Difference between revisions of "Aufgaben:Exercise 5.1Z: Cosine Square Noise Limitation"
From LNTwww
m (Text replacement - "rms value" to "standard deviation") |
|||
(6 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Stochastic_System_Theory |
}} | }} | ||
− | [[File:P_ID491__Sto_Z_5_1.png|right|frame| | + | [[File:P_ID491__Sto_Z_5_1.png|right|frame|Top: Input PSD ${\it Φ}_x(f)$, Bottom: Frequency response $H(f)$]] |
− | + | We consider bandlimited white noise $x(t)$ with the power-spectral density ${\it Φ}_x(f)$ sketched above. This is constant equal to $N_0/2$ in the range $|f| \le B_x$ and zero outside. | |
− | + | Assume the following numerical values: | |
− | * | + | *Noise power-spectral density $N_0 = 10^{-16} \ \rm V^2/Hz$, |
− | *( | + | *(one-sided) noise bandwidth $B_x = 10 \ \rm kHz$. |
− | + | This signal is applied to the input of a low-pass filter with frequency response | |
− | $$H(f) = \left\{ {\begin{array}{*{20}c} {\cos ^2 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)} & {\rm{f\ddot{u}r}\quad \left| \it f \right| \le \it f_{\rm 0} ,} \\ 0 & {{\rm{ | + | :$$H(f) = \left\{ {\begin{array}{*{20}c} {\cos ^2 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)} & {\rm{f\ddot{u}r}\quad \left| \it f \right| \le \it f_{\rm 0} ,} \\ 0 & {{\rm{else}}} \\\end{array}} \right.$$ |
− | + | *Here, $f_0$ denotes the absolute filter bandwidth, which can vary between $B_x/2$ and $2B_x$. | |
− | + | *The filter output signal is denoted by $y(t)$. | |
− | + | Notes: | |
− | + | *The exercise belongs to the chapter [[Theory_of_Stochastic_Signals/Stochastic_System_Theory|Stochastic System Theory]]. | |
− | + | *Reference is also made to the chapters [[Theory_of_Stochastic_Signals/Gaußverteilte_Zufallsgrößen|Gaussian Distributed Random Variables]] and [[Theory_of_Stochastic_Signals/Power-Spectral_Density|Power-Spectral Density]]. | |
− | |||
− | |||
− | * | ||
− | * | ||
− | * | + | *Use the following equations if necessary: |
:$${\rm Q}(x) \approx \frac{1}{{\sqrt {2{\rm{\pi }}} \cdot x}} \cdot {\rm{e}}^{ - x^2 /2} \hspace{0.15cm}( | :$${\rm Q}(x) \approx \frac{1}{{\sqrt {2{\rm{\pi }}} \cdot x}} \cdot {\rm{e}}^{ - x^2 /2} \hspace{0.15cm}( | ||
− | \text{ | + | \text{for large }x),$$ |
:$$\int {\rm{cos}}^{\rm{2}}( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{1}{2} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ),$$ | :$$\int {\rm{cos}}^{\rm{2}}( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{1}{2} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ),$$ | ||
:$$\int {\cos ^4 } ( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{3}{8} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ) + \frac{1}{32a} \cdot \sin ( {4ax} ).$$ | :$$\int {\cos ^4 } ( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{3}{8} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ) + \frac{1}{32a} \cdot \sin ( {4ax} ).$$ | ||
Line 39: | Line 35: | ||
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What is the standard deviation of the input signal $x(t)$? |
|type="{}"} | |type="{}"} | ||
$\sigma_x \ = \ $ { 1 3% } $\ \rm µ V$ | $\sigma_x \ = \ $ { 1 3% } $\ \rm µ V$ | ||
− | { | + | {What is the probability that an instantaneous voltage value of the input signal is greater than $5 \hspace{0.05cm} \rm µ V$ in magnitude? |
|type="{}"} | |type="{}"} | ||
${\rm Pr}(|x(t)| > 5 \hspace{0.05cm} \rm µ V) \ = \ $ { 0.6 3% } $\ \cdot 10^{-6}$ | ${\rm Pr}(|x(t)| > 5 \hspace{0.05cm} \rm µ V) \ = \ $ { 0.6 3% } $\ \cdot 10^{-6}$ | ||
− | { | + | {What is the mean value (DC component) of the output signal $y(t)$? |
|type="{}"} | |type="{}"} | ||
$m_y\ \ = \ $ { 0. } $\ \rm µ V$ | $m_y\ \ = \ $ { 0. } $\ \rm µ V$ | ||
− | { | + | {Calculate the standard deviation of the output signal $y(t)$ for $f_0 = B_x/2$. |
|type="{}"} | |type="{}"} | ||
$\sigma_y \ = \ $ { 0.433 3% } $\ \rm µ V$ | $\sigma_y \ = \ $ { 0.433 3% } $\ \rm µ V$ | ||
− | { | + | {Calculate the standard deviation of $y(t)$ under the condition $f_0 = 2 \cdot B_x$. |
|type="{}"} | |type="{}"} | ||
$\sigma_y \ = \ $ { 0.731 3% } $\ \rm µ V$ | $\sigma_y \ = \ $ { 0.731 3% } $\ \rm µ V$ | ||
− | { | + | {Let $f_0 = 2 \cdot B_x$ be further valid. What is the probability that the output signal $y(t)$ is greater than $5 \hspace{0.05cm} \rm µ V$ in magnitude? |
|type="{}"} | |type="{}"} | ||
${\rm Pr}(|y(t)| > 5 \hspace{0.05cm} \rm µ V) \ = \ $ { 8 3% } $\ \cdot 10^{-12}$ | ${\rm Pr}(|y(t)| > 5 \hspace{0.05cm} \rm µ V) \ = \ $ { 8 3% } $\ \cdot 10^{-12}$ | ||
Line 75: | Line 71: | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' The variance of the signal $x(t)$ is |
:$$\sigma _x ^2 = \frac{N_0 }{2} \cdot 2B_x = N_0 \cdot B_x = 10^{ - 12} \;{\rm{V}}^2 | :$$\sigma _x ^2 = \frac{N_0 }{2} \cdot 2B_x = N_0 \cdot B_x = 10^{ - 12} \;{\rm{V}}^2 | ||
\hspace{0.3cm}\Rightarrow\hspace{0.3cm} | \hspace{0.3cm}\Rightarrow\hspace{0.3cm} | ||
Line 83: | Line 79: | ||
− | '''(2)''' | + | '''(2)''' According to the chapter "Gaussian Distributed Random Variables" and the approximation given here $($for large $x)$, we obtain: |
:$$\Pr \left( {\left| {x(t)} \right| > 5\;{\rm{µ V}}} \right) = 2 \cdot {\rm Q}(5) = \frac{2}{{\sqrt {2{\rm{\pi }}} \cdot 5}} \cdot {\rm{e}}^{ - 12.5}\hspace{0.15cm} \underline{ \approx 0.6 \cdot 10^{ - 6}} .$$ | :$$\Pr \left( {\left| {x(t)} \right| > 5\;{\rm{µ V}}} \right) = 2 \cdot {\rm Q}(5) = \frac{2}{{\sqrt {2{\rm{\pi }}} \cdot 5}} \cdot {\rm{e}}^{ - 12.5}\hspace{0.15cm} \underline{ \approx 0.6 \cdot 10^{ - 6}} .$$ | ||
− | '''(3)''' | + | '''(3)''' The input signal $x(t)$ is mean-free ⇒ $m_x = 0$. |
− | * | + | *Otherwise ${\it Φ}_x(f)$ would still have to contain a Dirac delta function at $f= 0$. |
− | * | + | *The mean is not changed by the linear filter ⇒ $m_y\hspace{0.05cm}\underline{ = 0}$. |
− | '''(4)''' | + | '''(4)''' For the power-spectral density of the output signal generally applies: |
:$${\it \Phi}_y (f) = {N_0 }/{2} \cdot \left| {H( f )} \right|^2 .$$ | :$${\it \Phi}_y (f) = {N_0 }/{2} \cdot \left| {H( f )} \right|^2 .$$ | ||
− | * | + | *Thus, the variance $\sigma _y^2$ can be calculated. Taking advantage of the symmetry, we obtain: |
:$$\sigma _y ^2 = {N_0 }/{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H( f )} \right|^2 \hspace{0.1cm}{\rm{d}}f} = N_0 \cdot \int_0^{f_0 } {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f .$$ | :$$\sigma _y ^2 = {N_0 }/{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H( f )} \right|^2 \hspace{0.1cm}{\rm{d}}f} = N_0 \cdot \int_0^{f_0 } {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f .$$ | ||
− | * | + | *The definite integral is given. For each of the three solution terms, the value of the lower bound is zero. It follows that: |
:$$\sigma _y ^2 = {N_0}/{2} \cdot \left( {\frac{3}{8} \cdot f_0 + \frac{f_0 }{{2{\rm{\pi }}}} \cdot \sin ( {\rm{\pi }} ) + \frac{f_0 }{{16{\rm{\pi }}}} \cdot \sin ( {{\rm{2\pi }}} )} \right) = \frac{3}{8} \cdot N_0 \cdot f_0 $$ | :$$\sigma _y ^2 = {N_0}/{2} \cdot \left( {\frac{3}{8} \cdot f_0 + \frac{f_0 }{{2{\rm{\pi }}}} \cdot \sin ( {\rm{\pi }} ) + \frac{f_0 }{{16{\rm{\pi }}}} \cdot \sin ( {{\rm{2\pi }}} )} \right) = \frac{3}{8} \cdot N_0 \cdot f_0 $$ | ||
:$$\Rightarrow \hspace{0.3cm} f_0 = B_x/2\text{:}\hspace{0.2cm}\sigma _y ^2 = \frac{3}{16} \cdot N_0 \cdot B_x = \frac{3}{16} \cdot \sigma _x ^2 = 0.1875 \cdot 10^{ - 12} \;{\rm{V}}^2 \hspace{0.2cm}\Rightarrow \hspace{0.2cm}\sigma _y \hspace{0.15cm}\underline{ = 0.433\;{\rm{µ V}}}{\rm{.}}$$ | :$$\Rightarrow \hspace{0.3cm} f_0 = B_x/2\text{:}\hspace{0.2cm}\sigma _y ^2 = \frac{3}{16} \cdot N_0 \cdot B_x = \frac{3}{16} \cdot \sigma _x ^2 = 0.1875 \cdot 10^{ - 12} \;{\rm{V}}^2 \hspace{0.2cm}\Rightarrow \hspace{0.2cm}\sigma _y \hspace{0.15cm}\underline{ = 0.433\;{\rm{µ V}}}{\rm{.}}$$ | ||
Line 105: | Line 101: | ||
− | '''(5)''' | + | '''(5)''' Now the input PSD for $|f| > B_x$ has no components. |
− | * | + | *Therefore holds: |
:$$\sigma _y ^2 = N_0\cdot \int_0^{B_x } {\cos ^4 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f = N_0 \cdot \int_0^{f_0 /2} {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f.}$$ | :$$\sigma _y ^2 = N_0\cdot \int_0^{B_x } {\cos ^4 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f = N_0 \cdot \int_0^{f_0 /2} {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f.}$$ | ||
− | * | + | *The numerical evaluation yields for this: |
− | :$$\sigma _y ^2 = N_0 \left( {\frac{3}{8} \cdot B_x + \frac{B_x }{{2{\rm{\pi }}}} \cdot \sin ( {\frac{{\rm{\pi }}}{2}} ) + \frac{B_x }{{{\rm{16\pi }}}} \cdot \sin ( {\rm{\pi }} )} \right) = N_0 \cdot B_x \left( {\frac{3}{8} + \frac{1}{{2{\rm{\pi }}}}} \right) = 0.534\cdot \sigma _x ^2 \hspace{0. | + | :$$\sigma _y ^2 = N_0 \left( {\frac{3}{8} \cdot B_x + \frac{B_x }{{2{\rm{\pi }}}} \cdot \sin ( {\frac{{\rm{\pi }}}{2}} ) + \frac{B_x }{{{\rm{16\pi }}}} \cdot \sin ( {\rm{\pi }} )} \right) = N_0 \cdot B_x \left( {\frac{3}{8} + \frac{1}{{2{\rm{\pi }}}}} \right) = 0.534\cdot \sigma _x ^2 \hspace{0.6cm}\Rightarrow \hspace{0.6cm}\sigma _y \hspace{0.15cm}\underline{ = 0.731\;{\rm{µ V}}}{\rm{.}}$$ |
− | '''(6)''' | + | '''(6)''' Analogous to the solution of subtask '''(2)''' holds: |
:$$\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{µ V}}} \right) = 2 \cdot {\rm Q}\left( {\frac{{5\;{\rm{µ V}}}}{{0.731\;{\rm{µ V}}}}} \right) = 2 \cdot {\rm Q}( {6.84} ).$$ | :$$\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{µ V}}} \right) = 2 \cdot {\rm Q}\left( {\frac{{5\;{\rm{µ V}}}}{{0.731\;{\rm{µ V}}}}} \right) = 2 \cdot {\rm Q}( {6.84} ).$$ | ||
− | * | + | *With the given approximation, this probability has the following value: |
:$$\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{µ V}}} \right) \hspace{0.15cm} \underline{ \approx 8 \cdot 10^{ - 12}}.$$ | :$$\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{µ V}}} \right) \hspace{0.15cm} \underline{ \approx 8 \cdot 10^{ - 12}}.$$ | ||
{{ML-Fuß}} | {{ML-Fuß}} |
Latest revision as of 12:12, 17 February 2022
We consider bandlimited white noise $x(t)$ with the power-spectral density ${\it Φ}_x(f)$ sketched above. This is constant equal to $N_0/2$ in the range $|f| \le B_x$ and zero outside.
Assume the following numerical values:
- Noise power-spectral density $N_0 = 10^{-16} \ \rm V^2/Hz$,
- (one-sided) noise bandwidth $B_x = 10 \ \rm kHz$.
This signal is applied to the input of a low-pass filter with frequency response
- $$H(f) = \left\{ {\begin{array}{*{20}c} {\cos ^2 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)} & {\rm{f\ddot{u}r}\quad \left| \it f \right| \le \it f_{\rm 0} ,} \\ 0 & {{\rm{else}}} \\\end{array}} \right.$$
- Here, $f_0$ denotes the absolute filter bandwidth, which can vary between $B_x/2$ and $2B_x$.
- The filter output signal is denoted by $y(t)$.
Notes:
- The exercise belongs to the chapter Stochastic System Theory.
- Reference is also made to the chapters Gaussian Distributed Random Variables and Power-Spectral Density.
- Use the following equations if necessary:
- $${\rm Q}(x) \approx \frac{1}{{\sqrt {2{\rm{\pi }}} \cdot x}} \cdot {\rm{e}}^{ - x^2 /2} \hspace{0.15cm}( \text{for large }x),$$
- $$\int {\rm{cos}}^{\rm{2}}( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{1}{2} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ),$$
- $$\int {\cos ^4 } ( {ax} )\hspace{0.1cm}{\rm{d}}x = \frac{3}{8} \cdot x + \frac{1}{4a} \cdot \sin ( {2ax} ) + \frac{1}{32a} \cdot \sin ( {4ax} ).$$
Questions
Solution
(1) The variance of the signal $x(t)$ is
- $$\sigma _x ^2 = \frac{N_0 }{2} \cdot 2B_x = N_0 \cdot B_x = 10^{ - 12} \;{\rm{V}}^2 \hspace{0.3cm}\Rightarrow\hspace{0.3cm} \sigma _x \hspace{0.15cm}\underline{ = 1\,\,{\rm µ}{\rm V}}.$$
(2) According to the chapter "Gaussian Distributed Random Variables" and the approximation given here $($for large $x)$, we obtain:
- $$\Pr \left( {\left| {x(t)} \right| > 5\;{\rm{µ V}}} \right) = 2 \cdot {\rm Q}(5) = \frac{2}{{\sqrt {2{\rm{\pi }}} \cdot 5}} \cdot {\rm{e}}^{ - 12.5}\hspace{0.15cm} \underline{ \approx 0.6 \cdot 10^{ - 6}} .$$
(3) The input signal $x(t)$ is mean-free ⇒ $m_x = 0$.
- Otherwise ${\it Φ}_x(f)$ would still have to contain a Dirac delta function at $f= 0$.
- The mean is not changed by the linear filter ⇒ $m_y\hspace{0.05cm}\underline{ = 0}$.
(4) For the power-spectral density of the output signal generally applies:
- $${\it \Phi}_y (f) = {N_0 }/{2} \cdot \left| {H( f )} \right|^2 .$$
- Thus, the variance $\sigma _y^2$ can be calculated. Taking advantage of the symmetry, we obtain:
- $$\sigma _y ^2 = {N_0 }/{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H( f )} \right|^2 \hspace{0.1cm}{\rm{d}}f} = N_0 \cdot \int_0^{f_0 } {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f .$$
- The definite integral is given. For each of the three solution terms, the value of the lower bound is zero. It follows that:
- $$\sigma _y ^2 = {N_0}/{2} \cdot \left( {\frac{3}{8} \cdot f_0 + \frac{f_0 }{{2{\rm{\pi }}}} \cdot \sin ( {\rm{\pi }} ) + \frac{f_0 }{{16{\rm{\pi }}}} \cdot \sin ( {{\rm{2\pi }}} )} \right) = \frac{3}{8} \cdot N_0 \cdot f_0 $$
- $$\Rightarrow \hspace{0.3cm} f_0 = B_x/2\text{:}\hspace{0.2cm}\sigma _y ^2 = \frac{3}{16} \cdot N_0 \cdot B_x = \frac{3}{16} \cdot \sigma _x ^2 = 0.1875 \cdot 10^{ - 12} \;{\rm{V}}^2 \hspace{0.2cm}\Rightarrow \hspace{0.2cm}\sigma _y \hspace{0.15cm}\underline{ = 0.433\;{\rm{µ V}}}{\rm{.}}$$
(5) Now the input PSD for $|f| > B_x$ has no components.
- Therefore holds:
- $$\sigma _y ^2 = N_0\cdot \int_0^{B_x } {\cos ^4 \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f = N_0 \cdot \int_0^{f_0 /2} {\cos ^4 } \left( {\frac{{{\rm{\pi }}f}}{2f_0 }} \right)\hspace{0.1cm}{\rm{d}}f.}$$
- The numerical evaluation yields for this:
- $$\sigma _y ^2 = N_0 \left( {\frac{3}{8} \cdot B_x + \frac{B_x }{{2{\rm{\pi }}}} \cdot \sin ( {\frac{{\rm{\pi }}}{2}} ) + \frac{B_x }{{{\rm{16\pi }}}} \cdot \sin ( {\rm{\pi }} )} \right) = N_0 \cdot B_x \left( {\frac{3}{8} + \frac{1}{{2{\rm{\pi }}}}} \right) = 0.534\cdot \sigma _x ^2 \hspace{0.6cm}\Rightarrow \hspace{0.6cm}\sigma _y \hspace{0.15cm}\underline{ = 0.731\;{\rm{µ V}}}{\rm{.}}$$
(6) Analogous to the solution of subtask (2) holds:
- $$\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{µ V}}} \right) = 2 \cdot {\rm Q}\left( {\frac{{5\;{\rm{µ V}}}}{{0.731\;{\rm{µ V}}}}} \right) = 2 \cdot {\rm Q}( {6.84} ).$$
- With the given approximation, this probability has the following value:
- $$\Pr \left( {\left| {y\left( t \right)} \right| > 5\;{\rm{µ V}}} \right) \hspace{0.15cm} \underline{ \approx 8 \cdot 10^{ - 12}}.$$