Difference between revisions of "Aufgaben:Exercise 4.6: Coordinate Rotation"

From LNTwww
 
Line 29: Line 29:
 
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables|Two-dimensional Gaussian Random Variables]].
 
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables|Two-dimensional Gaussian Random Variables]].
 
*Reference is also made to the chapter  [[Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables#Rotation_of_the_coordinate_system|Rotation of the coordinate system]].
 
*Reference is also made to the chapter  [[Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables#Rotation_of_the_coordinate_system|Rotation of the coordinate system]].
*Given are the approximations  ${\rm Q}(2.3) \approx 0.01$  and  ${\rm Q}(2.6) \approx 0.005$  for the complementary Gaussian error integral.
+
*Given are the approximations  ${\rm Q}(2.3) \approx 0.01$  and  ${\rm Q}(2.6) \approx 0.005$  for the complementary Gaussian error function.
 
*More information on this topic is provided in the  (German language) learning video  [[Gaußsche_2D-Zufallsgrößen_(Lernvideo)|"Gaußsche 2D-Zufallsgrößen"]]:
 
*More information on this topic is provided in the  (German language) learning video  [[Gaußsche_2D-Zufallsgrößen_(Lernvideo)|"Gaußsche 2D-Zufallsgrößen"]]:
 
::Part 1:   Gaussian random variables without statistical bindings,   
 
::Part 1:   Gaussian random variables without statistical bindings,   
Line 61: Line 61:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  From  $\xi = x + y$  and  $\eta = -x + y$  it follows directly:
+
'''(1)'''  From   $\xi = x + y$   and   $\eta = -x + y$   it follows directly:
 
:$$x = {1}/{2} \cdot ( \xi - \eta ) ,\hspace{0.5cm}y = {1}/{2}\cdot ( \xi +\eta ) .$$
 
:$$x = {1}/{2} \cdot ( \xi - \eta ) ,\hspace{0.5cm}y = {1}/{2}\cdot ( \xi +\eta ) .$$
  
*Substituting these values for the negative exponent, we get:
+
*Substituting these values for the negative exponent,  we get:
 
:$$\frac{x^2}{2} + \frac{y^2}{8} = \frac{1}{8} \cdot ( \xi - \eta )^2 + \frac{1}{32} \cdot ( \xi + \eta )^2.$$
 
:$$\frac{x^2}{2} + \frac{y^2}{8} = \frac{1}{8} \cdot ( \xi - \eta )^2 + \frac{1}{32} \cdot ( \xi + \eta )^2.$$
  
*Multiplied out, this gives:
+
*After Multiplication,  this gives:
 
:$$\frac{5}{32} \cdot \xi^2 + \frac{5}{32} \cdot \eta^2 - \frac{3}{16} \cdot \xi \cdot \eta .$$
 
:$$\frac{5}{32} \cdot \xi^2 + \frac{5}{32} \cdot \eta^2 - \frac{3}{16} \cdot \xi \cdot \eta .$$
  
*Since the coefficients on&nbsp; $\xi^2$&nbsp; and&nbsp; $\eta^2$&nbsp; are equal, then&nbsp; $\sigma_\xi = \sigma_\eta$.&nbsp; &nbsp; <u>The quotient we are looking for is therefore 1</u>.
+
*Since the coefficients on&nbsp; $\xi^2$&nbsp; and&nbsp; $\eta^2$&nbsp; are equal &nbsp; &rArr; &nbsp; $\sigma_\xi = \sigma_\eta$.&nbsp; &nbsp; The quotient we are looking for is therefore  
 +
:$$\sigma_\xi/\sigma_\eta\hspace{0.15cm}\underline{= 1.}$$
  
  
  
'''(2)'''&nbsp; By comparing coefficients, we obtain for&nbsp; $\sigma_\xi = \sigma_\eta$&nbsp; the system of equations:
+
'''(2)'''&nbsp; By comparing coefficients,&nbsp; we obtain for&nbsp; $\sigma_\xi = \sigma_\eta$&nbsp; the system of equations:
 
:$$2 \cdot \sigma_\xi^2 \cdot (1 - \rho_{\xi\eta}^2)= \frac{32}{5},$$
 
:$$2 \cdot \sigma_\xi^2 \cdot (1 - \rho_{\xi\eta}^2)= \frac{32}{5},$$
 
:$$\frac{\sigma_\xi^2 \cdot (1 - \rho_{\xi\eta}^2)}{\rho_{\xi\eta}}= \frac{16}{3}.$$
 
:$$\frac{\sigma_\xi^2 \cdot (1 - \rho_{\xi\eta}^2)}{\rho_{\xi\eta}}= \frac{16}{3}.$$
  
*Substituting the first equation into the second, we get&nbsp; $\rho_{\xi\eta}\hspace{0.15cm}\underline {= 0.6}$&nbsp; and&nbsp; $\sigma_{\xi} = \sqrt{5}\hspace{0.15cm}\underline {= 2.236}$.
+
*Substituting the first equation into the second,&nbsp; we get &nbsp; $\rho_{\xi\eta}\hspace{0.15cm}\underline {= 0.6}$ &nbsp; and &nbsp; $\sigma_{\xi} = \sqrt{5}\hspace{0.15cm}\underline {= 2.236}$.
  
  
  
'''(3)'''&nbsp; After coordinate transformation, we can write f&uuml;r this probability:
+
'''(3)'''&nbsp; After coordinate transformation,&nbsp; we can write f&uuml;r this probability:
 
:$${\rm Pr} ( | x + y | \le C ) = {\rm Pr} ( | \xi | \le C ) = 1 - 2 \cdot {\rm Pr} ( \xi >C ).$$
 
:$${\rm Pr} ( | x + y | \le C ) = {\rm Pr} ( | \xi | \le C ) = 1 - 2 \cdot {\rm Pr} ( \xi >C ).$$
  
*With the complementary Gaussian error integral, it further follows:
+
*With the complementary Gaussian error function,&nbsp; it further follows:
 
:$${\rm Pr} ( | x + y | \le C ) = 1 - 2 \cdot {\rm Q} ( {C}/{\sigma_\xi}) = 0.99 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q} ( {C}/{\sigma_\xi}) = 0.005.$$
 
:$${\rm Pr} ( | x + y | \le C ) = 1 - 2 \cdot {\rm Q} ( {C}/{\sigma_\xi}) = 0.99 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q} ( {C}/{\sigma_\xi}) = 0.005.$$
  

Latest revision as of 16:59, 24 February 2022

Coordinate rotation of a joint PDF

In the exercise we consider a two-dimensional Gaussian random variable  $(x,\hspace{0.08cm} y)$  with statistically independent components.  Let the standard deviations of the two components be  $\sigma_x = 1$  and  $\sigma_y = 2$.

We want to calculate the probability that the two-dimensional random variable  $(x,\hspace{0.08cm} y)$  lies within the shaded area:

$$-C \le x + y \le +C.$$

Perform a coordinate transformation to solve:

$$\xi = \hspace{0.4cm} x +y,$$
$$\eta= -x +y .$$

This corresponds to a rotation of the coordinate system by  $45^\circ$.

  • From  $x+y= \pm C$  it thus follows  $\xi=\pm C$.
  • The two two-dimensional density functions are then:
$$f_{xy} (x,\hspace{0.08cm}y) = \frac{1}{4 \pi} \cdot \exp \left [ - ( x^2\hspace {-0.1cm} /2 + y^2\hspace {-0.1cm} /8) \right ] ,$$
$$f_{\xi\eta} (\xi,\hspace{0.08cm} \eta) = \frac{1}{2 \pi \cdot \sigma_\xi \cdot \sigma_\eta \cdot \sqrt{1 - \rho_{\xi\eta}^2}} \cdot \exp \left [ - \frac{1}{2 \cdot (1 - \rho_{\xi\eta}^2)} \cdot ( \frac {\xi^2}{\sigma_\xi^2} + \frac {\eta^2}{\sigma_\eta^2 }- 2 \rho_{\xi\eta}\cdot \frac {\xi \cdot \eta}{\sigma_\xi \cdot \sigma_\eta}) \right ] .$$





Hints:

Part 1:   Gaussian random variables without statistical bindings,
Part 2:   Gaussian random variables with statistical bindings.



Questions

1

Determine the ratio of the two standard deviations of the new random variables by comparing coefficients $(\xi,\hspace{0.08cm} \eta)$.

$\sigma_\xi/\sigma_\eta \ = \ $

2

Calculate the standard deviation  $\sigma_\xi$  and correlation coefficient  $\rho_{\xi\eta}$  between the new random variables  $\xi$  and  $\eta$.

$\sigma_\xi \ = \ $

$\rho_{\xi\eta} \ = \ $

3

Calculate the probability that  $ |\hspace{0.05cm}x+y\hspace{0.05cm}| \le C$  holds.  How large should  $C$  be chosen so that  $99\%$  of all quantities are in the shaded area?

$C_{99\%} \ = \ $


Solution

(1)  From   $\xi = x + y$   and   $\eta = -x + y$   it follows directly:

$$x = {1}/{2} \cdot ( \xi - \eta ) ,\hspace{0.5cm}y = {1}/{2}\cdot ( \xi +\eta ) .$$
  • Substituting these values for the negative exponent,  we get:
$$\frac{x^2}{2} + \frac{y^2}{8} = \frac{1}{8} \cdot ( \xi - \eta )^2 + \frac{1}{32} \cdot ( \xi + \eta )^2.$$
  • After Multiplication,  this gives:
$$\frac{5}{32} \cdot \xi^2 + \frac{5}{32} \cdot \eta^2 - \frac{3}{16} \cdot \xi \cdot \eta .$$
  • Since the coefficients on  $\xi^2$  and  $\eta^2$  are equal   ⇒   $\sigma_\xi = \sigma_\eta$.    The quotient we are looking for is therefore
$$\sigma_\xi/\sigma_\eta\hspace{0.15cm}\underline{= 1.}$$


(2)  By comparing coefficients,  we obtain for  $\sigma_\xi = \sigma_\eta$  the system of equations:

$$2 \cdot \sigma_\xi^2 \cdot (1 - \rho_{\xi\eta}^2)= \frac{32}{5},$$
$$\frac{\sigma_\xi^2 \cdot (1 - \rho_{\xi\eta}^2)}{\rho_{\xi\eta}}= \frac{16}{3}.$$
  • Substituting the first equation into the second,  we get   $\rho_{\xi\eta}\hspace{0.15cm}\underline {= 0.6}$   and   $\sigma_{\xi} = \sqrt{5}\hspace{0.15cm}\underline {= 2.236}$.


(3)  After coordinate transformation,  we can write für this probability:

$${\rm Pr} ( | x + y | \le C ) = {\rm Pr} ( | \xi | \le C ) = 1 - 2 \cdot {\rm Pr} ( \xi >C ).$$
  • With the complementary Gaussian error function,  it further follows:
$${\rm Pr} ( | x + y | \le C ) = 1 - 2 \cdot {\rm Q} ( {C}/{\sigma_\xi}) = 0.99 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Q} ( {C}/{\sigma_\xi}) = 0.005.$$
  • With the given value  ${\rm Q}(2.6) \approx 0.005$  we thus obtain the result:
$$C \approx 2.6 \cdot \sigma_{\xi}\hspace{0.15cm}\underline {= 5.814}.$$