&nbsp; $x \in \{-1, +3\}$&nbsp; with probabilities&nbsp; $0.75$&nbsp; and&nbsp; $0.25$&nbsp; is zero mean&nbsp; $(m_x = 0)$,&nbsp; but has still a complex characteristic function.  
  
  
  
 
'''(2)'''&nbsp; According to the general definition:
 
'''(2)'''&nbsp; According to the general definition:
:$$C_y( {\it \Omega  } ) = \int_{ - \infty }^{ + \infty } {f_y }( y )\cdot {\rm{e}}^{{\rm{j}}{\it \Omega y}} \hspace{0.1cm}{\rm{d}}y  = 0.5\int_1^3 {{\rm{e}}^{{\rm{j}}\Omega y} \hspace{0.1cm}{\rm{d}}y.} $$
+
:$$C_y( {\it \Omega  } ) = \int_{ - \infty }^{ + \infty } {f_y }( y )\cdot {\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega\hspace{0.01cm}\hspace{0.05cm}\cdot \hspace{0.05cm} y}} \hspace{0.1cm}{\rm{d}}y  = 0.5\int_1^3 {{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}\Omega\hspace{0.05cm}\cdot \hspace{0.05cm} y} \hspace{0.1cm}{\rm{d}}y.} $$
  
 
*After solving this integral, we get:
 
*After solving this integral, we get:
:$$C_y ( {\it \Omega } ) = \frac{{{\rm{e}}^{{\rm{j}}3{\it \Omega } }  - {\rm{e}}^{{\rm{j}}{\it \Omega } } }}{{2{\rm{j}}{\it \Omega } }} = \frac{{{\rm{e}}^{{\rm{j}}{\it \Omega } }  - {\rm{e}}^{{\rm{ - j}}{\it \Omega }} }}{{2{\rm{j}}{\it \Omega } }} \cdot {\rm{e}}^{{\rm{j2}}{\it \Omega } } .$$
+
:$$C_y ( {\it \Omega } ) = \frac{{{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}3{\it \Omega } }  - {\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega } } }}{{2{\rm{j}}{\it \Omega } }} = \frac{{{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega } }  - {\rm{e}}^{{\rm{ - j}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega }} }}{{2{\rm{j}}{\it \Omega } }} \cdot {\rm{e}}^{{\rm{j\hspace{0.05cm}\cdot \hspace{0.05cm}2}}{\it \Omega } } .$$
  
 
*Using Euler's theorem, this can also be written:
 
*Using Euler's theorem, this can also be written:
:$$C_y ( {\it \Omega }  ) = \frac{{\sin ( {\it \Omega }  )}}{{\it \Omega } } \cdot {\rm{e}}^{{\rm{j2}}{\it \Omega } } .$$
+
:$$C_y ( {\it \Omega }  ) = \frac{{\sin ( {\it \Omega }  )}}{{\it \Omega } } \cdot {\rm{e}}^{{\rm{j2}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega } } = {\rm si} ( {\it \Omega }  ) \cdot {\rm{e}}^{{\rm{j2}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega } }.$$
  
 
*For&nbsp; ${\it \Omega} = \pi/2$&nbsp; we thus obtain a purely real numerical value:
 
*For&nbsp; ${\it \Omega} = \pi/2$&nbsp; we thus obtain a purely real numerical value:
Line 78: Line 76:
  
  
'''(3)'''&nbsp; From the given correspondence it can be read that&nbsp; ${\rm si}(3 {\it \Omega} )$&nbsp; is due to an between&nbsp; $\pm 3$&nbsp; equally distributed random variable and&nbsp; ${\rm si}(2 {\it \Omega} )$&nbsp; gives the transform of a uniform distribution between&nbsp; $\pm 2$&nbsp; .  
+
'''(3)'''&nbsp; From the given correspondence it can be read that&nbsp; ${\rm si}(3 {\it \Omega} )$&nbsp; is due to an between&nbsp; $\pm 3$&nbsp; equally distributed random variable and&nbsp; ${\rm si}(2 {\it \Omega} )$&nbsp; gives the transform of a uniform distribution between&nbsp; $\pm 2$.  
 
+
[[File:P_ID620__Sto_A_3_4_c_neu.png|right|frame|Construction of the trapezoidal PDF]]
*In the characteristic function, these two proportions are multiplicatively linked. Thus, the resulting PDF&nbsp; $f_z(z)$&nbsp; is the convolution of these two rectangular functions:
+
*In the characteristic function, these two proportions are multiplicatively linked.  
[[File:P_ID620__Sto_A_3_4_c_neu.png|center|frame|Construction of trapezoidal PDF]]
+
*Thus,&nbsp; the resulting PDF&nbsp; $f_z(z)$&nbsp; is the convolution of these two rectangular functions.
 
*The three PDF parameters are thus:
 
*The three PDF parameters are thus:
 
:$$\hspace{0.15cm}\underline{a = 1},\quad \hspace{0.15cm}\underline{b = 5},
 
:$$\hspace{0.15cm}\underline{a = 1},\quad \hspace{0.15cm}\underline{b = 5},

Latest revision as of 16:48, 6 January 2022

Rectangular and trapezoidal PDF

Given here are three random variables  $x$,  $y$  and  $z$,  mostly by their respective probability density functions:

  • Nothing else is known about the random variable  $x$:  This can be both a discrete or a continuous random variable,  and can have any PDF  $f_x(x)$  The mean is generally equal  $m_x$.
  • The continuous random variable  $y$  can take values in the range between  $1$  to  $3$  with equal probability.  Mean:  $m_y = 2.$
  • The random variable  $z$  has the following characteristic function:
$$C_z ({\it \Omega} ) = {\mathop{\rm si}\nolimits}( {3{\it \Omega}} ) \cdot {\mathop{\rm si}\nolimits} ( {2{\it \Omega} } ).$$
Besides, the qualitative course of the WDF  $f_z(z)$  according to the blue sketch is assumed to be known.  To be determined are the PDF parameters  $a$,  $b$,  $c$  of this PDF.



Hints:

  • The characteristic function of a between  $\pm a$  uniformly distributed random variable  $z$  is:
$$C ( {\it \Omega} ) = {\mathop{\rm si}\nolimits} ( {a {\it \Omega} } )\quad {\rm{with}}\quad {\mathop{\rm si}\nolimits}( x ) = \sin ( x )/x.$$


Questions

1

Which statements are valid with respect to the characteristic function  $C_x ( {\it \Omega} )$  always – that is, at any PDF ?

$C_x ( {\it \Omega} )$  is the Fourier transform of  $f_x(x)$.
The real part of  $C_x ( {\it \Omega} )$  is an even function in  ${\it \Omega}$.
The imaginary part of  $C_x ( {\it \Omega} )$  is an odd function in  ${\it \Omega}$.
The value at location  ${\it \Omega} = 0$  is always  $C_x ( {\it \Omega} ) = 1$.
For a zero mean random variable  $(m_x = 0)$  ⇒   $C_x ( {\it \Omega} )$  is always real.

2

Calculate the characteristic function  $C_y( {\it \Omega} )$.  What are the real and imaginary parts at  ${\it \Omega} = \pi/2$?

${\rm Re}\big[C_y(\Omega\ =\ \pi/2)\big] \ = \ $

${\rm Im}\big[C_y(\Omega\ =\ \pi/2)\big] \ = \ $

3

Determine the characteristic parameters  $a$,  $b$  and  $c$  of the PDF  $f_z(z)$.

$a \ = \ $

$b \ = \ $

$c \ = \ $


Solutions

(1)  Correct are  the proposed solutions 2, 3 and 4:

  • $C_x( {\it \Omega} )$  is not the Fourier transform to  $f_x(x)$,  but the inverse Fourier transform:
$$C_x( {\it \Omega } ) = \int_{ - \infty }^{ + \infty } {f_x }( x )\cdot {\rm{e}}^{\hspace{0.03cm}{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega\hspace{0.05cm}\cdot \hspace{0.05cm} x}} \hspace{0.1cm}{\rm{d}}x .$$
  • Also for this,  the real part is always even and the imaginary part odd.  For  ${\it \Omega} = 0$  holds:
$$C_x( {\it \Omega} = 0 ) = \int_{ - \infty }^{ + \infty } {f_x }( x ) \hspace{0.1cm}{\rm{d}}x = 1.$$
  • The last alternative does not always hold:   A two-point distributed random variable  $x \in \{-1, +3\}$  with probabilities  $0.75$  and  $0.25$  is zero mean  $(m_x = 0)$,  but has still a complex characteristic function.


(2)  According to the general definition:

$$C_y( {\it \Omega } ) = \int_{ - \infty }^{ + \infty } {f_y }( y )\cdot {\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega\hspace{0.01cm}\hspace{0.05cm}\cdot \hspace{0.05cm} y}} \hspace{0.1cm}{\rm{d}}y = 0.5\int_1^3 {{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}\Omega\hspace{0.05cm}\cdot \hspace{0.05cm} y} \hspace{0.1cm}{\rm{d}}y.} $$
  • After solving this integral, we get:
$$C_y ( {\it \Omega } ) = \frac{{{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}3{\it \Omega } } - {\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega } } }}{{2{\rm{j}}{\it \Omega } }} = = \frac{{{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega } } - {\rm{e}}^{{\rm{ - j}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega }} }}{{2{\rm{j}}{\it \Omega } }} \cdot {\rm{e}}^{{\rm{j\hspace{0.05cm}\cdot \hspace{0.05cm}2}}{\it \Omega } } .$$
  • Using Euler's theorem, this can also be written:
$$C_y ( {\it \Omega } ) = \frac{{\sin ( {\it \Omega } )}}{{\it \Omega } } \cdot {\rm{e}}^{{\rm{j2}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega } } = {\rm si} ( {\it \Omega } ) \cdot {\rm{e}}^{{\rm{j2}}\hspace{0.05cm}\cdot \hspace{0.05cm}{\it \Omega } }.$$
  • For  ${\it \Omega} = \pi/2$  we thus obtain a purely real numerical value:
$${\rm Re}[C_y ({\it \Omega} = {\rm{\pi }}/2 )] = \frac{{\sin( {{\rm{\pi }}/2})}}{{{\rm{\pi }}/2}} \cdot {\rm{e}}^{{\rm{j\pi }}} = - \frac{2}{{\rm{\pi }}} \hspace{0.15cm}\underline{\approx -0.637}, \hspace{0.5cm} {\rm Im}[C_y ({\it \Omega} = {\rm{\pi }}/2 )] \hspace{0.15cm}\underline{= 0} .$$


(3)  From the given correspondence it can be read that  ${\rm si}(3 {\it \Omega} )$  is due to an between  $\pm 3$  equally distributed random variable and  ${\rm si}(2 {\it \Omega} )$  gives the transform of a uniform distribution between  $\pm 2$.

Construction of the trapezoidal PDF
  • In the characteristic function, these two proportions are multiplicatively linked.
  • Thus,  the resulting PDF  $f_z(z)$  is the convolution of these two rectangular functions.
  • The three PDF parameters are thus:
$$\hspace{0.15cm}\underline{a = 1},\quad \hspace{0.15cm}\underline{b = 5}, \quad c = 1/6 \hspace{0.15cm}\underline{= 0.167}.$$