Difference between revisions of "Aufgaben:Exercise 3.9: Convolution of Rectangle and Gaussian Pulse"

From LNTwww
m (Text replacement - "Dirac impulse" to "Dirac delta")
 
(32 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signaldarstellung/Faltungssatz und Faltungsoperation
+
{{quiz-Header|Buchseite=Signal Representation/The Convolution Theorem and Operation
 
}}
 
}}
  
[[File:P_ID540__Sig_A_3_9_neu.png|250px|right|Faltung von Rechteck und Gauß (Aufgabe A3.9)]]
+
[[File:P_ID540__Sig_A_3_9_neu.png|250px|right|frame|Convolution of rectangle  $x(t)$  and Gaussian pulse   $h(t)$]]
  
Wir betrachten in der Aufgabe einen gaußförmigen Tiefpass mit der äquivalenten Bandbreite $\Delta f$ = 40 MHz:
+
We consider a Gaussian low–pass with the equivalent bandwidth  $\Delta f = 40 \,\text{MHz}$:
 
   
 
   
$$H( f ) = {\rm{e}}^{{\rm{ - \pi }}( {f/\Delta f} )^2 } .$$
+
:$$H( f ) = {\rm{e}}^{{\rm{ - \pi }}( {f/\Delta f} )^2 } .$$
  
Die dazugehörige Impulsantwort lautet:
+
The corresponding impulse response is:
 
   
 
   
$$h( t ) = \Delta f \cdot {\rm{e}}^{{\rm{ - \pi }}( {\Delta f  \hspace{0.05cm} \cdot \hspace{0.05cm} t} )^2 } .$$
+
:$$h( t ) = \Delta f \cdot {\rm{e}}^{{\rm{ - \pi }}( {\Delta f  \hspace{0.05cm} \cdot \hspace{0.05cm} t} )^2 } .$$
  
Aus der Skizze ist zu ersehen, dass die äquivalente Zeitdauer der Impulsantwort $h(t)$  ⇒  $\Delta t = 1/\Delta f = 25$ ns an den beiden Wendepunkten der Gaußfunktion abgelesen werden kann.
+
From the sketch it can be seen that the  "equivalent time duration"   ⇒    $\Delta t = 1/\Delta f = 25\,\text{ns}$  of the impulse response  $h(t)$   can be read at the two inflection points of the Gaussian function.
An den Eingang des Tiefpasses werden nun drei verschiedene impulsartige Signale angelegt:
 
* ein Rechteckimpuls $x_1(t)$ mit der Amplitude 1 V und der Dauer $T_1$ = 20 ns (roter Kurvenverlauf),
 
* ein Rechteckimpuls $x_2(t)$ mit der Amplitude $A_2$ = 10 V und der Dauer $T_2$ = 2 ns (violetter Kurvenverlauf),
 
* ein Diracimpuls $x_3(t)$ mit dem Impulsgewicht $2 \cdot 10^{–8}$ Vs (grüner Pfeil).
 
  
 +
Three different pulse-like signals are now applied to the input of the low-pass filter:
 +
* a rectangular pulse  $x_1(t)$  with amplitude  $A_1 =1\,\text{V}$  and duration  $T_1 = 20\,\text{ns}$   (red curve),
 +
* a rectangular pulse  $x_2(t)$  with amplitude  $A_2 =10\,\text{V}$  and duration  $T_2 = 2\,\text{ns}$  (violet curve),
 +
* a Dirac delta  $x_3(t)$  with impulse weight  $2 \cdot 10^{–8}\text{ Vs}$   (green arrow).
  
Hinweis: Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 3.4. Zur Lösung der nachfolgenden Fragen können Sie das komplementäre Gaußsche Fehlerintegral benutzen, das wie folgt definiert ist (siehe Kapitel 3.5 im Buch „Stochastische Signale”):
+
 
 +
 
 +
 
 +
 
 +
 
 +
''Hints:''
 +
*This exercise belongs to the chapter  [[Signal_Representation/The_Convolution_Theorem_and_Operation|The Convolution Theorem and Operation]].
 
   
 
   
$$\rm{Q}( x ) = \frac{1}{ {\sqrt {2{\rm{\pi }}} }}\int_{\it x}^\infty  {{\rm{e}}^{{{ - {\it u}}}^{\rm{2}} {\rm{/2}}} }\hspace{0.1cm}{\rm{d}}{\it u}.$$
+
*To answer the questions, you can use the complementary Gaussian error integral, which is defined as follows:
 +
[[File:P_ID541__Sig_A_3_9Tab_neu.png|right|frame|Some values of the  $\rm Q$–function]]
 +
:$${\rm Q}( x ) = \frac{1}{ {\sqrt {2{\rm{\pi }}} }}\int_{\it x}^\infty  {{\rm{e}}^{{{ - {\it u}}}^{\rm{2}} {\rm{/2}}} }\hspace{0.1cm}{\rm{d}}{\it u}.$$  
 +
 
 +
 
 +
This table gives some function values.
 +
<br clear=all>
  
Die nachfolgende Tabelle gibt einige Funktionswerte wieder:
 
  
[[File:P_ID541__Sig_A_3_9Tab_neu.png|250px|right|Einige Werte der Q-Funktion (Aufgabe A3.9)]]
 
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie das Signal $y_1(t) = x_1(t) \ast h(t)$. Welche Werte ergeben sich zu den Zeiten $t$ = 0 und $t$ = 20 ns mit der Näherung $(2\pi )1/2 \approx 2.5$?
+
{Calculate the signal&nbsp; $y_1(t) = x_1(t) \ast h(t)$.&nbsp; What values result at times&nbsp; $t = 0$&nbsp; and&nbsp; $t = 20\,\text{ns}$&nbsp;  with the approximation&nbsp; $(2\pi )^{1/2} \approx 2.5$?
 
|type="{}"}
 
|type="{}"}
$y_1(t=0) =$ { 0.682 3% } V
+
$y_1(t=0)\ = \ $ { 0.682 3% } &nbsp;$\text{V}$
$y_1(t=20\text{ns}) =$ { 0.158 3% } V
+
$y_1(t=20\,\text{ns})\ = \ $ { 0.158 3% } &nbsp;$\text{V}$
  
{Welche Signalwerte ergeben sich beim Ausgangssignal $y_2(t) = x_2(t) \ast h(t)$ zu den Zeitpunkten $t$ = 0 und $t$ = 20 ns?
+
{What are the signal values of the output signal&nbsp; $y_2(t) = x_2(t) \ast h(t)$&nbsp; at the  considered time points?
 
|type="{}"}
 
|type="{}"}
$y_2(t=0) =$ { 0.8 3% } V
+
$y_2(t=0)\ = \ $ { 0.8 3% } &nbsp;$\text{V}$
$y_2(t=20\text{ns}) =$ { 0.11 3% } V
+
$y_2(t=20 \,\text{ns})\ = \ $ { 0.11 3% } &nbsp;$\text{V}$
  
{Wie groß ist das Ausgangssignal $y_3(t) = x_3(t) \ast h(t)$ zu den betrachteten Zeitpunkten? Interpretieren Sie das Ergebnis.
+
{What is the value of the output signa&nbsp; $y_3(t) = x_3(t) \ast h(t)$&nbsp; at the  considered time points?&nbsp; Interpret the result.
 
|type="{}"}
 
|type="{}"}
$y_3(t=0) =$ { 0.8 3% } V
+
$y_3(t=0)\ = \ $ { 0.8 3% } &nbsp;$\text{V}$
$y_3(t=20\text{ns}) =$ { 0.11 3% } V
+
$y_3(t=20\, \text{ns})\ = \ $ { 0.11 3% } &nbsp;$\text{V}$
  
  
Line 51: Line 61:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Das Faltungsintegral lautet hier:
+
'''(1)'''&nbsp; The convolution integral here is:
 
$$y_1( t ) = A_1  \cdot \Delta f \cdot \int_{t - T_1 /2}^{t + T_1 /2} {{\rm{e}}^{{\rm{ - \pi }}( {\Delta f \hspace{0.05cm}\cdot \hspace{0.05cm} \tau } )^2 } }\hspace{0.1cm} {\rm{d}}\tau  = \frac{ {A_1 }}{ {\sqrt {2{\rm{\pi }}} }}\int_{u_1 }^{u_2 } {{\rm{e}}^{{{ - u}}^{\rm{2}}{\rm{/2}}}\hspace{0.1cm}  {\rm{d}}u.}$$
 
  
Hierbei wurde die folgende Substitution verwendet:
+
:$$y_1( t ) = A_1  \cdot \Delta f \cdot \int_{t - T_1 /2}^{t + T_1 /2} {{\rm{e}}^{{\rm{ - \pi }}( {\Delta f \hspace{0.05cm}\cdot \hspace{0.05cm} \tau } )^2 } }\hspace{0.1cm} {\rm{d}}\tau  = \frac{A_1 }{\sqrt{2\pi }} \cdot\int_{u_1 }^{u_2 } {{\rm{e}}^{ - u^2 /2}\hspace{0.1cm}  {\rm{d}}u.}$$
 
   
 
   
$$u = \sqrt {2{\rm{\pi }}}  \cdot \Delta f \cdot \tau$$
+
*Here the substitution&nbsp; $u = \sqrt {2{\rm{\pi }}}  \cdot \Delta f \cdot \tau$&nbsp; was used.&nbsp; The integration limits are at:
 
 
Die Integrationsgrenzen liegen bei:
 
 
   
 
   
$$u_1  = \sqrt {2{\rm{\pi }}}  \cdot \Delta f \cdot \left( {t - T_1 /2} \right),$$
+
:$$u_1  = \sqrt {2{\rm{\pi }}}  \cdot \Delta f \cdot \big( {t - T_1 /2} \big),\hspace{0.5cm}u_2  = \sqrt {2{\rm{\pi }}}  \cdot \Delta f \cdot \big( {t + T_1 /2} \big).$$
  
$$u_2  = \sqrt {2{\rm{\pi }}}  \cdot \Delta f \cdot \left( {t + T_1 /2} \right).$$
+
*Using the complementary Gaussian error integral, it is also possible to write for this:
 
Mit dem komplementären Gaußschen Fehlerintegral kann hierfür auch geschrieben werden:
 
 
   
 
   
$$y_1 (t) = A_1  \cdot \left[ {{\rm Q} ( {u_1 } ) - {\rm Q}( {u_2 } )} \right].$$
+
:$$y_1 (t) = A_1  \cdot \big[ {{\rm Q} ( {u_1 } ) - {\rm Q}( {u_2 } )} \big].$$
  
Für den Zeitpunkt $t = 0$ erhält man mit $(2\pi )1/2 \approx 2.5$:
+
*For time&nbsp; $t = 0$&nbsp; one obtains with&nbsp; $(2\pi )^{1/2} \approx 2.5$:
 
   
 
   
$$u_2  = \sqrt {2{\rm{\pi }}}  \cdot \Delta f \cdot \frac{ {T_1 }}{2} \approx 2.5 \cdot 4 \cdot 10^{7} \;{\rm{1/s}} \cdot 10^{-8} \;{\rm{s}} = 1.$$
+
:$$u_2  = \sqrt {2{\rm{\pi }}}  \cdot \Delta f \cdot \frac{ {T_1 }}{2} \approx 2.5 \cdot 4 \cdot 10^{7} \;{\rm{1/s}} \cdot 10^{-8} \;{\rm{s}} = 1.$$
  
Mit $u_1 = –u_2 = –1$ folgt weiter:
+
*With&nbsp; $u_1 = -u_2 = -1$&nbsp;, it follows for the two signal values we are looking for:
 
   
 
   
$$y_1 ( {t = 0} ) \approx A_1  \cdot \left[ {{\rm Q}( { - 1} ) - {\rm Q}(+ 1 )} \right] = 1\;{\rm{V}} \cdot \left[ {{\rm{0}}{\rm{.841 - 0}}{\rm{.159}}} \right] \hspace{0.15 cm}\underline{= 0.682\;{\rm{V}}}{\rm{.}}$$
+
:$$y_1 ( {t = 0} ) \approx A_1  \cdot \big[ {{\rm Q}( { - 1} ) - {\rm Q}(+ 1 )} \big] = 1\;{\rm{V}} \cdot \big[ {{\rm{0}}{\rm{.841 - 0}}{\rm{.159}}} \big] \hspace{0.15 cm}\underline{= 0.682\;{\rm{V}}}{\rm{,}}$$
 +
:$$y_1 ( {t = 20\;{\rm{ns}}} ) \approx A_1  \cdot \big[ {{\rm Q}( 1 ) - {\rm Q}( 3 )} \big] = 1\;{\rm{V}} \cdot \big[ {{\rm{0}}{\rm{.159 - 0}}{\rm{.001}}} \big] \hspace{0.15 cm}\underline{= 0.158\;{\rm{V}}}{\rm{.}}$$
  
Für den zweiten Zeitpunkt erhält man entsprechend:
 
 
$$y_1 ( {t = 20\;{\rm{ns}}} ) \approx A_1  \cdot \left[ {{\rm Q}( 1 ) - {\rm Q}( 3 )} \right] = 1\;{\rm{V}} \cdot \left[ {{\rm{0}}{\rm{.159 - 0}}{\rm{.001}}} \right] \hspace{0.15 cm}\underline{= 0.158\;{\rm{V}}}{\rm{.}}$$
 
  
'''2.''' Analog zur obigen Musterlösung kann nun geschrieben werden:
+
'''(2)'''&nbsp; Analogous to the first sample solution, one obtains&nbsp; $x_2(t)$ for the narrower input pulse:
 
   
 
   
$$y_2 ( {t = 0} ) \approx A_2  \cdot \left[ {{\rm Q}( { - 0.1} ) - {\rm Q}( {0.1} )} \right] = 10\;{\rm{V}} \cdot \left[ {{\rm{0}}{\rm{.540 - 0}}{\rm{.460}}} \right] \hspace{0.15 cm}\underline{= 0.80\;{\rm{V}}}{\rm{,}}$$
+
:$$y_2 ( {t = 0} ) \approx A_2  \cdot \big[ {{\rm Q}( { - 0.1} ) - {\rm Q}( {0.1} )} \big] = 10\;{\rm{V}} \cdot \big[ {{\rm{0}}{\rm{.540 - 0}}{\rm{.460}}} \big] \hspace{0.15 cm}\underline{= 0.80\;{\rm{V}}}{\rm{,}}$$
 
   
 
   
$$y_2 ( {t = 20\,{\rm ns}} ) \approx A_2  \cdot \left[ {{\rm Q}( {1.9} ) - {\rm Q}( {2.1} )} \right] = 10\;{\rm{V}} \cdot \left[ {{\rm{0}}{\rm{.029 - 0}}{\rm{.018}}} \right] \hspace{0.15 cm}\underline{= 0.11\;{\rm{V}}}{\rm{.}}$$
+
:$$y_2 ( {t = 20\,{\rm ns}} ) \approx A_2  \cdot \big[ {{\rm Q}( {1.9} ) - {\rm Q}( {2.1} )} \big] = 10\;{\rm{V}} \cdot \big[ {{\rm{0}}{\rm{.029 - 0}}{\rm{.018}}} \big] \hspace{0.15 cm}\underline{= 0.11\;{\rm{V}}}{\rm{.}}$$
  
'''3.''' Beim diracförmigen Eingangssignal $x_3(t)$ ist das Ausgangssignal $y_3(t)$ gleich der Impulsantwort $h(t)$, gewichtet mit dem Gewicht der Diracfunktion:
+
 
 +
'''(3)'''&nbsp; With the Dirac delta&nbsp; $x_3(t)$&nbsp;, the output signal&nbsp; $y_3(t)$&nbsp; is equal to the impulse response&nbsp; $h(t)$, weighted by the weight of the Dirac function:
 
   
 
   
$$y_3 (t) = 2 \cdot 10^{ - 8} \,{\rm{Vs}} \cdot 4 \cdot 10^7 \;{\rm{1/s}} \cdot {\rm{e}}^{ - {\rm{\pi }}( {\Delta f \cdot t})^2 }.$$
+
:$$y_3 (t) = 2 \cdot 10^{ - 8} \,{\rm{Vs}} \cdot 4 \cdot 10^7 \;{\rm{1/s}} \cdot {\rm{e}}^{ - {\rm{\pi }}( {\Delta f \cdot t})^2 }.$$
 +
 
 +
*At time&nbsp; $t = 0$&nbsp;, one also obtains here with a good approximation&nbsp; $y_3( t=0)\hspace{0.15 cm}\underline{ =0.8\, {\rm V}}$.
 +
*After&nbsp; $20\, \rm ns$&nbsp;, the output pulse is smaller by a factor of&nbsp; ${\rm e}^{–0.64π} \hspace{0.15 cm}\underline{\approx 0.136}$&nbsp; and one obtains&nbsp; $y_3( t = 20 \,\text{ns}) ≈ 0.11  \,\text{V}$.
 +
 
  
Zum Zeitpunkt $t$ = 0 erhält man 0.8 V. Nach $t$ = 20 Nanosekunden ist der Ausgangsimpuls um den Faktor exp(–0.64π) ≈ 0.136 kleiner und man erhält das Ergebnis $y_3$( $t$ = 20 ns) ≈ 0.11 V.
+
One can see from comparing the results from&nbsp; '''(2)'''&nbsp; and &nbsp; '''(3)''', that&nbsp; $y_3(t) \approx y_2(t)$&nbsp; gilt.  
Man erkennt aus dem Vergleich der Resultate aus 2) und 3), dass $y_3(t)$ ≈ $y_2(t)$ gilt. Der Grund hierfür ist, dass der Diracimpuls eine gute Näherung für einen rechteckförmigen Eingangsimpuls gleicher Fläche ist, wenn die Rechteckdauer $T$ deutlich kleiner ist als die äquivalente Impulsdauer $\Delta t$ der Impulsantwort. Das heißt für unser Beispiel: Für $T$ << $\Delta t$ ist auch der Ausgangsimpuls nahezu gaußförmig.
+
*The reason for this is that the Dirac delta is a good approximation for a rectangular input impulse of the same area if the rectangular duration&nbsp; $T$&nbsp; is significantly smaller than the equivalent impulse duration&nbsp; $\Delta t$&nbsp; of the impulse response.
 +
*This means for our example: &nbsp; If the duration&nbsp; $T$&nbsp; of the rectangular input impulse&nbsp; $x(t)$&nbsp; is clearly smaller than the&nbsp; "equivalent pulse duration"&nbsp; $\Delta t$&nbsp; of the Gaussian impulse response&nbsp; $h(t)$, then&nbsp; $y(t)$&nbsp; is also almost Gaussian.&nbsp; But:  &nbsp; '''Gaussian (once) folded with non&ndash;Gaussian never results in (exactly) Gaussian!'''
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Aufgaben zu Signaldarstellung|^3. Aperiodische Signale - Impulse^]]
+
[[Category:Signal Representation: Exercises|^3.4 The Convolution Theorem^]]

Latest revision as of 08:05, 26 May 2021

Convolution of rectangle  $x(t)$  and Gaussian pulse  $h(t)$

We consider a Gaussian low–pass with the equivalent bandwidth  $\Delta f = 40 \,\text{MHz}$:

$$H( f ) = {\rm{e}}^{{\rm{ - \pi }}( {f/\Delta f} )^2 } .$$

The corresponding impulse response is:

$$h( t ) = \Delta f \cdot {\rm{e}}^{{\rm{ - \pi }}( {\Delta f \hspace{0.05cm} \cdot \hspace{0.05cm} t} )^2 } .$$

From the sketch it can be seen that the  "equivalent time duration"   ⇒   $\Delta t = 1/\Delta f = 25\,\text{ns}$  of the impulse response  $h(t)$  can be read at the two inflection points of the Gaussian function.

Three different pulse-like signals are now applied to the input of the low-pass filter:

  • a rectangular pulse  $x_1(t)$  with amplitude  $A_1 =1\,\text{V}$  and duration  $T_1 = 20\,\text{ns}$  (red curve),
  • a rectangular pulse  $x_2(t)$  with amplitude  $A_2 =10\,\text{V}$  and duration  $T_2 = 2\,\text{ns}$  (violet curve),
  • a Dirac delta  $x_3(t)$  with impulse weight  $2 \cdot 10^{–8}\text{ Vs}$  (green arrow).




Hints:

  • To answer the questions, you can use the complementary Gaussian error integral, which is defined as follows:
Some values of the  $\rm Q$–function
$${\rm Q}( x ) = \frac{1}{ {\sqrt {2{\rm{\pi }}} }}\int_{\it x}^\infty {{\rm{e}}^{{{ - {\it u}}}^{\rm{2}} {\rm{/2}}} }\hspace{0.1cm}{\rm{d}}{\it u}.$$


This table gives some function values.



Questions

1

Calculate the signal  $y_1(t) = x_1(t) \ast h(t)$.  What values result at times  $t = 0$  and  $t = 20\,\text{ns}$  with the approximation  $(2\pi )^{1/2} \approx 2.5$?

$y_1(t=0)\ = \ $

 $\text{V}$
$y_1(t=20\,\text{ns})\ = \ $

 $\text{V}$

2

What are the signal values of the output signal  $y_2(t) = x_2(t) \ast h(t)$  at the considered time points?

$y_2(t=0)\ = \ $

 $\text{V}$
$y_2(t=20 \,\text{ns})\ = \ $

 $\text{V}$

3

What is the value of the output signa  $y_3(t) = x_3(t) \ast h(t)$  at the considered time points?  Interpret the result.

$y_3(t=0)\ = \ $

 $\text{V}$
$y_3(t=20\, \text{ns})\ = \ $

 $\text{V}$


Solution

(1)  The convolution integral here is:

$$y_1( t ) = A_1 \cdot \Delta f \cdot \int_{t - T_1 /2}^{t + T_1 /2} {{\rm{e}}^{{\rm{ - \pi }}( {\Delta f \hspace{0.05cm}\cdot \hspace{0.05cm} \tau } )^2 } }\hspace{0.1cm} {\rm{d}}\tau = \frac{A_1 }{\sqrt{2\pi }} \cdot\int_{u_1 }^{u_2 } {{\rm{e}}^{ - u^2 /2}\hspace{0.1cm} {\rm{d}}u.}$$
  • Here the substitution  $u = \sqrt {2{\rm{\pi }}} \cdot \Delta f \cdot \tau$  was used.  The integration limits are at:
$$u_1 = \sqrt {2{\rm{\pi }}} \cdot \Delta f \cdot \big( {t - T_1 /2} \big),\hspace{0.5cm}u_2 = \sqrt {2{\rm{\pi }}} \cdot \Delta f \cdot \big( {t + T_1 /2} \big).$$
  • Using the complementary Gaussian error integral, it is also possible to write for this:
$$y_1 (t) = A_1 \cdot \big[ {{\rm Q} ( {u_1 } ) - {\rm Q}( {u_2 } )} \big].$$
  • For time  $t = 0$  one obtains with  $(2\pi )^{1/2} \approx 2.5$:
$$u_2 = \sqrt {2{\rm{\pi }}} \cdot \Delta f \cdot \frac{ {T_1 }}{2} \approx 2.5 \cdot 4 \cdot 10^{7} \;{\rm{1/s}} \cdot 10^{-8} \;{\rm{s}} = 1.$$
  • With  $u_1 = -u_2 = -1$ , it follows for the two signal values we are looking for:
$$y_1 ( {t = 0} ) \approx A_1 \cdot \big[ {{\rm Q}( { - 1} ) - {\rm Q}(+ 1 )} \big] = 1\;{\rm{V}} \cdot \big[ {{\rm{0}}{\rm{.841 - 0}}{\rm{.159}}} \big] \hspace{0.15 cm}\underline{= 0.682\;{\rm{V}}}{\rm{,}}$$
$$y_1 ( {t = 20\;{\rm{ns}}} ) \approx A_1 \cdot \big[ {{\rm Q}( 1 ) - {\rm Q}( 3 )} \big] = 1\;{\rm{V}} \cdot \big[ {{\rm{0}}{\rm{.159 - 0}}{\rm{.001}}} \big] \hspace{0.15 cm}\underline{= 0.158\;{\rm{V}}}{\rm{.}}$$


(2)  Analogous to the first sample solution, one obtains  $x_2(t)$ for the narrower input pulse:

$$y_2 ( {t = 0} ) \approx A_2 \cdot \big[ {{\rm Q}( { - 0.1} ) - {\rm Q}( {0.1} )} \big] = 10\;{\rm{V}} \cdot \big[ {{\rm{0}}{\rm{.540 - 0}}{\rm{.460}}} \big] \hspace{0.15 cm}\underline{= 0.80\;{\rm{V}}}{\rm{,}}$$
$$y_2 ( {t = 20\,{\rm ns}} ) \approx A_2 \cdot \big[ {{\rm Q}( {1.9} ) - {\rm Q}( {2.1} )} \big] = 10\;{\rm{V}} \cdot \big[ {{\rm{0}}{\rm{.029 - 0}}{\rm{.018}}} \big] \hspace{0.15 cm}\underline{= 0.11\;{\rm{V}}}{\rm{.}}$$


(3)  With the Dirac delta  $x_3(t)$ , the output signal  $y_3(t)$  is equal to the impulse response  $h(t)$, weighted by the weight of the Dirac function:

$$y_3 (t) = 2 \cdot 10^{ - 8} \,{\rm{Vs}} \cdot 4 \cdot 10^7 \;{\rm{1/s}} \cdot {\rm{e}}^{ - {\rm{\pi }}( {\Delta f \cdot t})^2 }.$$
  • At time  $t = 0$ , one also obtains here with a good approximation  $y_3( t=0)\hspace{0.15 cm}\underline{ =0.8\, {\rm V}}$.
  • After  $20\, \rm ns$ , the output pulse is smaller by a factor of  ${\rm e}^{–0.64π} \hspace{0.15 cm}\underline{\approx 0.136}$  and one obtains  $y_3( t = 20 \,\text{ns}) ≈ 0.11 \,\text{V}$.


One can see from comparing the results from  (2)  and   (3), that  $y_3(t) \approx y_2(t)$  gilt.

  • The reason for this is that the Dirac delta is a good approximation for a rectangular input impulse of the same area if the rectangular duration  $T$  is significantly smaller than the equivalent impulse duration  $\Delta t$  of the impulse response.
  • This means for our example:   If the duration  $T$  of the rectangular input impulse  $x(t)$  is clearly smaller than the  "equivalent pulse duration"  $\Delta t$  of the Gaussian impulse response  $h(t)$, then  $y(t)$  is also almost Gaussian.  But:   Gaussian (once) folded with non–Gaussian never results in (exactly) Gaussian!