Difference between revisions of "Aufgaben:Exercise 3.9: Characteristic Curve for Cosine PDF"

From LNTwww
 
(3 intermediate revisions by 2 users not shown)
Line 4: Line 4:
  
 
[[File:P_ID136__Sto_A_3_9.png|right|frame|Rectangular and cosine PDF]]
 
[[File:P_ID136__Sto_A_3_9.png|right|frame|Rectangular and cosine PDF]]
We are looking for a continuous, monotonically increasing nonlinear characteristic  $y =g(x)$, which generates a new random variable  with "cosine" PDF from a between  $-1$  and  $+1$  uniformly distributed random variable  $x$ :
+
We are looking for a continuous,  monotonically increasing nonlinear characteristic  $y =g(x)$,  which generates a new random variable  with  "cosine"  PDF from a between  $-1$  and  $+1$  uniformly distributed random variable  $x$:
 
:$$f_y(y)=A\cdot\cos({\pi}/{2}\cdot y).$$
 
:$$f_y(y)=A\cdot\cos({\pi}/{2}\cdot y).$$
  
*The random variable  $y$  can also only take values between  $-1$  and  $+1$ .  
+
*The random variable  $y$  can also only take values between  $-1$  and  $+1$.  
*The two density functions  $f_x(x)$  and  $f_y(y)$  are sketched opposite.
+
*The two density functions  $f_x(x)$  and  $f_y(y)$  are sketched on the right.
 
 
 
 
 
 
  
  
Line 17: Line 14:
  
 
Hints:  
 
Hints:  
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables/Exponentially Distributed Random Variables]].
+
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables|Exponentially Distributed Random Variables]].
 
*In particular, reference is made to the page  [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables#Transformation_of_random_variables|Transformation of random variables]].
 
*In particular, reference is made to the page  [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables#Transformation_of_random_variables|Transformation of random variables]].
 
   
 
   
Line 28: Line 25:
 
{Which of the following statements are true?
 
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
+ Outside the range  $-1 \le x \le +1$  can be  $g(x)$  arbitrary.
+
+ Outside the range  $-1 \le x \le +1$  ⇒   $g(x)$  can be arbitrary.
 
- The characteristic curve must be symmetrical about  $x= 0$  :   $g(-x) = g(x)$.
 
- The characteristic curve must be symmetrical about  $x= 0$  :   $g(-x) = g(x)$.
 
+ The random variable  $y$  has a smaller variance than  $x$.
 
+ The random variable  $y$  has a smaller variance than  $x$.
  
  
{Calculate the  $f_y(y)$–value at  $y = 0$:   $A = f_y(0)$.
+
{Calculate the  $f_y(y)$ value at  $y = 0$:   $A = f_y(0)$.
 
|type="{}"}
 
|type="{}"}
 
$A \ = \ $ { 0.785 3% }
 
$A \ = \ $ { 0.785 3% }
  
  
{Determine the slope  $h\hspace{0.05cm}'(y)$  of the inverse function  $x = h(y)$, where for  $|y| \le 1$  always  $h\hspace{0.05cm}'(y) > 0$  should hold?  What slope holds for  $y = 0$ ?
+
{Determine the slope  $h\hspace{0.05cm}'(y)$  of the inverse function  $x = h(y)$,  where for  $|y| \le 1$  always  $h\hspace{0.05cm}'(y) > 0$  should hold?  What slope holds for  $y = 0$ ?
 
|type="{}"}
 
|type="{}"}
 
$h'(y = 0) \ = \ $ { 1.571 3% }
 
$h'(y = 0) \ = \ $ { 1.571 3% }
Line 48: Line 45:
  
  
{Determine the function progression  $y = g(x)$  of the characteristic we are looking for.  What is the function value at the point  $x = 1$ ?
+
{Determine the function  $y = g(x)$  of the characteristic we are looking for.  What is the function value at the point  $x = 1$ ?
 
|type="{}"}
 
|type="{}"}
 
$g(x = 1) \ = \ $ { 1 3% }
 
$g(x = 1) \ = \ $ { 1 3% }
Line 59: Line 56:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp; Correct are <u>statements 1 and 3</u>:  
+
'''(1)'''&nbsp; Correct are the&nbsp; <u>statements 1 and 3</u>:  
*Since&nbsp; $x$&nbsp; can only take values between&nbsp; $\pm 1$&nbsp;, the course of the characteristic curve outside of this range is irrelevant for the random variable&nbsp; $y$&nbsp;.
+
*Since&nbsp; $x$&nbsp; can only take values between&nbsp; $\pm 1$,&nbsp; the course of the characteristic curve outside of this range is irrelevant for the random variable&nbsp; $y$.
 
*The condition&nbsp; $g(-x) = g(x)$&nbsp; does not have to be met.&nbsp; There are any number of characteristic curves that can generate the desired PDF.  
 
*The condition&nbsp; $g(-x) = g(x)$&nbsp; does not have to be met.&nbsp; There are any number of characteristic curves that can generate the desired PDF.  
*For example, the characteristic curve calculated in point&nbsp; '''(5)'''&nbsp; is point symmetric: &nbsp; $g(-x) = -g(x)$.
+
*For example,&nbsp; the characteristic curve calculated in point&nbsp; '''(5)'''&nbsp; is point-symmetric: &nbsp; $g(-x) = -g(x)$.
*The graphical representations of the two density functions already show that&nbsp; $\sigma_y^2 < \sigma_x^2$&nbsp; is.
+
*The graphical representations of the two density functions already show that&nbsp; $\sigma_y^2 < \sigma_x^2$.
  
  
Line 72: Line 69:
  
  
'''(3)'''&nbsp; The transformation formula can be transformed as follows:
+
'''(3)'''&nbsp; The transformation formula can be described as follows:
 
:$$f_y(y)=\frac{f_x(x)}{| g'(x)|}\Big|_{\, x=h(y)}=f_x(x)\cdot |h'(y)| \Big|_{\, x=h(y)}.$$
 
:$$f_y(y)=\frac{f_x(x)}{| g'(x)|}\Big|_{\, x=h(y)}=f_x(x)\cdot |h'(y)| \Big|_{\, x=h(y)}.$$
  
 
*The inverse function&nbsp; $x = h(y)$&nbsp; of a monotonically increasing characteristic&nbsp; $y = g(x)$&nbsp; also increases monotonically.
 
*The inverse function&nbsp; $x = h(y)$&nbsp; of a monotonically increasing characteristic&nbsp; $y = g(x)$&nbsp; also increases monotonically.
*Therefore the magnitude formation can be omitted and one obtains:
+
*Therefore one does not need to make use of the absolute value and subsequently obtains:
 
:$$h\hspace{0.05cm}'(y)=\frac{f_y(y)}{f_x(x)\Big|_{\, x=h(y)}}={\pi}/{\rm 2}\cdot \cos({\pi}/{2}\cdot y).$$
 
:$$h\hspace{0.05cm}'(y)=\frac{f_y(y)}{f_x(x)\Big|_{\, x=h(y)}}={\pi}/{\rm 2}\cdot \cos({\pi}/{2}\cdot y).$$
  
Line 89: Line 86:
 
:$$h(y) = \sin({\pi}/{2}\cdot y) \hspace{0.5cm} \rightarrow\hspace{0.5cm}
 
:$$h(y) = \sin({\pi}/{2}\cdot y) \hspace{0.5cm} \rightarrow\hspace{0.5cm}
 
h(y = 1) \hspace{0.15cm}\underline{= +1}.$$
 
h(y = 1) \hspace{0.15cm}\underline{= +1}.$$
 
  
  
Line 95: Line 91:
 
:$$y=g(x)={\rm 2}/{\rm \pi}\cdot \rm arcsin({\it x}).$$
 
:$$y=g(x)={\rm 2}/{\rm \pi}\cdot \rm arcsin({\it x}).$$
  
*This characteristic increases monotonically in the range&nbsp; $-1 \le x \le +1$&nbsp; from &nbsp;$y = -1$&nbsp; to &nbsp;$y = +1$&nbsp;.  
+
*This characteristic curve increases monotonically in the range&nbsp; $-1 \le x \le +1$&nbsp; from &nbsp;$y = -1$&nbsp; to &nbsp;$y = +1$&nbsp;.  
 
*So the value we are looking for is&nbsp; $g(x= 1) \hspace{0.15cm}\underline{= +1}$.
 
*So the value we are looking for is&nbsp; $g(x= 1) \hspace{0.15cm}\underline{= +1}$.
  

Latest revision as of 15:27, 2 February 2022

Rectangular and cosine PDF

We are looking for a continuous,  monotonically increasing nonlinear characteristic  $y =g(x)$,  which generates a new random variable  with  "cosine"  PDF from a between  $-1$  and  $+1$  uniformly distributed random variable  $x$:

$$f_y(y)=A\cdot\cos({\pi}/{2}\cdot y).$$
  • The random variable  $y$  can also only take values between  $-1$  and  $+1$.
  • The two density functions  $f_x(x)$  and  $f_y(y)$  are sketched on the right.



Hints:



Question

1

Which of the following statements are true?

Outside the range  $-1 \le x \le +1$  ⇒   $g(x)$  can be arbitrary.
The characteristic curve must be symmetrical about  $x= 0$  :   $g(-x) = g(x)$.
The random variable  $y$  has a smaller variance than  $x$.

2

Calculate the  $f_y(y)$ value at  $y = 0$:   $A = f_y(0)$.

$A \ = \ $

3

Determine the slope  $h\hspace{0.05cm}'(y)$  of the inverse function  $x = h(y)$,  where for  $|y| \le 1$  always  $h\hspace{0.05cm}'(y) > 0$  should hold?  What slope holds for  $y = 0$ ?

$h'(y = 0) \ = \ $

4

Compute with the result from  (3)  the function  $x = h(y)$  under the constraint  $h(0) = 0$.  What value results für  $y = 1$ ?

$h(y=1) \ = \ $

5

Determine the function  $y = g(x)$  of the characteristic we are looking for.  What is the function value at the point  $x = 1$ ?

$g(x = 1) \ = \ $


Solution

(1)  Correct are the  statements 1 and 3:

  • Since  $x$  can only take values between  $\pm 1$,  the course of the characteristic curve outside of this range is irrelevant for the random variable  $y$.
  • The condition  $g(-x) = g(x)$  does not have to be met.  There are any number of characteristic curves that can generate the desired PDF.
  • For example,  the characteristic curve calculated in point  (5)  is point-symmetric:   $g(-x) = -g(x)$.
  • The graphical representations of the two density functions already show that  $\sigma_y^2 < \sigma_x^2$.


(2)  The integral over the PDF must always equal  $1$ . It follows that:

$$\int_{-\rm 1}^{\rm 1}A\cdot \cos({\pi}/{\rm 2}\cdot y)\, {\rm d} y=\frac{A\cdot \rm 4}{\pi}\hspace{0.3cm} \rightarrow\hspace{0.3cm} A=\frac{\pi}{\rm 4} \hspace{0.15cm}\underline{= \rm 0.785}.$$


(3)  The transformation formula can be described as follows:

$$f_y(y)=\frac{f_x(x)}{| g'(x)|}\Big|_{\, x=h(y)}=f_x(x)\cdot |h'(y)| \Big|_{\, x=h(y)}.$$
  • The inverse function  $x = h(y)$  of a monotonically increasing characteristic  $y = g(x)$  also increases monotonically.
  • Therefore one does not need to make use of the absolute value and subsequently obtains:
$$h\hspace{0.05cm}'(y)=\frac{f_y(y)}{f_x(x)\Big|_{\, x=h(y)}}={\pi}/{\rm 2}\cdot \cos({\pi}/{2}\cdot y).$$
  • At the point  $y = 0$  the slope has the value  $h\hspace{0.05cm}'(y= 0)=π/2\hspace{0.15cm}\underline{\approx 1.571}$.


(4)  One obtains by (indefinite) integration:

$$h(y)=\int h\hspace{0.05cm}'(y)\, {\rm d} y + C = \frac{\pi}{2}\cdot \frac{2}{\pi}\cdot \sin(\frac{\pi}{ 2}\cdot y) + C.$$
  • The constraint  $h(y= 0) = 0$  leads to the constant  $C = 0$  and thus to the result:
$$h(y) = \sin({\pi}/{2}\cdot y) \hspace{0.5cm} \rightarrow\hspace{0.5cm} h(y = 1) \hspace{0.15cm}\underline{= +1}.$$


(5)  The inverse function of the function determined in subtask  (4)  is  $x = h(y)$  :

$$y=g(x)={\rm 2}/{\rm \pi}\cdot \rm arcsin({\it x}).$$
  • This characteristic curve increases monotonically in the range  $-1 \le x \le +1$  from  $y = -1$  to  $y = +1$ .
  • So the value we are looking for is  $g(x= 1) \hspace{0.15cm}\underline{= +1}$.