Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.9Z: Sine Transformation"

From LNTwww
 
(8 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID137__Sto_Z_3_9.png|right|frame|Input PDF and characteristic curve]]
+
[[File:P_ID137__Sto_Z_3_9.png|right|frame|Input PDF, characteristic curve]]
In this task, we consider a random variable  x  with  $\sin^2$& shaped PDF in the range between  x=0  and  x=2:
+
In this task,  we consider a random variable  x  with sine-square shaped  $\rm PDF$  in the range between  x=0  and  x=2:
:$$f_x(x)= \sin^2({\rm\pi}/{\rm 2}\cdot x) \hspace{1cm}\rm for\hspace{0.15cm}{\rm 0\le \it x \le \rm 2} .$$
+
:$$f_x(x)= \sin^2({\rm\pi}/{\rm 2}\cdot x) \hspace{1cm}\rm for\hspace{0.25cm}{\rm 0\le \it x \le \rm 2} .$$
  
Outside of this, the PDF is identically zero.
+
Outside of this,  the PDF is identically zero.
  
The mean and rms of this random variable  x  have already been determined in the  [[Aufgaben:Exercise_3.3:_Moments_for_cos²-PDF|Exercise 3.3]]  :
+
The mean and the standard deviation of this random variable  x  have already been determined in the  [[Aufgaben:Exercise_3.3:_Moments_for_cos²-PDF|Exercise 3.3]]:
 
:mx=1,σx=0.361.
 
:mx=1,σx=0.361.
  
Line 15: Line 15:
 
:y=g(x)=sin(π/2x).
 
:y=g(x)=sin(π/2x).
  
The figure shows in each case in the range  0x2:
+
The figure shows in each case in the range   0x2:
 
*above the PDF  fx(x),
 
*above the PDF  fx(x),
 
*below the nonlinear characteristic  y=g(x).
 
*below the nonlinear characteristic  y=g(x).
Line 28: Line 28:
 
Hints:  
 
Hints:  
 
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables|Exponentially Distributed Random Variables]].
 
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables|Exponentially Distributed Random Variables]].
*In particular, reference is made to the page  [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables#Transformation_of_random_variables|Transformation of random variables]]  and the chapter  [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|Expected Values and Moments]].
+
*In particular, reference is made to the section  [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables#Transformation_of_random_variables|"Transformation of random variables"]]  and the chapter  [[Theory_of_Stochastic_Signals/Expected_Values_and_Moments|"Expected Values and Moments"]].
 
   
 
   
 
*Given are the two indefinite integrals:
 
*Given are the two indefinite integrals:
Line 40: Line 40:
 
{Which of the following statements are true?
 
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- y  is limited to the value range  0y1  .
+
- y  is limited to the range  0y1  .
+ y&nbsp; is limited to the value range&nbsp; 0<y1&nbsp;.
+
+ y&nbsp; is limited to the range&nbsp; 0<y1&nbsp;.
 
+ The mean&nbsp; my&nbsp; is less than the mean&nbsp; mx.
 
+ The mean&nbsp; my&nbsp; is less than the mean&nbsp; mx.
  
Line 50: Line 50:
  
  
{Calculate the root mean square of&nbsp; y&nbsp; and the rms&nbsp;$\sigma_y$ .
+
{Calculate the the&nbsp; standard deviation of  the random variable&nbsp; $y$.
 
|type="{}"}
 
|type="{}"}
 
σy =  { 0.172 3% }
 
σy =  { 0.172 3% }
  
  
{Calculate the PDF fy(y).&nbsp; Note the symmetry properties.&nbsp; What PDF&ndash;value results for&nbsp; y=0.6&nbsp;?
+
{Calculate the PDF fy(y).&nbsp; Note the symmetry properties.&nbsp; What PDF value results for&nbsp; y=0.6?
 
|type="{}"}
 
|type="{}"}
 
fy(y=0.6) =  { 0.573 3% }
 
fy(y=0.6) =  { 0.573 3% }
  
  
{What is the PDF value for&nbsp; y=1?&nbsp; Interpret the result.&nbsp; What is the probability that&nbsp; y&nbsp; is exactly equal&nbsp; 1&nbsp;?
+
{What is the PDF value for&nbsp; y=1?&nbsp; Interpret the result.&nbsp; What is the probability that&nbsp; y&nbsp; is exactly equal&nbsp; 1?
 
|type="{}"}
 
|type="{}"}
 
Pr(y=1) =  { 0. }
 
Pr(y=1) =  { 0. }
Line 69: Line 69:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Correct are <u>the second and the third suggested solutions</u>:
+
'''(1)'''&nbsp; Correct are&nbsp; <u>the second and the third suggested solutions</u>:
 
*Because of the range of values of&nbsp; x&nbsp; and the given characteristic curve,&nbsp; y&nbsp; cannot take values smaller than&nbsp; 0&nbsp; or larger than&nbsp; 1&nbsp; respectively.  
 
*Because of the range of values of&nbsp; x&nbsp; and the given characteristic curve,&nbsp; y&nbsp; cannot take values smaller than&nbsp; 0&nbsp; or larger than&nbsp; 1&nbsp; respectively.  
*The value&nbsp; y=0&nbsp; cannot occur either, however, since neither&nbsp; x=0&nbsp; nor&nbsp; x=2&nbsp; are possible.  
+
*The value&nbsp; y=0&nbsp; cannot occur either,&nbsp; however,&nbsp; since neither&nbsp; x=0&nbsp; nor&nbsp; x=2&nbsp; are possible.  
*With these properties, the result is surely &nbsp;my<1, i.e., a smaller value than &nbsp;mx=1&nbsp; (see specification).  
+
*With these properties,&nbsp; the result is surely &nbsp;my<1, i.e., a smaller value than &nbsp;mx=1&nbsp; (see specification).  
  
  
  
'''(2)'''&nbsp; To solve this task, one could, for example, first determine the PDF&nbsp; fy(y)&nbsp; and calculate &nbsp;my&nbsp; from it in the usual way.  
+
'''(2)'''&nbsp; To solve this task,&nbsp; one could,&nbsp; for example,&nbsp; first determine the PDF&nbsp; fy(y)&nbsp; and calculate &nbsp;my&nbsp; from it in the usual way.  
 
*The direct way leads to the same result:
 
*The direct way leads to the same result:
 
:my=E[y]=E[g(x)]=+g(x)fx(x)dx.
 
:my=E[y]=E[g(x)]=+g(x)fx(x)dx.
Line 89: Line 89:
  
 
*This leads to the result:
 
*This leads to the result:
:$$ m_{ 2 y}=\int_{\rm 0}^{\rm 2}\hspace{-0. 15cm}\sin^{\rm 4}({\rm \pi}/{\rm 2}\cdot x)\, {\rm d} x= \frac{\rm 3}{\rm 8}\cdot x-\frac{\rm 1}{\rm 2\cdot\pi}\cdot \sin(\rm \pi\cdot{\it x})+\frac{\rm 1}{\rm 16\cdot\pi}\cdot \sin(\rm 2 \pi\cdot {\it x})\Big|_{\rm 0}^{\rm 2} \hspace{0.15cm}{= \rm  
+
:$$ m_{ 2 y}=\int_{\rm 0}^{\rm 2}\hspace{-0.15cm}\sin^{\rm 4}({\rm \pi}/{\rm 2}\cdot x)\,{\rm d} x= \frac{\rm 3}{\rm 8}\cdot x-\frac{\rm 1}{\rm 2\cdot\pi}\cdot \sin(\rm \pi\cdot{\it x})+\frac{\rm 1}{\rm 16\cdot\pi}\cdot \sin(\rm 2 \pi\cdot {\it x})\Big|_{\rm 0}^{\rm 2} \hspace{0.15cm}{= \rm  
 
0.75}.$$
 
0.75}.$$
  
*With the result from&nbsp; '''(2)'''&nbsp; it thus follows for the rms:
+
*With the result from&nbsp; '''(2)'''&nbsp; it thus follows for the standard deviation:
 
:σy=34(83π)20.172_.
 
:σy=34(83π)20.172_.
  
  
  
'''(4)'''&nbsp; Due to the symmetry of PDF&nbsp; fx(x)&nbsp; and characteristic curve&nbsp; y=g(x)&nbsp; um&nbsp; x=1&nbsp; the two domains yield.  
+
'''(4)'''&nbsp; Due to the symmetry of the PDF&nbsp; fx(x)&nbsp; and the characteristic curve&nbsp; y=g(x)&nbsp; um&nbsp; x=1&nbsp; the two domains yield.  
 
*0x1&nbsp; and  
 
*0x1&nbsp; and  
 
*1x2  
 
*1x2  
Line 103: Line 103:
  
 
each give the same contribution for fy(y).  
 
each give the same contribution for fy(y).  
*In the first domain, the derivative of the characteristic curve is positive:&nbsp; g(x)=π/2cos(π/2x).
+
*In the first domain,&nbsp; the derivative of the characteristic curve is positive:&nbsp; g(x)=π/2cos(π/2x).
  
 
*The inverse function is:&nbsp; x=h(y)=2/πarcsin(y).
 
*The inverse function is:&nbsp; x=h(y)=2/πarcsin(y).
  
*Taking into account the second contribution by the factor&nbsp; 2&nbsp; we get&auml;r the searched PDF in the range&nbsp; 0y1 ):
+
*Taking into account the second contribution by the factor&nbsp; 2&nbsp; we get the searched PDF in the range&nbsp; 0y1:
 
:fy(y)=2sin2(π/2x)π/2cos(π/2x)|x=2/πarcsin(y).
 
:fy(y)=2sin2(π/2x)π/2cos(π/2x)|x=2/πarcsin(y).
[[File:P_ID138__Sto_Z_3_9_e_new.png|right|frame|Sought PDF]]
+
[[File:P_ID138__Sto_Z_3_9_e_neu.png|right|frame|PDF after transformation]]
*outside $f_y(y) is \equiv 0$. This leads to the intermediate result
+
*Outside of this range:&nbsp; fy(y)0.&nbsp; This leads to the intermediate result
 
:fy(y)=4πsin2(arcsin(y))1sin2(arcsin(y)).
 
:fy(y)=4πsin2(arcsin(y))1sin2(arcsin(y)).
 
 
*And because of&nbsp; sin(arcsin(y))=y:
 
*And because of&nbsp; sin(arcsin(y))=y:
:$$f_y(y)=\frac{ 4}{\pi}\cdot \frac{ y^{2}}{\sqrt{1- y^{\rm 2}}.$$
+
:$$f_y(y)=\frac{ 4}{\pi}\cdot \frac{ y^{2}}{\sqrt{1- y^{\rm 2}}}.$$
  
 
*At the point&nbsp; y=0.6&nbsp; one obtains the value&nbsp; fy(y=0.6)=0.573_.  
 
*At the point&nbsp; y=0.6&nbsp; one obtains the value&nbsp; fy(y=0.6)=0.573_.  
*On the right, this PDF&nbsp; fy(y)&nbsp; is shown graphically.  
+
*On the right,&nbsp; this PDF&nbsp; fy(y)&nbsp; is shown graphically.  
  
  
  
  
'''(5)'''&nbsp; The PDF is infinitely large at the point&nbsp; y=1&nbsp;.  
+
'''(5)'''&nbsp; The PDF is infinitely large at the point&nbsp; y=1.  
 
*This is due to the fact that at this point the derivative&nbsp; g(x)&nbsp; of the characteristic curve runs horizontally.
 
*This is due to the fact that at this point the derivative&nbsp; g(x)&nbsp; of the characteristic curve runs horizontally.
* However, since&nbsp; y&nbsp; is a continuous random gr&ouml;&szlig;e, nevertheless&nbsp; Pr(y=1)=0_ holds.  
+
* However,&nbsp; since&nbsp; y&nbsp; is a continuous random quantity,&nbsp; nevertheless&nbsp; Pr(y=1)=0_&nbsp; holds.  
  
  
 
This means:  
 
This means:  
*An infinity point in the PDF is not identical to a Dirac function.
+
*An infinity point in the PDF is not identical to a Dirac delta function.
*Or more casually expressed: &nbsp; An infinity point in the PDF is "less" than a Dirac function.
+
*Or more casually expressed: &nbsp; An infinity point in the PDF is&nbsp; "less"&nbsp; than a Dirac delta function.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 17:09, 17 February 2022

Input PDF, characteristic curve

In this task,  we consider a random variable  x  with sine-square shaped  PDF  in the range between  x=0  and  x=2:

fx(x)=sin2(π/2x)for0x2.

Outside of this,  the PDF is identically zero.

The mean and the standard deviation of this random variable  x  have already been determined in the  Exercise 3.3:

mx=1,σx=0.361.

Another random variable is obtained by transformation using the nonlinear characteristic curve

y=g(x)=sin(π/2x).

The figure shows in each case in the range   0x2:

  • above the PDF  fx(x),
  • below the nonlinear characteristic  y=g(x).





Hints:

  • Given are the two indefinite integrals:
sin3(ax)dx=13acos3(ax)1acos(ax),
sin4(ax)dx=38x14asin(2ax)+132asin(4ax).


Questions

1

Which of the following statements are true?

y  is limited to the range  0y1  .
y  is limited to the range  0<y1 .
The mean  my  is less than the mean  mx.

2

Calculate the mean of the random variable  y.

my = 

3

Calculate the the  standard deviation of the random variable  y.

σy = 

4

Calculate the PDF fy(y).  Note the symmetry properties.  What PDF value results for  y=0.6?

fy(y=0.6) = 

5

What is the PDF value for  y=1?  Interpret the result.  What is the probability that  y  is exactly equal  1?

Pr(y=1) = 


Solution

(1)  Correct are  the second and the third suggested solutions:

  • Because of the range of values of  x  and the given characteristic curve,  y  cannot take values smaller than  0  or larger than  1  respectively.
  • The value  y=0  cannot occur either,  however,  since neither  x=0  nor  x=2  are possible.
  • With these properties,  the result is surely  my<1, i.e., a smaller value than  mx=1  (see specification).


(2)  To solve this task,  one could,  for example,  first determine the PDF  fy(y)  and calculate  my  from it in the usual way.

  • The direct way leads to the same result:
my=E[y]=E[g(x)]=+g(x)fx(x)dx.
  • With the current functions  g(x)  and  fx(x)  we obtain:
my=20sin3(π/2x)dx=23πcos3(π/2x)2πcos(3π/2x)|20=83π=0.849_.


(3)  By analogy with point  (2)  holds:

m2y=E[y2]=E[g2(x)]=+g2(x)fx(x)dx.
  • This leads to the result:
m2y=20sin4(π/2x)dx=38x12πsin(πx)+116πsin(2πx)|20=0.75.
  • With the result from  (2)  it thus follows for the standard deviation:
σy=34(83π)20.172_.


(4)  Due to the symmetry of the PDF  fx(x)  and the characteristic curve  y=g(x)  um  x=1  the two domains yield.

  • 0x1  and
  • 1x2


each give the same contribution for fy(y).

  • In the first domain,  the derivative of the characteristic curve is positive:  g(x)=π/2cos(π/2x).
  • The inverse function is:  x=h(y)=2/πarcsin(y).
  • Taking into account the second contribution by the factor  2  we get the searched PDF in the range  0y1:
fy(y)=2sin2(π/2x)π/2cos(π/2x)|x=2/πarcsin(y).
PDF after transformation
  • Outside of this range:  fy(y)0.  This leads to the intermediate result
fy(y)=4πsin2(arcsin(y))1sin2(arcsin(y)).
  • And because of  sin(arcsin(y))=y:
fy(y)=4πy21y2.
  • At the point  y=0.6  one obtains the value  fy(y=0.6)=0.573_.
  • On the right,  this PDF  fy(y)  is shown graphically.



(5)  The PDF is infinitely large at the point  y=1.

  • This is due to the fact that at this point the derivative  g(x)  of the characteristic curve runs horizontally.
  • However,  since  y  is a continuous random quantity,  nevertheless  Pr(y=1)=0_  holds.


This means:

  • An infinity point in the PDF is not identical to a Dirac delta function.
  • Or more casually expressed:   An infinity point in the PDF is  "less"  than a Dirac delta function.