Difference between revisions of "Aufgaben:Exercise 4.10: Binary and Quaternary"

From LNTwww
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Autokorrelationsfunktion (AKF)
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Auto-Correlation_Function
 
}}
 
}}
  
[[File:P_ID384__Sto_A_4_10.png|right|300px|frame|Binärsignal  $b(t)$  und Quaternärsignal  $q(t)$]]
+
[[File:P_ID384__Sto_A_4_10.png|right|300px|frame|Binary signal  $b(t)$,  quaternary signal  $q(t)$]]
Wir betrachten hier ein Binärsignal  $b(t)$  und ein Quarternärsignal  $q(t)$, wobei gilt:
+
We consider here a binay signal  $b(t)$  and a quaternary signal  $q(t)$.
*Die beiden Signale sind rechteckförmig, und die Dauer der einzelnen Rechtecke beträgt jeweils  $T$  (Symboldauer).
+
*The two signals are rectangular in shape.  The duration of each rectangle is  $T$  (symbol duration).
*Die durch die Impulshöhen der einzelnen Rechteckimpulse dargestellten Symbole  $($mit Stufenzahl  $M = 2$  bzw.  $M = 4)$  sind statistisch unabhängig.
+
*The symbols represented by the pulse heights of the individual rectangular pulses  $($with step number  $M = 2$  or  $M = 4)$  are statistically independent.
*Wegen der bipolaren Signalkonstellation  sind beide Signale  gleichsignalfrei, wenn die Symbolwahrscheinlichkeiten geeignet (symmetrisch) gewählt werden.
+
*Because of the bipolar signal constellation,  both signals have no DC component if the symbol probabilities are chosen appropriately  (symmetrically).
*Aufgrund der letztgenannten Eigenschaft folgt für die Wahrscheinlichkeiten der Binärsymbole:
+
*Because of the latter property,  it follows for the probabilities of the binary symbols:
 
:$${\rm Pr}\big[b(t) = +b_0\big] = {\rm Pr}\big[b(t) = -b_0\big] ={1}/{2}.$$
 
:$${\rm Pr}\big[b(t) = +b_0\big] = {\rm Pr}\big[b(t) = -b_0\big] ={1}/{2}.$$
*Dagegen gelte für das Quarternärsignal:
+
*In contrast,  for the quarternary signal:
 
:$${\rm Pr}\big[q(t) = +3 \hspace{0.05cm}{\rm V}\big] = {\rm Pr}\big[q(t) = -3 \hspace{0.05cm}{\rm V}\big]= {1}/{6},$$
 
:$${\rm Pr}\big[q(t) = +3 \hspace{0.05cm}{\rm V}\big] = {\rm Pr}\big[q(t) = -3 \hspace{0.05cm}{\rm V}\big]= {1}/{6},$$
 
:$${\rm Pr}\big[q(t) = +1 \hspace{0.05cm}{\rm V}\big] = {\rm Pr}\big[q(t) = -1 \hspace{0.05cm}{\rm V}\big]= {2}/{6}.$$
 
:$${\rm Pr}\big[q(t) = +1 \hspace{0.05cm}{\rm V}\big] = {\rm Pr}\big[q(t) = -1 \hspace{0.05cm}{\rm V}\big]= {2}/{6}.$$
  
  
 
+
'''Hint''':  This exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Auto-Correlation_Function|Auto-Correlation Function]].
 
 
 
 
''Hinweis:''  
 
*Die Aufgabe gehört zum  Kapitel  [[Theory_of_Stochastic_Signals/Autokorrelationsfunktion_(AKF)|Autokorrelationsfunktion]].
 
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie den AKF&ndash;Wert&nbsp; $\varphi_q(\tau = 0)$&nbsp; des Quartern&auml;rsignals.
+
{Calculate the ACF value&nbsp; $\varphi_q(\tau = 0)$&nbsp; of the quaternary signal.
 
|type="{}"}
 
|type="{}"}
$\varphi_q(\tau = 0) \ = \ $ { 3.667 3% } $\ \rm V^2$
+
$\varphi_q(\tau = 0) \ = \ $ { 3.667 3% } $\ \rm V^2$
  
  
{Wie gro&szlig; ist der AKF&ndash;Wert bei&nbsp; $\tau = T$&nbsp;? Begr&uuml;nden Sie, warum die AKF&ndash;Werte für&nbsp; $|\tau| > T$&nbsp; genauso gro&szlig; sind.&nbsp; Skizzieren Sie den AKF&ndash;Verlauf.
+
{What is the magnitude of the ACF value when&nbsp; $\tau = T$&nbsp;? Justify why the ACF values for&nbsp; $|\tau| > T$&nbsp; are of the same size.&nbsp; Sketch the ACF diagram.
 
|type="{}"}
 
|type="{}"}
$\varphi_q(\tau = T) \ = \ $ { 0. } $\ \rm V^2$
+
$\varphi_q(\tau = T) \ = \ $ { 0. } $\ \rm V^2$
  
  
  
{Mit welchen Amplitudenwerten&nbsp; $(\pm b_0)$&nbsp; hat das Bin&auml;rsignal&nbsp; $b(t)$&nbsp; genau die gleiche AKF?
+
{With which amplitude values&nbsp; $(\pm b_0)$&nbsp; does the binary signal&nbsp; $b(t)$&nbsp; have exactly the same ACF?
 
|type="{}"}
 
|type="{}"}
 
$b_0\ = \ $ { 1.915 3% } $\ \rm V$
 
$b_0\ = \ $ { 1.915 3% } $\ \rm V$
  
  
{Welche der folgenden Beschreibungsgr&ouml;&szlig;en eines stochastischen Prozesses lassen sich aus der AKF ermitteln?
+
{Which of the following descriptive quantities of a stochastic process can be determined from the ACF?
 
|type="[]"}
 
|type="[]"}
+ Periodendauer.
+
+ Period duration.
- Wahrscheinlichkeitsdichtefunktion.
+
- Probability density function.
+ Linearer Mittelwert.
+
+ Linear mean value.
+ Varianz.
+
+ Variance.
- Moment 3. Ordnung.
+
- 3rd order moment.
-Phasenbeziehungen.
+
- Phase relations.
  
  
Line 56: Line 52:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der AKF-Wert an der Stelle&nbsp; $\tau = 0$&nbsp; entspricht der mittleren Signalleistung, also dem quadratischen Mittelwert von&nbsp; $q(t)$. F&uuml;r diesen gilt:
+
'''(1)'''&nbsp; The ACF value at the point&nbsp; $\tau = 0$&nbsp; corresponds to the mean signal power, i.e. the variance of&nbsp; $q(t)$.&nbsp; For this holds:
[[File:P_ID385__Sto_A_4_10_b_neu.png|right|frame|Dreieckförmige AKF]]
+
[[File:P_ID385__Sto_A_4_10_b_neu.png|right|frame|Triangular auto-correlation function]]
:$$\varphi_q(\tau = 0)= {1}/{6 } \cdot ({\rm 3\,V})^2 + {2}/{6 } \cdot ({\rm 1\,V})^2 + {2}/{6 } \cdot (-{\rm 1\,V})^2 + {1}/{6 } \cdot (-{\rm 3\,V})^2= \rm {22}/{6 }\, \rm V^2\hspace{0.15cm}\underline{= \rm 3.667 \,V^2}.$$
+
:$$\varphi_q(\tau = 0)= {1}/{6 } \cdot ({\rm 3\,V})^2 + {2}/{6 } \cdot ({\rm 1\,V})^2 + {2}/{6 } \cdot (-{\rm 1\,V})^2 + {1}/{6 } \cdot (-{\rm 3\,V})^2= \rm {22}/{6 }\, \rm V^2\hspace{0.15cm}\underline{= \rm 3.667 \,V^2}.$$
  
  
'''(2)'''&nbsp; Die einzelnen Symbole wurden als statistisch unabh&auml;ngig vorausgesetzt.  
+
'''(2)'''&nbsp; The individual symbols were assumed to be statistically independent.  
*Deshalb und wegen des fehlenden Gleichanteils gilt hier f&uuml;r jeden ganzzahligen Wert von&nbsp; $\nu$:
+
*Therefore,&nbsp; and because of the lack of a DC component,&nbsp; for any integer value of&nbsp; $\nu$,&nbsp; the following applies here:
  
:$${\rm E} \big [ q(t) \cdot q ( t + \nu T) \big ] = {\rm E}  \big [ q(t) \big ] \cdot {\rm E} \big [ q ( t + \nu T) \big ]\hspace{0.15cm}\underline{ = 0}.$$
+
:$${\rm E} \big [ q(t) \cdot q ( t + \nu T) \big ] = {\rm E}  \big [ q(t) \big ] \cdot {\rm E} \big [ q ( t + \nu T) \big ]\hspace{0.15cm}\underline{ = 0}.$$
  
*Somit hat die gesuchte AKF den rechts skizzierten Verlauf.  
+
*Thus,&nbsp; the ACF we are looking for has the shape sketched on the right.  
*Im Bereich&nbsp; $-T \le \tau \le +T$&nbsp; ist die AKF aufgrund der rechteckf&ouml;rmigen Impulsform abschnittsweise linear, also dreieckf&ouml;rmig.
+
*In the range&nbsp; $-T \le \tau \le +T$&nbsp; the ACF is sectionwise linear,&nbsp; i.e. triangular,&nbsp; due to the rectangular pulse shape.
  
 
<br clear=all>
 
<br clear=all>
'''(3)'''&nbsp; Die&nbsp; AKF $\varphi_b(\tau)$&nbsp; des Bin&auml;rsignals ist aufgrund der statistisch unabh&auml;ngigen Symbole im Bereich&nbsp; $| \tau| > T$&nbsp; ebenfalls identisch Null, und für&nbsp; $-T \le \tau \le +T$&nbsp; ergibt sich ebenfalls eine Dreiecksform.  
+
'''(3)'''&nbsp; The&nbsp; ACF $\varphi_b(\tau)$&nbsp; of the binary signal is also identically zero due to the statistically independent symbols in the range&nbsp; $| \tau| > T$.&nbsp;  
*F&uuml;r den quadratischen Mittelwert erh&auml;lt man:
+
*For&nbsp; $-T \le \tau \le +T$&nbsp; itnalso results in a triangular shape.  
 +
*For the second moment,&nbsp; one obtains:
 
:$$\varphi_b (\tau = 0) = b_{\rm 0}^{\rm 2}.$$
 
:$$\varphi_b (\tau = 0) = b_{\rm 0}^{\rm 2}.$$
  
*Mit&nbsp; $b_0\hspace{0.15cm}\underline{= 1.915\, \rm V}$&nbsp; sind die beiden Autokorrelationsfunktionen&nbsp; $\varphi_q(\tau)$&nbsp; und&nbsp; $\varphi_b(\tau)$ identisch.
+
*With&nbsp; $b_0\hspace{0.15cm}\underline{= 1.915\, \rm V}$&nbsp; the two auto-correlation functions&nbsp; $\varphi_q(\tau)$&nbsp; and&nbsp; $\varphi_b(\tau)$ are identical.
  
  
  
'''(4)'''&nbsp; Richtig sind  <u>die Lösungsvorschläge 1, 3 und 4</u>.  
+
'''(4)'''&nbsp; Correct are&nbsp; <u>the proposed solutions 1, 3, and 4</u>.  
  
Aus der Autokorrelationsfunktion lassen sich tatsächlich ermitteln:
+
From the autocorrelation function we can actually determine:
*die Periodendauer&nbsp; $T_0$: &nbsp; diese ist f&uuml;r die Mustersignale und die AKF gleich;
+
*The period&nbsp; $T_0$: &nbsp; this is the same for the pattern signals and the ACF;
* der lineare Mittelwert: &nbsp; Wurzel aus dem Endwert der AKF f&uuml;r&nbsp; $\tau \to \infty$&nbsp; und
+
* the linear mean: &nbsp; root of the final value of the ACF for&nbsp; $\tau \to \infty$;&nbsp;  
* die Varianz: &nbsp;Differenz der AKF-Werte von&nbsp; $\tau = 0$&nbsp; und&nbsp; $\tau \to \infty$.  
+
* the variance: &nbsp;difference of the ACF values of&nbsp; $\tau = 0$&nbsp; and&nbsp; $\tau \to \infty$.  
  
  
Nicht ermittelt werden k&ouml;nnen:
+
Cannot be determined:
* die Wahrscheinlichkeitsdichtefunktion: &nbsp;trotz&nbsp; $\varphi_q(\tau) =\varphi_b(\tau)$&nbsp; ist&nbsp; $f_q(q) \ne f_b(b)$;
+
* The probability density function&nbsp; $\rm (PDF)$: <br> &nbsp; &nbsp; &nbsp; despite&nbsp; $\varphi_q(\tau) =\varphi_b(\tau)$ &nbsp; &rArr; &nbsp; $f_q(q) \ne f_b(b)$;
* die Momente h&ouml;herer Ordnung: &nbsp;f&uuml;r deren Berechnung ben&ouml;tigt man die WDF;  
+
* the moments of higher order: <br> &nbsp; &nbsp; &nbsp; for their calculation one needs the PDF;  
* Alle Phasenbeziehungen und Symmetrieeigenschaften sind aus der AKF nicht erkennbar.
+
* all phase relations and symmetry properties are not recognizable from the ACF.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 97: Line 94:
  
  
[[Category:Theory of Stochastic Signals: Exercises|^4.4 Autokorrelationsfunktion (AKF)^]]
+
[[Category:Theory of Stochastic Signals: Exercises|^4.4 Auto-Correlation Function^]]

Latest revision as of 13:20, 18 January 2023

Binary signal  $b(t)$,  quaternary signal  $q(t)$

We consider here a binay signal  $b(t)$  and a quaternary signal  $q(t)$.

  • The two signals are rectangular in shape.  The duration of each rectangle is  $T$  (symbol duration).
  • The symbols represented by the pulse heights of the individual rectangular pulses  $($with step number  $M = 2$  or  $M = 4)$  are statistically independent.
  • Because of the bipolar signal constellation,  both signals have no DC component if the symbol probabilities are chosen appropriately  (symmetrically).
  • Because of the latter property,  it follows for the probabilities of the binary symbols:
$${\rm Pr}\big[b(t) = +b_0\big] = {\rm Pr}\big[b(t) = -b_0\big] ={1}/{2}.$$
  • In contrast,  for the quarternary signal:
$${\rm Pr}\big[q(t) = +3 \hspace{0.05cm}{\rm V}\big] = {\rm Pr}\big[q(t) = -3 \hspace{0.05cm}{\rm V}\big]= {1}/{6},$$
$${\rm Pr}\big[q(t) = +1 \hspace{0.05cm}{\rm V}\big] = {\rm Pr}\big[q(t) = -1 \hspace{0.05cm}{\rm V}\big]= {2}/{6}.$$


Hint:  This exercise belongs to the chapter  Auto-Correlation Function.



Questions

1

Calculate the ACF value  $\varphi_q(\tau = 0)$  of the quaternary signal.

$\varphi_q(\tau = 0) \ = \ $

$\ \rm V^2$

2

What is the magnitude of the ACF value when  $\tau = T$ ? Justify why the ACF values for  $|\tau| > T$  are of the same size.  Sketch the ACF diagram.

$\varphi_q(\tau = T) \ = \ $

$\ \rm V^2$

3

With which amplitude values  $(\pm b_0)$  does the binary signal  $b(t)$  have exactly the same ACF?

$b_0\ = \ $

$\ \rm V$

4

Which of the following descriptive quantities of a stochastic process can be determined from the ACF?

Period duration.
Probability density function.
Linear mean value.
Variance.
3rd order moment.
Phase relations.


Solution

(1)  The ACF value at the point  $\tau = 0$  corresponds to the mean signal power, i.e. the variance of  $q(t)$.  For this holds:

Triangular auto-correlation function
$$\varphi_q(\tau = 0)= {1}/{6 } \cdot ({\rm 3\,V})^2 + {2}/{6 } \cdot ({\rm 1\,V})^2 + {2}/{6 } \cdot (-{\rm 1\,V})^2 + {1}/{6 } \cdot (-{\rm 3\,V})^2= \rm {22}/{6 }\, \rm V^2\hspace{0.15cm}\underline{= \rm 3.667 \,V^2}.$$


(2)  The individual symbols were assumed to be statistically independent.

  • Therefore,  and because of the lack of a DC component,  for any integer value of  $\nu$,  the following applies here:
$${\rm E} \big [ q(t) \cdot q ( t + \nu T) \big ] = {\rm E} \big [ q(t) \big ] \cdot {\rm E} \big [ q ( t + \nu T) \big ]\hspace{0.15cm}\underline{ = 0}.$$
  • Thus,  the ACF we are looking for has the shape sketched on the right.
  • In the range  $-T \le \tau \le +T$  the ACF is sectionwise linear,  i.e. triangular,  due to the rectangular pulse shape.


(3)  The  ACF $\varphi_b(\tau)$  of the binary signal is also identically zero due to the statistically independent symbols in the range  $| \tau| > T$. 

  • For  $-T \le \tau \le +T$  itnalso results in a triangular shape.
  • For the second moment,  one obtains:
$$\varphi_b (\tau = 0) = b_{\rm 0}^{\rm 2}.$$
  • With  $b_0\hspace{0.15cm}\underline{= 1.915\, \rm V}$  the two auto-correlation functions  $\varphi_q(\tau)$  and  $\varphi_b(\tau)$ are identical.


(4)  Correct are  the proposed solutions 1, 3, and 4.

From the autocorrelation function we can actually determine:

  • The period  $T_0$:   this is the same for the pattern signals and the ACF;
  • the linear mean:   root of the final value of the ACF for  $\tau \to \infty$; 
  • the variance:  difference of the ACF values of  $\tau = 0$  and  $\tau \to \infty$.


Cannot be determined:

  • The probability density function  $\rm (PDF)$:
          despite  $\varphi_q(\tau) =\varphi_b(\tau)$   ⇒   $f_q(q) \ne f_b(b)$;
  • the moments of higher order:
          for their calculation one needs the PDF;
  • all phase relations and symmetry properties are not recognizable from the ACF.