Difference between revisions of "Aufgaben:Exercise 3.5Z: Antenna Areas"

From LNTwww
m (Text replacement - "rms value" to "standard deviation")
 
(One intermediate revision by one other user not shown)
Line 41: Line 41:
  
  
{What value results for the rms value of the random variable  $\alpha$  in the area  $K$?
+
{What value results for the standard deviation of the random variable  $\alpha$  in the area  $K$?
 
|type="{}"}
 
|type="{}"}
 
$\sigma_\alpha \ = \ $ { 1.814 3% }
 
$\sigma_\alpha \ = \ $ { 1.814 3% }
Line 90: Line 90:
  
  
'''(3)'''  Für the variance or scatter of the angle of incidence  $\alpha$  holds:
+
'''(3)'''  For the variance of the angle of incidence  $\alpha$  holds:
 
:$$\sigma_{\alpha}^{\rm 2}=\int_{-\rm\pi}^{\rm\pi}\hspace{-0.1cm}\it\alpha^{\rm 2}\cdot \it f_{\alpha}(\alpha)\,\,{\rm d} \alpha=\frac{\rm 1}{\rm 2\cdot\it \pi}\cdot \frac{\alpha^{\rm 3}}{\rm 3}\Bigg|_{\rm -\pi}^{\rm\pi}=\frac{\rm 2\cdot\pi^{3}}{\rm 2\cdot\rm \pi\cdot \rm 3}=\frac{\rm \pi^2}{\rm 3} = \rm 3. 29. \hspace{0.5cm}\Rightarrow \hspace{0.5cm}\sigma_{\alpha}\hspace{0.15cm}\underline{=1.814}.$$
 
:$$\sigma_{\alpha}^{\rm 2}=\int_{-\rm\pi}^{\rm\pi}\hspace{-0.1cm}\it\alpha^{\rm 2}\cdot \it f_{\alpha}(\alpha)\,\,{\rm d} \alpha=\frac{\rm 1}{\rm 2\cdot\it \pi}\cdot \frac{\alpha^{\rm 3}}{\rm 3}\Bigg|_{\rm -\pi}^{\rm\pi}=\frac{\rm 2\cdot\pi^{3}}{\rm 2\cdot\rm \pi\cdot \rm 3}=\frac{\rm \pi^2}{\rm 3} = \rm 3. 29. \hspace{0.5cm}\Rightarrow \hspace{0.5cm}\sigma_{\alpha}\hspace{0.15cm}\underline{=1.814}.$$
  
Line 106: Line 106:
  
  
'''(6)'''&nbsp; Correct <u>Suggested solution 3</u>:  
+
'''(6)'''&nbsp; Correct is&nbsp; <u>the suggested solution 3</u>:  
*The probability density function (PDF)&nbsp; $f_\alpha(\alpha)$&nbsp; is f&nbsp; for a given angle&nbsp; $\alpha$&nbsp; directly proportional to the distance&nbsp; $A$&nbsp; between the antenna and the boundary line.  
+
*The PDF&nbsp; $f_\alpha(\alpha)$&nbsp; is f&nbsp; for a given angle&nbsp; $\alpha$&nbsp; directly proportional to the distance&nbsp; $A$&nbsp; between the antenna and the boundary line.  
 
*For&nbsp; $\alpha = \pm 2\pi/3 = \pm 120^\circ$&nbsp; against&nbsp; $A = R$,&nbsp; for&nbsp; $\alpha \pm \pi = \pm 180^\circ$&nbsp; against&nbsp; $A = R/2$.
 
*For&nbsp; $\alpha = \pm 2\pi/3 = \pm 120^\circ$&nbsp; against&nbsp; $A = R$,&nbsp; for&nbsp; $\alpha \pm \pi = \pm 180^\circ$&nbsp; against&nbsp; $A = R/2$.
 
*In between the distance becomes successively smaller.&nbsp; This means: &nbsp; The PDF decreases towards the boundary.  
 
*In between the distance becomes successively smaller.&nbsp; This means: &nbsp; The PDF decreases towards the boundary.  
Line 125: Line 125:
  
  
'''(8)'''&nbsp; Since the overall PDF area is constantly equal&nbsp; $1$&nbsp; and the PDF decreases at the boundaries, it must have a larger value in the range&nbsp; $|\alpha| < 2\pi/3$&nbsp; than calculated in&nbsp; '''(1)'''&nbsp; .
+
'''(8)'''&nbsp; Since the overall PDF area is constantly equal&nbsp; $1$&nbsp; and the PDF decreases at the boundaries, it must have a larger value in the range&nbsp; $|\alpha| < 2\pi/3$&nbsp; than in&nbsp; '''(1)'''.
 
* With the results from&nbsp; '''(1)'''&nbsp; and&nbsp; '''(7)'''&nbsp; holds:
 
* With the results from&nbsp; '''(1)'''&nbsp; and&nbsp; '''(7)'''&nbsp; holds:
 
:$$f_{\alpha}(\alpha = 0)=\frac{1/(2\pi)}{2/3+{\rm sin(\rm 60^{\circ})}/({\rm 2\pi})} = \frac{\rm 1}{{\rm 4\cdot\pi}/{\rm 3}+\rm sin(60^{\circ})}\hspace{0.15cm}\underline{\approx \rm 0.198}.$$
 
:$$f_{\alpha}(\alpha = 0)=\frac{1/(2\pi)}{2/3+{\rm sin(\rm 60^{\circ})}/({\rm 2\pi})} = \frac{\rm 1}{{\rm 4\cdot\pi}/{\rm 3}+\rm sin(60^{\circ})}\hspace{0.15cm}\underline{\approx \rm 0.198}.$$
  
*Like the probability calculated in item&nbsp; '''(7)'''&nbsp; also simultaneously the PDF value in the range&nbsp; $|\alpha| < 2\pi/3$&nbsp; increases by a factor&nbsp; $1.242$&nbsp; as the coverage area becomes smaller.
+
*Like the probability in&nbsp; '''(7)'''&nbsp; also simultaneously the PDF value in the range&nbsp; $|\alpha| < 2\pi/3$&nbsp; increases by a factor&nbsp; $1.242$&nbsp; as the coverage area becomes smaller.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 12:11, 17 February 2022

Two antenna areas:  $K$  and  $G$

We first consider – as sketched in the image above – a receiving antenna serving a circular area  $K$.  It is assumed that this antenna can detect all signals incident at different angles  $\alpha$  equally well:

  • According to the sketch,  the angle  $\alpha$  refers to the  $x$–axis.
  • The value  $\alpha = 0$  therefore means that the signal is moving towards the antenna in the direction of the negative  $x$–axis.


Further we assume:

  • The range of values of the angle of incidence  $\alpha$  with this definition  $-\pi < \alpha \le +\pi$.
  • There are very many users in the coverage area whose positions  $(x, y)$  are  "statistically distributed"  over the area  $K$. 


From subtask  (5)  we assume the coverage area  $G$  outlined below.

  • Because of an obstacle,  the  $x$–coordinate of all participants must now be greaterö&space;than  $-R/2$. 
  • Also in the coverage area  $G$  the subscribers would again be  "statistically distributed".



Hint:


Questions

1

What is the PDF  $f_\alpha(\alpha)$  for the area  $K$?  What PDF–value results for  $\alpha = 0$?

$f_\alpha(\alpha = 0) \ = \ $

2

Which of the two statements is correct?  Note in particular also the asymmetric definition range of  $-\pi < \alpha \le +\pi$.

The expected value is  ${\rm E}[\alpha] = 0$.
The expected value is  ${\rm E}[\alpha] \ne 0$.

3

What value results for the standard deviation of the random variable  $\alpha$  in the area  $K$?

$\sigma_\alpha \ = \ $

4

What is the probability that in area  $K$  the antenna locates a user at an angle between  $\pm45^\circ$ ?

${\rm Pr}(-π/4 ≤ α ≤ +π/4) \ = \ $

$\ \%$

5

Now let's consider the coverage area  $G$.  In which area  $-\alpha_0 \le \alpha \le +\alpha_0$  does the PDF  $f_\alpha(\alpha)$  have a constant value?

$\alpha_0 \ = \ $

$ \ \rm rad$
$\alpha_0 \ = \ $

$ \ \rm degrees$

6

What statements are now valid with respect to  $f_\alpha(\alpha)$  in the range  $|\alpha| > \alpha_0$  ?

The PDF has the same course  "outside"  as  "inside".
The PDF is  "outside"  identically zero.
The PDF decreases towards the edges in this area.
The PDF increases towards the edges in this area.

7

Calculate for the area  $G$  the probability that the antenna locates a user at an angle between  $\pm 45^\circ$ .

${\rm Pr}(-π/4 ≤ α ≤ +π/4) \ = \ $

$\ \%$

8

What is now the PDF value at the position  $\alpha = 0$?

$f_\alpha(\alpha = 0) \ = \ $


Solution

(1)  There is a uniform distribution and it is true for the PDF in the range  $-\pi < \alpha \le +\pi$:  

$$f_\alpha(\alpha)={\rm 1}/({\rm 2\cdot \pi}).$$
  • For  $\alpha = 0$  this gives – as for all allowed values also – the PDF value :$$f_\alpha(\alpha =0) \hspace{0.15cm}\underline{=0.159}.$$


(2)  It holds  ${\rm E}\big[\alpha\big] = 0$   ⇒   Answer 1.

  • It has no effect that  $\alpha = +\pi$  is allowed, but  $\alpha = -\pi$  is excluded.


(3)  For the variance of the angle of incidence  $\alpha$  holds:

$$\sigma_{\alpha}^{\rm 2}=\int_{-\rm\pi}^{\rm\pi}\hspace{-0.1cm}\it\alpha^{\rm 2}\cdot \it f_{\alpha}(\alpha)\,\,{\rm d} \alpha=\frac{\rm 1}{\rm 2\cdot\it \pi}\cdot \frac{\alpha^{\rm 3}}{\rm 3}\Bigg|_{\rm -\pi}^{\rm\pi}=\frac{\rm 2\cdot\pi^{3}}{\rm 2\cdot\rm \pi\cdot \rm 3}=\frac{\rm \pi^2}{\rm 3} = \rm 3. 29. \hspace{0.5cm}\Rightarrow \hspace{0.5cm}\sigma_{\alpha}\hspace{0.15cm}\underline{=1.814}.$$


(4)  Since the given section of the circle is exactly one quarter of the total circle area, the probability we are looking for is

$${\rm Pr}(-π/4 ≤ α ≤ +π/4)\hspace{0.15cm}\underline{=25\%}.$$


The area $G$

(5)  From simple geometrical ¨considerations  (right-angled triangle, marked dark blue in the adjacent sketch)  one obtains the equation of determination for the angle  $\alpha_0$:

$$\cos(\pi-\alpha_{\rm 0}) = \frac{R/ 2}{R}={\rm 1}/{\rm 2}\hspace{0.5cm}\Rightarrow\hspace{0.5cm}\rm\pi-\it\alpha_{\rm 0}=\frac{\rm\pi}{\rm 3} \hspace{0.2cm}\rm( 60^{\circ}).$$
  • It follows  $\alpha_0 = \pi/3\hspace{0.15cm}\underline{=2.094}.$
  • This corresponds  $\alpha_0 \hspace{0.15cm}\underline{=120^\circ}$.


(6)  Correct is  the suggested solution 3:

  • The PDF  $f_\alpha(\alpha)$  is f  for a given angle  $\alpha$  directly proportional to the distance  $A$  between the antenna and the boundary line.
  • For  $\alpha = \pm 2\pi/3 = \pm 120^\circ$  against  $A = R$,  for  $\alpha \pm \pi = \pm 180^\circ$  against  $A = R/2$.
  • In between the distance becomes successively smaller.  This means:   The PDF decreases towards the boundary.
  • The decrease follows the following course:
$$\it A=\frac{\it R/\rm 2}{\rm cos(\rm \pi-\it\alpha)}.$$


(7)  The area $G$ can be calculated from the sum of the  $240^\circ$–sector and the triangle formed by the vertices  $\rm UVW$  :

$$G=\frac{\rm 2}{\rm 3}\cdot \it R^{\rm 2}\cdot{\rm \pi} \ {\rm +} \ \frac{\it R}{\rm 2}\cdot \it R\cdot \rm sin(\rm 60^{\circ}) = \it R^{\rm 2}\cdot \rm\pi\cdot (\frac{\rm 2}{\rm 3}+\frac{\rm \sqrt{3}}{\rm 4\cdot\pi}).$$
  • The probability we are looking for is given by the ratio of the areas  $F$  and  $G$  (see sketch):
$$\rm Pr(\rm -\pi/4\le\it\alpha\le+\rm\pi/4)=\frac{\it F}{\it G}=\frac{1/4}{2/3+{\rm sin(60^{\circ})}/({\rm 2\pi})}=\frac{\rm 0.25}{\rm 0.805}\hspace{0.15cm}\underline{=\rm 31.1\%}.$$
  • Although nothing has changed from point  (4)  at the area  $F$  the probability now becomes larger by a factor  $1/0.805 ≈ 1.242$  due to the smaller area  $G$ .


(8)  Since the overall PDF area is constantly equal  $1$  and the PDF decreases at the boundaries, it must have a larger value in the range  $|\alpha| < 2\pi/3$  than in  (1).

  • With the results from  (1)  and  (7)  holds:
$$f_{\alpha}(\alpha = 0)=\frac{1/(2\pi)}{2/3+{\rm sin(\rm 60^{\circ})}/({\rm 2\pi})} = \frac{\rm 1}{{\rm 4\cdot\pi}/{\rm 3}+\rm sin(60^{\circ})}\hspace{0.15cm}\underline{\approx \rm 0.198}.$$
  • Like the probability in  (7)  also simultaneously the PDF value in the range  $|\alpha| < 2\pi/3$  increases by a factor  $1.242$  as the coverage area becomes smaller.