Difference between revisions of "Aufgaben:Exercise 4.3: Algebraic and Modulo Sum"

From LNTwww
 
(5 intermediate revisions by one other user not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:EN_Sto_A_4_3.png|right|frame|Algebraic sum and modulo 2 sum]]
+
[[File:EN_Sto_A_4_3_neu2.png|right|frame|Algebraic & modulo–2 sum]]
A "clocked" random number generator returns a sequence  $\langle x_\nu \rangle$  of binary random numbers.  
+
 
 +
[[File:P_ID254__Sto_A_4_3Tab.png|right|frame|Table for moment calculation]]
 +
A  "clocked"  random number generator returns a sequence  $\langle x_\nu \rangle$  of binary random numbers.  
 
*It is assumed that the binary numbers  $0$  and  $1$  occur with equal probabilities and that the individual random numbers do not depend on each other.  
 
*It is assumed that the binary numbers  $0$  and  $1$  occur with equal probabilities and that the individual random numbers do not depend on each other.  
 
*The random numbers  $ x_\nu \in \{0, 1\}$  are entered into the first memory location of a shift register and shifted down one digit with each clock pulse.
 
*The random numbers  $ x_\nu \in \{0, 1\}$  are entered into the first memory location of a shift register and shifted down one digit with each clock pulse.
Line 11: Line 13:
 
Two new random sequences  $\langle a_\nu \rangle$  and  $\langle m_\nu \rangle$  are formed from the contents of the three-digit shift register. Here denotes:
 
Two new random sequences  $\langle a_\nu \rangle$  and  $\langle m_\nu \rangle$  are formed from the contents of the three-digit shift register. Here denotes:
  
* $a_\nu$&nbsp; the <i>algebraic sum</i>:
+
* the&nbsp; "algebraic sum"&nbsp; $a_\nu$:
 
:$$a_\nu=x_\nu+x_{\nu-1}+x_{\nu-2},$$
 
:$$a_\nu=x_\nu+x_{\nu-1}+x_{\nu-2},$$
  
*$m_\nu$&nbsp; the <i>modulo 2 sum</i>:
+
*the&nbsp; "modulo&ndash;2 sum"&nbsp; $m_\nu$:
 
:$$m_\nu=x_\nu\oplus x_{\nu-1}\oplus x_{\nu-2}.$$
 
:$$m_\nu=x_\nu\oplus x_{\nu-1}\oplus x_{\nu-2}.$$
  
This fact is shown again in the following table:
 
[[File:P_ID254__Sto_A_4_3Tab.png|left|frame|Table for moment calculation]]
 
  
 
<br><br><br><br><br><br>
 
<br><br><br><br><br><br>
Hints: &nbsp; This exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables|Two-Dimensional Random Variables]].
+
Hints: &nbsp;  
<br clear=all>  
+
*This exercise belongs to the chapter&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables|Two-Dimensional Random Variables]].
 +
*Use the following table for moment calculation.
 +
<br clear=all>
 
===Questions===
 
===Questions===
  
Line 37: Line 39:
  
  
{Determine the joint PDF&nbsp; $f_{xm}(x_\nu, m_\nu)$.&nbsp; Based on the result, evaluate the following statements (true or not).
+
{Determine the 2D&ndash;PDF&nbsp; $f_{xm}(x_\nu, m_\nu)$.&nbsp; Based on the result,&nbsp; evaluate the following statements.
 
|type="[]"}
 
|type="[]"}
 
- The random variables&nbsp; $x_\nu$&nbsp; and&nbsp; $m_\nu$&nbsp; are statistically dependent.
 
- The random variables&nbsp; $x_\nu$&nbsp; and&nbsp; $m_\nu$&nbsp; are statistically dependent.
Line 51: Line 53:
  
  
{Determine the 2D PDF $f_{am}(a_\nu, m_\nu)$&nbsp; and the correlation coefficient&nbsp; $\rho_{am}$.&nbsp; Which of the following statements are true?
+
{Determine the 2D&ndash;PDF&nbsp; $f_{am}(a_\nu, m_\nu)$&nbsp; and the correlation coefficient&nbsp; $\rho_{am}$.&nbsp; Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
 
+ The random variables&nbsp; $a_\nu$&nbsp; and&nbsp; $m_\nu$&nbsp; are statistically dependent.
 
+ The random variables&nbsp; $a_\nu$&nbsp; and&nbsp; $m_\nu$&nbsp; are statistically dependent.
Line 64: Line 66:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; It can be seen from the table on the information page that for the modulo 2 sum, the two values&nbsp; $0$&nbsp; and&nbsp; $1$&nbsp; have equal probability:  
+
'''(1)'''&nbsp; It can be seen from the table in the information section that for the modulo&ndash;2 sum,&nbsp; the two values&nbsp; $0$&nbsp; and&nbsp; $1$&nbsp; have equal probability:  
 
:$${\rm Pr}(m_\nu = 0) = {\rm Pr}(m_\nu = 1)\hspace{0.15cm}\underline{=0.5}.$$
 
:$${\rm Pr}(m_\nu = 0) = {\rm Pr}(m_\nu = 1)\hspace{0.15cm}\underline{=0.5}.$$
  
  
  
'''(2)'''&nbsp; The table shows that for each preassignment &nbsp; &rArr; &nbsp; $( x_{\nu-1}, x_{\nu-2}) = (0,0), (0,1), (1,0), (1,1)$ &nbsp; the values&nbsp; $m_\nu = 0$&nbsp; respectively&nbsp; $m_\nu = 1$&nbsp; are equally likely.  
+
'''(2)'''&nbsp; The table shows that for each preassignment &nbsp; &rArr; &nbsp; $( x_{\nu-1}, x_{\nu-2}) = (0,0), (0,1), (1,0), (1,1)$,&nbsp; the values&nbsp; $m_\nu = 0$&nbsp; and&nbsp; $m_\nu = 1$&nbsp; resp. are equally likely.  
 
*Expressed differently: &nbsp; ${\rm Pr}(m_{\nu}\hspace{0.05cm}|\hspace{0.05cm}m_{\nu-1}) = {\rm Pr}( m_{\nu}).$
 
*Expressed differently: &nbsp; ${\rm Pr}(m_{\nu}\hspace{0.05cm}|\hspace{0.05cm}m_{\nu-1}) = {\rm Pr}( m_{\nu}).$
*This exactly matches the definition of "statistical independence" &nbsp; &rArr; &nbsp; <u>Answer 1</u>.
+
*This exactly matches the definition of&nbsp; "statistical independence" &nbsp; &rArr; &nbsp; <u>Answer 1</u>.
  
  
  
[[File:P_ID224__Sto_A_4_3_c.png|right|frame|2D PDF of&nbsp; $x$&nbsp; and&nbsp; $m$]]
+
[[File:P_ID224__Sto_A_4_3_c.png|right|frame|2D&ndash;PDF of&nbsp; $x$&nbsp; and&nbsp; $m$]]
'''(3)'''&nbsp; Correct are <u>the second and the last suggested solutions</u>.
+
'''(3)'''&nbsp; Correct are&nbsp; <u>the second and the last suggested solutions</u>.
*The 2D PDF consists of four Dirac functions, each with weight&nbsp; $1/4$.  
+
*The 2D&ndash;PDF consists of four Dirac delta functions,&nbsp; each with weight&nbsp; $1/4$.  
*One obtains this result, for example, by evaluating the table on the data page.
+
*One obtains this result,&nbsp; for example,&nbsp; by evaluating the table in the data section.
*Since $f_{xm}(x_\nu, m_\nu)$&nbsp; is equal to the product $f_{x}(x_\nu) \cdot f_{m}(m_\nu)$&nbsp; the quantities&nbsp; $x_\nu$&nbsp; and&nbsp; $m_\nu$&nbsp; are statistically independent.  
+
*Since&nbsp; $f_{xm}(x_\nu, m_\nu)=f_{x}(x_\nu) \cdot f_{m}(m_\nu)$,&nbsp; the quantities&nbsp; $x_\nu$&nbsp; and&nbsp; $m_\nu$&nbsp; are statistically independent.  
*Statistically independent random variables, however, are also linearly statistically independent, so they are certainly uncorrelated.
+
*Statistically independent random variables,&nbsp; however,&nbsp; are also linearly statistically independent,&nbsp; so they are certainly uncorrelated.
 
   
 
   
  
Line 86: Line 88:
  
 
'''(4)'''&nbsp; Within the sequence&nbsp; $\langle a_\nu \rangle$&nbsp; of algebraic sum there are statistical bindings &nbsp; &#8658; &nbsp; <u>Answer 2</u>.  
 
'''(4)'''&nbsp; Within the sequence&nbsp; $\langle a_\nu \rangle$&nbsp; of algebraic sum there are statistical bindings &nbsp; &#8658; &nbsp; <u>Answer 2</u>.  
*You can see this because the unconditional probability&nbsp; $ {\rm Pr}( a_{\nu} = 0) =1/8$&nbsp; is,
+
*You can see this because the unconditional probability is&nbsp; $ {\rm Pr}( a_{\nu} = 0) =1/8$,&nbsp;  
*while, for example&nbsp; ${\rm Pr}(a_{\nu} = 0\hspace{0.05cm}|\hspace{0.05cm}a_{\nu-1} = 3) =0$&nbsp; holds.
+
*while,&nbsp; for example,&nbsp; ${\rm Pr}(a_{\nu} = 0\hspace{0.05cm}|\hspace{0.05cm}a_{\nu-1} = 3) =0$&nbsp; holds.
  
  
  
[[File:P_ID225__Sto_A_4_3_e.png|right|frame|2D PDF of&nbsp; $a$&nbsp; and&nbsp; $m$]]
+
[[File:P_ID225__Sto_A_4_3_e.png|right|frame|2D&ndash;PDF of&nbsp; $a$&nbsp; and&nbsp; $m$]]
'''(5)'''&nbsp; Correct are <u>the first and the last suggested solutions</u>:
+
'''(5)'''&nbsp; Correct are&nbsp; <u>the first and the last suggested solutions</u>:
*As in the subtask&nbsp; '''(3)'''&nbsp; there are again four Dirac functions, but this time not with equal momentum weights&nbsp; $1/4$.
+
*As in the subtask&nbsp; '''(3)'''&nbsp; there are again four Dirac delta functions,&nbsp; but this time not with equal Dirac weights&nbsp; $1/4$.
 
*The two-dimensional PDF thus cannot be written as a product of the two marginal probability densities.  
 
*The two-dimensional PDF thus cannot be written as a product of the two marginal probability densities.  
*But this means that statistical bindings must exist between&nbsp; $a_\nu$&nbsp; and&nbsp; $m_\nu$&nbsp; .
+
*But this means that statistical bindings must exist between&nbsp; $a_\nu$&nbsp; and&nbsp; $m_\nu$.
*For the joint expected value, one obtains:
+
*For the joint expected value,&nbsp; one obtains:
 
:$${\rm E}\big[a\cdot m \big] = \rm \frac{1}{8}\cdot 0 \cdot 0 +\frac{3}{8}\cdot 2 \cdot 0 +\frac{3}{8}\cdot 1 \cdot 1 + \frac{1}{8}\cdot 3 \cdot 1 = \frac{3}{4}.$$
 
:$${\rm E}\big[a\cdot m \big] = \rm \frac{1}{8}\cdot 0 \cdot 0 +\frac{3}{8}\cdot 2 \cdot 0 +\frac{3}{8}\cdot 1 \cdot 1 + \frac{1}{8}\cdot 3 \cdot 1 = \frac{3}{4}.$$
*With the linear means&nbsp; ${\rm E}\big[a \big] = 1.5$ &nbsp;and&nbsp; ${\rm E}[m] = 0.5$&nbsp; it thus follows for the covariance:
+
*With the linear means&nbsp; ${\rm E}\big[a \big] = 1.5$ &nbsp;and&nbsp; ${\rm E}[m] = 0.5$&nbsp; it follows for the covariance:
 
:$$\mu_{am}= {\rm E}\big[ a\cdot m \big] - {\rm E}\big[ a \big]\cdot {\rm E} \big[ m \big] = \rm 0.75-1.5\cdot 0.5 = \rm 0.$$
 
:$$\mu_{am}= {\rm E}\big[ a\cdot m \big] - {\rm E}\big[ a \big]\cdot {\rm E} \big[ m \big] = \rm 0.75-1.5\cdot 0.5 = \rm 0.$$
*Thus, the correlation coefficient&nbsp; $\rho_{am}= 0$.&nbsp; That is, &nbsp; The dependencies present are nonlinear.  
+
*Thus,&nbsp; the correlation coefficient&nbsp; $\rho_{am}= 0$.&nbsp; That is: &nbsp; The dependencies present are nonlinear.  
*The quantities&nbsp; $a_\nu$&nbsp; and&nbsp; $m_\nu$&nbsp; are statistically dependent, but still uncorrelated.  
+
*The quantities&nbsp; $a_\nu$&nbsp; and&nbsp; $m_\nu$&nbsp; are statistically dependent,&nbsp; but still uncorrelated.  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 13:49, 17 November 2022

Algebraic & modulo–2 sum
Table for moment calculation

A  "clocked"  random number generator returns a sequence  $\langle x_\nu \rangle$  of binary random numbers.

  • It is assumed that the binary numbers  $0$  and  $1$  occur with equal probabilities and that the individual random numbers do not depend on each other.
  • The random numbers  $ x_\nu \in \{0, 1\}$  are entered into the first memory location of a shift register and shifted down one digit with each clock pulse.


Two new random sequences  $\langle a_\nu \rangle$  and  $\langle m_\nu \rangle$  are formed from the contents of the three-digit shift register. Here denotes:

  • the  "algebraic sum"  $a_\nu$:
$$a_\nu=x_\nu+x_{\nu-1}+x_{\nu-2},$$
  • the  "modulo–2 sum"  $m_\nu$:
$$m_\nu=x_\nu\oplus x_{\nu-1}\oplus x_{\nu-2}.$$








Hints:  


Questions

1

Calculate the probabilities of the random variable  $m_\nu$.  What is the probability that the modulo-2 sum is equal to  $0$ ?

${\rm Pr}(m_\nu = 0) \ = \ $

2

Are there statistical dependencies within the sequence  $\langle m_\nu \rangle$?

The sequence elements  $m_\nu$  are statistically independent.
There are statistical bindings within the sequence  $\langle m_\nu \rangle$.

3

Determine the 2D–PDF  $f_{xm}(x_\nu, m_\nu)$.  Based on the result,  evaluate the following statements.

The random variables  $x_\nu$  and  $m_\nu$  are statistically dependent.
The random variables  $x_\nu$  and  $m_\nu$  are statistically independent.
The random variables  $x_\nu$  and  $m_\nu$  are correlated.
The random variables  $x_\nu$  and  $m_\nu$  are uncorrelated.

4

Do statistical dependencies exist within the sequence  $\langle a_\nu \rangle$ ?

The sequence elements  $a_\nu$  are statistically independent.
There are statistical bindings within the sequence  $\langle a_\nu \rangle$.

5

Determine the 2D–PDF  $f_{am}(a_\nu, m_\nu)$  and the correlation coefficient  $\rho_{am}$.  Which of the following statements are true?

The random variables  $a_\nu$  and  $m_\nu$  are statistically dependent.
The random variables  $a_\nu$  and  $m_\nu$  are statistically independent.
The random variables  $a_\nu$  and  $m_\nu$  are correlated.
The random variables  $a_\nu$  and  $m_\nu$  are uncorrelated.


Solution

(1)  It can be seen from the table in the information section that for the modulo–2 sum,  the two values  $0$  and  $1$  have equal probability:

$${\rm Pr}(m_\nu = 0) = {\rm Pr}(m_\nu = 1)\hspace{0.15cm}\underline{=0.5}.$$


(2)  The table shows that for each preassignment   ⇒   $( x_{\nu-1}, x_{\nu-2}) = (0,0), (0,1), (1,0), (1,1)$,  the values  $m_\nu = 0$  and  $m_\nu = 1$  resp. are equally likely.

  • Expressed differently:   ${\rm Pr}(m_{\nu}\hspace{0.05cm}|\hspace{0.05cm}m_{\nu-1}) = {\rm Pr}( m_{\nu}).$
  • This exactly matches the definition of  "statistical independence"   ⇒   Answer 1.


2D–PDF of  $x$  and  $m$

(3)  Correct are  the second and the last suggested solutions.

  • The 2D–PDF consists of four Dirac delta functions,  each with weight  $1/4$.
  • One obtains this result,  for example,  by evaluating the table in the data section.
  • Since  $f_{xm}(x_\nu, m_\nu)=f_{x}(x_\nu) \cdot f_{m}(m_\nu)$,  the quantities  $x_\nu$  and  $m_\nu$  are statistically independent.
  • Statistically independent random variables,  however,  are also linearly statistically independent,  so they are certainly uncorrelated.



(4)  Within the sequence  $\langle a_\nu \rangle$  of algebraic sum there are statistical bindings   ⇒   Answer 2.

  • You can see this because the unconditional probability is  $ {\rm Pr}( a_{\nu} = 0) =1/8$, 
  • while,  for example,  ${\rm Pr}(a_{\nu} = 0\hspace{0.05cm}|\hspace{0.05cm}a_{\nu-1} = 3) =0$  holds.


2D–PDF of  $a$  and  $m$

(5)  Correct are  the first and the last suggested solutions:

  • As in the subtask  (3)  there are again four Dirac delta functions,  but this time not with equal Dirac weights  $1/4$.
  • The two-dimensional PDF thus cannot be written as a product of the two marginal probability densities.
  • But this means that statistical bindings must exist between  $a_\nu$  and  $m_\nu$.
  • For the joint expected value,  one obtains:
$${\rm E}\big[a\cdot m \big] = \rm \frac{1}{8}\cdot 0 \cdot 0 +\frac{3}{8}\cdot 2 \cdot 0 +\frac{3}{8}\cdot 1 \cdot 1 + \frac{1}{8}\cdot 3 \cdot 1 = \frac{3}{4}.$$
  • With the linear means  ${\rm E}\big[a \big] = 1.5$  and  ${\rm E}[m] = 0.5$  it follows for the covariance:
$$\mu_{am}= {\rm E}\big[ a\cdot m \big] - {\rm E}\big[ a \big]\cdot {\rm E} \big[ m \big] = \rm 0.75-1.5\cdot 0.5 = \rm 0.$$
  • Thus,  the correlation coefficient  $\rho_{am}= 0$.  That is:   The dependencies present are nonlinear.
  • The quantities  $a_\nu$  and  $m_\nu$  are statistically dependent,  but still uncorrelated.