Difference between revisions of "Aufgaben:Exercise 4.09Z: Periodic ACF"

From LNTwww
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID380__Sto_Z_4_9.png|right|frame|Periodic multistage rectangular signal]]
+
[[File:P_ID380__Sto_Z_4_9.png|right|frame|Periodic multilevel rectangular signal]]
We consider in this exercise a periodic and simultaneously ergodic stochastic process  $\{x_i(t)\}$, which is fully characterized by the presented pattern function  $x(t)$  .
+
We consider in this exercise a periodic and simultaneously ergodic stochastic process  $\{x_i(t)\}$,  which is fully characterized by the presented pattern function  $x(t)$.
  
Further pattern signals of the random process  $\{x_i(t)\}$  are obtained by shifting by delays of different sizes  $\tau_i$, where  $\tau_i$  is assumed to be uniformly distributed between  $0$  and the period  $T_0$  .
+
Further pattern signals of the random process  $\{x_i(t)\}$  are obtained by shifting by different delays  $\tau_i$,  where  $\tau_i$  is assumed to be uniformly distributed between  $0$  and the period  $T_0$.
  
  
 
+
'''Hint:'''  The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Auto-Correlation_Function|Auto-Correlation Function]].
 
 
 
 
 
 
 
 
Hint:
 
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Auto-Correlation_Function|Auto-Correlation Function]].
 
 
   
 
   
  
Line 22: Line 16:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Determine the period duration&nbsp; $T_0$ normalized to the period duration&nbsp; $T$ defined in the sketch.
+
{Determine the period duration&nbsp; $T_0$&nbsp; normalized to the period duration&nbsp; $T$&nbsp; defined in the sketch.
 
|type="{}"}
 
|type="{}"}
 
$T_0/T \ = \ $ { 5 3% }
 
$T_0/T \ = \ $ { 5 3% }
  
  
{What is the size of the DC signal component (linear mean)&nbsp; $m_x$&nbsp; of the described process&nbsp; $\{x_i(t)\}$?
+
{What is the size of the DC signal component &nbsp; &rArr; &nbsp; linear mean&nbsp; $m_x$&nbsp; of the described process&nbsp; $\{x_i(t)\}$?
 
|type="{}"}
 
|type="{}"}
 
$m_x \ = \ $ { 0.4 3% } $\ \rm V$
 
$m_x \ = \ $ { 0.4 3% } $\ \rm V$
  
  
{What is the process power (related to the resistor&nbsp; $1 \hspace{0.05cm} \rm \Omega$&nbsp;)?
+
{What is the process power&nbsp; (related to the resistor&nbsp; $1 \hspace{0.05cm} \rm \Omega$&nbsp;)?
 
|type="{}"}
 
|type="{}"}
 
$P_x \ = \ $ { 2 3% } $\ \rm V^2$
 
$P_x \ = \ $ { 2 3% } $\ \rm V^2$
  
  
{Calculate the ASF values f&uuml;r&nbsp; $\tau = T$&nbsp; and&nbsp; $\tau = 2T$.
+
{Calculate the ACF values for&nbsp; $\tau = T$&nbsp; and&nbsp; $\tau = 2T$.
 
|type="{}"}
 
|type="{}"}
 
$\varphi_x(\tau = T) \ = \ $ { 0.6 3% } $\ \rm V^2$
 
$\varphi_x(\tau = T) \ = \ $ { 0.6 3% } $\ \rm V^2$
Line 58: Line 52:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[File:P_ID382__Sto_Z_4_9_d.png|right|frame|For ACF&ndash;calculation]]
+
[[File:P_ID382__Sto_Z_4_9_d.png|right|frame|For the ACF calculation]]
'''(1)'''&nbsp; The (normalized) period duration is&nbsp; $T_0/T \hspace{0.15cm}\underline{= 5}.$
+
'''(1)'''&nbsp; The&nbsp; (normalized)&nbsp; period duration is&nbsp; $T_0/T \hspace{0.15cm}\underline{= 5}.$
  
  
'''(2)'''&nbsp; Due to periodicity, the averaging &uuml;g over a periodic time&nbsp; $T_0$:
+
'''(2)'''&nbsp; Due to periodicity,&nbsp; the averaging over a periodic time&nbsp; $T_0$:
 
:$$m_x = \frac{1}{T_0} \cdot \int_0^{T_0} x(t) \hspace{0.1cm}{\rm d} t = \frac{1}{5 T} \cdot (2\hspace{0.05cm}{\rm V} \cdot 2 T - 2\hspace{0.05cm}{\rm V} \cdot 2 T) \hspace{0.15cm}\underline{= \rm 0.4 \,V}.$$
 
:$$m_x = \frac{1}{T_0} \cdot \int_0^{T_0} x(t) \hspace{0.1cm}{\rm d} t = \frac{1}{5 T} \cdot (2\hspace{0.05cm}{\rm V} \cdot 2 T - 2\hspace{0.05cm}{\rm V} \cdot 2 T) \hspace{0.15cm}\underline{= \rm 0.4 \,V}.$$
  
  
'''(3)'''&nbsp; In analogy to the last subtask, we obtain for the mean power:
+
'''(3)'''&nbsp; In analogy to the last subtask,&nbsp; we obtain for the mean power:
 
:$$P_x = \frac{2 T}{5 T} \cdot \big[(\rm 2V)^2 +(- \rm 1V)^2 \big]\hspace{0.15cm}\underline{ = \rm 2 \,V^2}.$$
 
:$$P_x = \frac{2 T}{5 T} \cdot \big[(\rm 2V)^2 +(- \rm 1V)^2 \big]\hspace{0.15cm}\underline{ = \rm 2 \,V^2}.$$
  
  
 
'''(4)'''&nbsp; The accompanying graph shows in each case in the range from&nbsp; $0$&nbsp; to&nbsp; $T_0 = 5T$.  
 
'''(4)'''&nbsp; The accompanying graph shows in each case in the range from&nbsp; $0$&nbsp; to&nbsp; $T_0 = 5T$.  
*above the product&nbsp; $x(t) \cdot x(t+T)$,
+
:*above the product&nbsp; $x(t) \cdot x(t+T)$,
*down the product&nbsp; $x(t) \cdot x(t+2T)$.   
+
:*down the product&nbsp; $x(t) \cdot x(t+2T)$.   
  
  
Note that&nbsp; $x(t+T)$&nbsp; means a shift of the signal&nbsp; $x(t)$&nbsp; by&nbsp; $T$&nbsp; to the left.  
+
*Note that&nbsp; $x(t+T)$&nbsp; means a shift of the signal&nbsp; $x(t)$&nbsp; by&nbsp; $T$&nbsp; to the left.  
  
From these sketches follow the relations:  
+
*From these sketches follow the relations:  
 
:$$\varphi_x (T)= \rm {1}/{5 } \cdot (\rm 4V^2 + \rm 1V^2 - \rm 2V^2) \hspace{0.15cm}\underline{= \rm 0.6\, V^2},$$
 
:$$\varphi_x (T)= \rm {1}/{5 } \cdot (\rm 4V^2 + \rm 1V^2 - \rm 2V^2) \hspace{0.15cm}\underline{= \rm 0.6\, V^2},$$
 
:$$\varphi_x ( 2 T)= \rm {1}/{5 } \cdot(-\rm 2V^2 \cdot 3) \hspace{0.15cm}\underline{= - \rm 1.2 \,V^2}.$$
 
:$$\varphi_x ( 2 T)= \rm {1}/{5 } \cdot(-\rm 2V^2 \cdot 3) \hspace{0.15cm}\underline{= - \rm 1.2 \,V^2}.$$
  
  
'''(5)'''&nbsp; An auto-correlation function is always even: &nbsp; $\varphi_x (-\tau)= \varphi_x (\tau)$.&nbsp;
 
*In addition, for periodic processes, the ACF is also periodic with the same periodic time&nbsp; $T_0$&nbsp; as the individual pattern functions. It follows that:
 
 
[[File:P_ID383__Sto_Z_4_9_e.png|right|frame|Wanted auto-correlation function]]
 
[[File:P_ID383__Sto_Z_4_9_e.png|right|frame|Wanted auto-correlation function]]
 +
'''(5)'''&nbsp; An auto-correlation function is always even: &nbsp;
 +
:$$\varphi_x (-\tau)= \varphi_x (\tau).$$
 +
*In addition,&nbsp; for periodic processes,&nbsp; the ACF is also periodic with the same period duration&nbsp; $T_0$&nbsp; as the individual pattern functions.&nbsp; It follows that:
  
 
:$$\varphi_x ( 0) = \varphi_x (5 T) = \varphi_x (10 T) = \ \text{...} \ = \it P_x = \rm 2 \,V^2,$$
 
:$$\varphi_x ( 0) = \varphi_x (5 T) = \varphi_x (10 T) = \ \text{...} \ = \it P_x = \rm 2 \,V^2,$$
Line 90: Line 85:
 
:$$\varphi_x (4 T) = \varphi_x (-4 T) =\varphi_x ( T) = \ \text{...} \ \hspace{0.15cm}\underline{= \rm 0.6 \,V^2}.$$
 
:$$\varphi_x (4 T) = \varphi_x (-4 T) =\varphi_x ( T) = \ \text{...} \ \hspace{0.15cm}\underline{= \rm 0.6 \,V^2}.$$
  
*The calculated ACF values can be connected by straight line sections, since integration &uuml;over rectangular functions always yields linear subsections.
+
*The calculated ACF values can be connected by straight line sections,&nbsp; since integration over rectangular functions always yields linear subsections.
  
  
Line 96: Line 91:
 
'''(6)'''&nbsp; The five intervals&nbsp; $(0$ to $T)$,&nbsp; $(T$ to $2T)$, ... ,&nbsp; $(4T$ to $5T)$&nbsp; provide the contributions.  
 
'''(6)'''&nbsp; The five intervals&nbsp; $(0$ to $T)$,&nbsp; $(T$ to $2T)$, ... ,&nbsp; $(4T$ to $5T)$&nbsp; provide the contributions.  
 
:$$(+1.3; -0.3; -1.2; -0.3; +1.3) \cdot \rm V^2.$$  
 
:$$(+1.3; -0.3; -1.2; -0.3; +1.3) \cdot \rm V^2.$$  
*This gives the expected value (linear mean):
+
*This gives the expected value&nbsp; (linear mean):
 
:$${\rm E}\big[\varphi_x(\tau)\big] = 1/5 \cdot (1.3-0.3 -1.2 -0.3 +1.3]\hspace{0.15cm}\underline{= \rm 0.16 \,V^2}.$$
 
:$${\rm E}\big[\varphi_x(\tau)\big] = 1/5 \cdot (1.3-0.3 -1.2 -0.3 +1.3]\hspace{0.15cm}\underline{= \rm 0.16 \,V^2}.$$
  

Latest revision as of 17:33, 19 March 2022

Periodic multilevel rectangular signal

We consider in this exercise a periodic and simultaneously ergodic stochastic process  $\{x_i(t)\}$,  which is fully characterized by the presented pattern function  $x(t)$.

Further pattern signals of the random process  $\{x_i(t)\}$  are obtained by shifting by different delays  $\tau_i$,  where  $\tau_i$  is assumed to be uniformly distributed between  $0$  and the period  $T_0$.


Hint:  The exercise belongs to the chapter  Auto-Correlation Function.


Questions

1

Determine the period duration  $T_0$  normalized to the period duration  $T$  defined in the sketch.

$T_0/T \ = \ $

2

What is the size of the DC signal component   ⇒   linear mean  $m_x$  of the described process  $\{x_i(t)\}$?

$m_x \ = \ $

$\ \rm V$

3

What is the process power  (related to the resistor  $1 \hspace{0.05cm} \rm \Omega$ )?

$P_x \ = \ $

$\ \rm V^2$

4

Calculate the ACF values for  $\tau = T$  and  $\tau = 2T$.

$\varphi_x(\tau = T) \ = \ $

$\ \rm V^2$
$\varphi_x(\tau = 2T) \ = \ $

$\ \rm V^2$

5

Sketch the ACF curve taking into account symmetries.  What values result for  $\tau = 3T$  and  $\tau = 4T$?

$\varphi_x(\tau = 3T) \ = \ $

$\ \rm V^2$
$\varphi_x(\tau = 4T)\ = \ $

$\ \rm V^2$

6

Calculate the expected value of the ACF with respect to all  $\tau$ values.  Interpret the result.

${\rm E}\big[\varphi_x(\tau)\big]\ = \ $

$\ \rm V^2$


Solution

For the ACF calculation

(1)  The  (normalized)  period duration is  $T_0/T \hspace{0.15cm}\underline{= 5}.$


(2)  Due to periodicity,  the averaging over a periodic time  $T_0$:

$$m_x = \frac{1}{T_0} \cdot \int_0^{T_0} x(t) \hspace{0.1cm}{\rm d} t = \frac{1}{5 T} \cdot (2\hspace{0.05cm}{\rm V} \cdot 2 T - 2\hspace{0.05cm}{\rm V} \cdot 2 T) \hspace{0.15cm}\underline{= \rm 0.4 \,V}.$$


(3)  In analogy to the last subtask,  we obtain for the mean power:

$$P_x = \frac{2 T}{5 T} \cdot \big[(\rm 2V)^2 +(- \rm 1V)^2 \big]\hspace{0.15cm}\underline{ = \rm 2 \,V^2}.$$


(4)  The accompanying graph shows in each case in the range from  $0$  to  $T_0 = 5T$.

  • above the product  $x(t) \cdot x(t+T)$,
  • down the product  $x(t) \cdot x(t+2T)$.


  • Note that  $x(t+T)$  means a shift of the signal  $x(t)$  by  $T$  to the left.
  • From these sketches follow the relations:
$$\varphi_x (T)= \rm {1}/{5 } \cdot (\rm 4V^2 + \rm 1V^2 - \rm 2V^2) \hspace{0.15cm}\underline{= \rm 0.6\, V^2},$$
$$\varphi_x ( 2 T)= \rm {1}/{5 } \cdot(-\rm 2V^2 \cdot 3) \hspace{0.15cm}\underline{= - \rm 1.2 \,V^2}.$$


Wanted auto-correlation function

(5)  An auto-correlation function is always even:  

$$\varphi_x (-\tau)= \varphi_x (\tau).$$
  • In addition,  for periodic processes,  the ACF is also periodic with the same period duration  $T_0$  as the individual pattern functions.  It follows that:
$$\varphi_x ( 0) = \varphi_x (5 T) = \varphi_x (10 T) = \ \text{...} \ = \it P_x = \rm 2 \,V^2,$$
$$\varphi_x (3 T) = \varphi_x (-3 T) =\varphi_x (2 T) = \ \text{...} \ \hspace{0.15cm}\underline{= - \rm 1.2 \,V^2},$$
$$\varphi_x (4 T) = \varphi_x (-4 T) =\varphi_x ( T) = \ \text{...} \ \hspace{0.15cm}\underline{= \rm 0.6 \,V^2}.$$
  • The calculated ACF values can be connected by straight line sections,  since integration over rectangular functions always yields linear subsections.


(6)  The five intervals  $(0$ to $T)$,  $(T$ to $2T)$, ... ,  $(4T$ to $5T)$  provide the contributions.

$$(+1.3; -0.3; -1.2; -0.3; +1.3) \cdot \rm V^2.$$
  • This gives the expected value  (linear mean):
$${\rm E}\big[\varphi_x(\tau)\big] = 1/5 \cdot (1.3-0.3 -1.2 -0.3 +1.3]\hspace{0.15cm}\underline{= \rm 0.16 \,V^2}.$$
  • This corresponds to the square of the mean  $m_x$   ⇒   see subtask  (2).