Difference between revisions of "Aufgaben:Exercise 4.11: C Program "acf1""

From LNTwww
 
(5 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID391__Sto_A_4_11.png|right|frame|C program  $1$  for ACF–calculation '''correction''']]
+
[[File:EN_Sto_A_4_11_neu2.png|right|frame|C program  $1$  for the ACF calculation]]
See the C–program "akf1" for calculating the discrete ACF values  $\varphi_x(k)$  with index  $k = 0$, ... , $l$.  The following should be noted about this:
+
See the C–program "acf1" for calculating the discrete ACF values  $\varphi_x(k)$  with index  $k = 0$, ... , $l$.  The following should be noted about this:
  
* Let the long–value passed to the program  $l = 10$.  The ACF values  $\varphi_x(0)$, ... , $\varphi_x(10)$  are returned to the calling program with the float field  $\rm ACF\big[ \ \big]$  . In lines 7 and 8 of the program given on the right, this field is pre-populated with zeros.
+
* The long–value passed to the program is  $l = 10$.  The ACF values  $\varphi_x(0)$, ... , $\varphi_x(10)$  are returned to the calling program with the float field  $\rm ACF\big[ \ \big]$.  In lines 7 and 8 of the program given on the right,  this field is pre-populated with zeros.
  
* The random variables to be analyzed  $x_\nu$  are generated with the float function  $x( \ )$  (see line 4).  This function is called a total of  $N + l + 1 = 10011$  times (lines 9 and 18).
+
* The random variables  $x_\nu$  to be analyzed are generated with the float function  $x( \ )$,  see line 4.  This function is called a total of  $N + l + 1 = 10011$  times  $x_\nu$  (lines 9 and 18).
  
* In contrast to the algorithm given in the  [[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Numerical_ACF_determination|Theory section]]  program  "akf2"  of  [[Aufgaben:Exercise_4.11Z:_C_Program_"acf2"|Task 4.11Z]]  directly implemented, one needs here an auxiliary field  ${\rm H}\big[ \ \big]$  with only  $l + 1 = 11$  memory elements.
+
* In contrast to the algorithm given in the  [[Theory_of_Stochastic_Signals/Auto-Correlation_Function#Numerical_ACF_determination|Theory section]]  directly implemented in the program  "acf2"  of  [[Aufgaben:Exercise_4.11Z:_C_Program_"acf2"|Task 4.11Z]],  one needs here an auxiliary field  ${\rm H}\big[ \ \big]$  with only  $l + 1 = 11$  memory elements.
  
 +
* Before starting the actual calculation algorithm (lines 11 to 21),  the eleven memory cells of  ${\rm H}\big[ \ \big]$  contain the random values  $x_1$, ... ,  $x_{11}$.  The outer loop with the index  $z$   (marked in red)  is run  $N$  times.
 +
*In the inner loop   (marked white)  with the index  $k = 0$, ... ,  $l$  all memory cells of the field  ${\rm ACF}\big[\hspace{0.03cm} k \hspace{0.03cm} \big]$  are increased by the contribution  $x_\nu \cdot x_{\nu+k}$.
  
* Before starting the actual calculation algorithm (lines 11 to 21), the eleven memory cells of  ${\rm H}\big[ \ \big]$  contain the random values  $x_1$, ... ,  $x_{11}$.
+
* Finally,  in lines 22 and 23,  all ACF values are divided by the number  $N$  of analyzed  data.  
*The outer loop with the index  $z$  (marked in red) is run  $N$ times.
 
*In the inner loop  (marked white)  with the index  $k = 0$, ... ,  $l$  all memory cells of the field  ${\rm ACF}\big[\hspace{0.03cm} k \hspace{0.03cm} \big]$  are increased by the contribution  $x_\nu \cdot x_{\nu+k}$ .
 
 
 
* Finally, in lines 22 and 23, all ACF–values are divided by the number  $N$  of data analyzed.  
 
  
  
Line 34: Line 32:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Which elements&nbsp; $i$&nbsp; and&nbsp; $j$&nbsp; of the auxiliary field&nbsp; ${\rm H}\big[ \ \big]$&nbsp; are used <u>on the first pass</u>&nbsp; $(z=0)$&nbsp; to calculate the ACF&ndash;value&nbsp; $\varphi(k=6)$&nbsp;? <br>What random values&nbsp; $x_\nu$&nbsp; are in these memory cells?
+
{Which elements&nbsp; $i$&nbsp; and&nbsp; $j$&nbsp; of the auxiliary field&nbsp; ${\rm H}\big[ \ \big]$&nbsp; are used&nbsp; <u>on the first loop pass</u> &nbsp; $(z=0)$&nbsp; to calculate the ACF&ndash;value&nbsp; $\varphi(k=6)$&nbsp;? <br>What random values&nbsp; $x_\nu$&nbsp; are in these memory cells?
 
|type="{}"}
 
|type="{}"}
 
$i \ = \ $ { 0. }
 
$i \ = \ $ { 0. }
Line 40: Line 38:
  
  
{Which memory cell&nbsp; ${\rm H}\big[\hspace{0.03cm} i \hspace{0.03cm} \big]$&nbsp; will be occupied <u>after the first loop pass</u>&nbsp; $(z=0)$&nbsp; with a new random variable&nbsp; $x_\nu$&nbsp;? <br> Which index &nbsp; $\nu$&nbsp; is entered in the process?  
+
{Which memory cell&nbsp; ${\rm H}\big[\hspace{0.03cm} i \hspace{0.03cm} \big]$&nbsp; will be occupied&nbsp; <u>after the first loop pass</u> &nbsp; $(z=0)$&nbsp; with a new random variable&nbsp; $x_\nu$&nbsp;? <br> Which index &nbsp; $\nu$&nbsp; is entered in the process?  
 
|type="{}"}
 
|type="{}"}
 
$i \ = \ $  { 0. }
 
$i \ = \ $  { 0. }
Line 58: Line 56:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[File:P_ID417__Sto_A_4_11_b.png|right|frame|For numerical ACF calculation]]
+
[[File:P_ID417__Sto_A_4_11_b.png|right|frame|For the exemplary numerical ACF calculation]]
 
<br>
 
<br>
 
'''(1)'''&nbsp; With&nbsp; $z= 0$&nbsp; and&nbsp; $k=6$&nbsp; results according to the program: &nbsp; $\underline{i= 0}$&nbsp; and&nbsp; $\underline{j= 6}$.
 
'''(1)'''&nbsp; With&nbsp; $z= 0$&nbsp; and&nbsp; $k=6$&nbsp; results according to the program: &nbsp; $\underline{i= 0}$&nbsp; and&nbsp; $\underline{j= 6}$.
Line 73: Line 71:
 
'''(3)'''&nbsp; The graph shows the allocation of the auxiliary field with the random values&nbsp; $x_\nu$.  
 
'''(3)'''&nbsp; The graph shows the allocation of the auxiliary field with the random values&nbsp; $x_\nu$.  
  
*In each case, the memory cell is highlighted in green&nbsp; ${\rm H}\big[\hspace{0.03cm} i \hspace{0.03cm}\big]$.&nbsp; The new random variable is entered into this memory location at the end of each loop (line 18).
+
*In each case,&nbsp; the memory cell&nbsp; ${\rm H}\big[\hspace{0.03cm} i \hspace{0.03cm}\big]$&nbsp; is highlighted in green.&nbsp; The new random variable is entered into this memory location at the end of each loop&nbsp; (line 18).
*For&nbsp; $z= 83$&nbsp; and&nbsp; $K=6$&nbsp; this results in.
+
*For&nbsp; $z= 83$&nbsp; and&nbsp; $K=6$&nbsp; this results in  
 
:$$\underline{i= 83 \hspace{-0.2cm}\mod \hspace{-0.15cm} \ 11 = 6},\hspace{1cm} \underline{j= (i+k)\hspace{-0.2cm}\mod \hspace{-0.15cm} \ 11 = 1}.$$
 
:$$\underline{i= 83 \hspace{-0.2cm}\mod \hspace{-0.15cm} \ 11 = 6},\hspace{1cm} \underline{j= (i+k)\hspace{-0.2cm}\mod \hspace{-0.15cm} \ 11 = 1}.$$
 
*Loop pass&nbsp; $z= 83$: &nbsp; In memory cell&nbsp; ${\rm H}\big[\hspace{0.03cm} 6 \hspace{0.03cm}\big]$&nbsp; is the random variable&nbsp; $x_{84}$&nbsp; and in the memory cell&nbsp; ${\rm H}\big[\hspace{0.03cm} 1 \hspace{0.03cm}\big]$&nbsp; is the random variable&nbsp; $x_{90}$.  
 
*Loop pass&nbsp; $z= 83$: &nbsp; In memory cell&nbsp; ${\rm H}\big[\hspace{0.03cm} 6 \hspace{0.03cm}\big]$&nbsp; is the random variable&nbsp; $x_{84}$&nbsp; and in the memory cell&nbsp; ${\rm H}\big[\hspace{0.03cm} 1 \hspace{0.03cm}\big]$&nbsp; is the random variable&nbsp; $x_{90}$.  
*At the end of the loop pass&nbsp; $z= 83$&nbsp; in&nbsp; ${\rm H}\big[\hspace{0.03cm} 6 \hspace{0.03cm}\big]$&nbsp; the content&nbsp; $x_{84}$&nbsp; is replaced by&nbsp; $x_{95}$&nbsp;.
+
*At the end of loop pass&nbsp; $z= 83$&nbsp; in&nbsp; ${\rm H}\big[\hspace{0.03cm} 6 \hspace{0.03cm}\big]$:&nbsp; The content&nbsp; $x_{84}$&nbsp; is replaced by&nbsp; $x_{95}$&nbsp;.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 16:28, 28 April 2022

C program  $1$  for the ACF calculation

See the C–program "acf1" for calculating the discrete ACF values  $\varphi_x(k)$  with index  $k = 0$, ... , $l$.  The following should be noted about this:

  • The long–value passed to the program is  $l = 10$.  The ACF values  $\varphi_x(0)$, ... , $\varphi_x(10)$  are returned to the calling program with the float field  $\rm ACF\big[ \ \big]$.  In lines 7 and 8 of the program given on the right,  this field is pre-populated with zeros.
  • The random variables  $x_\nu$  to be analyzed are generated with the float function  $x( \ )$,  see line 4.  This function is called a total of  $N + l + 1 = 10011$  times  $x_\nu$  (lines 9 and 18).
  • In contrast to the algorithm given in the  Theory section  directly implemented in the program  "acf2"  of  Task 4.11Z,  one needs here an auxiliary field  ${\rm H}\big[ \ \big]$  with only  $l + 1 = 11$  memory elements.
  • Before starting the actual calculation algorithm (lines 11 to 21),  the eleven memory cells of  ${\rm H}\big[ \ \big]$  contain the random values  $x_1$, ... ,  $x_{11}$.  The outer loop with the index  $z$   (marked in red)  is run  $N$  times.
  • In the inner loop   (marked white)  with the index  $k = 0$, ... ,  $l$  all memory cells of the field  ${\rm ACF}\big[\hspace{0.03cm} k \hspace{0.03cm} \big]$  are increased by the contribution  $x_\nu \cdot x_{\nu+k}$.
  • Finally,  in lines 22 and 23,  all ACF values are divided by the number  $N$  of analyzed data.




Hint:



Questions

1

Which elements  $i$  and  $j$  of the auxiliary field  ${\rm H}\big[ \ \big]$  are used  on the first loop pass   $(z=0)$  to calculate the ACF–value  $\varphi(k=6)$ ?
What random values  $x_\nu$  are in these memory cells?

$i \ = \ $

$j \ = \ $

2

Which memory cell  ${\rm H}\big[\hspace{0.03cm} i \hspace{0.03cm} \big]$  will be occupied  after the first loop pass   $(z=0)$  with a new random variable  $x_\nu$ ?
Which index   $\nu$  is entered in the process?

$i \ = \ $

$\nu\ =\ $

3

Which memory elements  ${\rm H}\big[\hspace{0.03cm} i \hspace{0.03cm} \big]$  and  ${\rm H}\big[\hspace{0.03cm} j \hspace{0.03cm} \big]$  are used in the loop pass  $z=83$  to calculate the ACF value  $\varphi(k=6)$ ?
What random values are in these memory cells?

$i \ = \ $

$j \ = \ $


Solution

For the exemplary numerical ACF calculation


(1)  With  $z= 0$  and  $k=6$  results according to the program:   $\underline{i= 0}$  and  $\underline{j= 6}$.

  • The corresponding memory contents are  ${\rm H}\big[\hspace{0.03cm} 0 \hspace{0.03cm}\big] = x_1$  and  ${\rm H}\big[\hspace{0.03cm} 6 \hspace{0.03cm}\big] = x_7$.



(2)  In the field  ${\rm H}\big[\hspace{0.03cm} 0 \hspace{0.03cm}\big]$  the random variable  $x_{12}$  is now entered:

$$\text{memory cell }\underline{i= 0},\hspace{1cm}\text{sequence index }\underline{\nu= 12}.$$


(3)  The graph shows the allocation of the auxiliary field with the random values  $x_\nu$.

  • In each case,  the memory cell  ${\rm H}\big[\hspace{0.03cm} i \hspace{0.03cm}\big]$  is highlighted in green.  The new random variable is entered into this memory location at the end of each loop  (line 18).
  • For  $z= 83$  and  $K=6$  this results in
$$\underline{i= 83 \hspace{-0.2cm}\mod \hspace{-0.15cm} \ 11 = 6},\hspace{1cm} \underline{j= (i+k)\hspace{-0.2cm}\mod \hspace{-0.15cm} \ 11 = 1}.$$
  • Loop pass  $z= 83$:   In memory cell  ${\rm H}\big[\hspace{0.03cm} 6 \hspace{0.03cm}\big]$  is the random variable  $x_{84}$  and in the memory cell  ${\rm H}\big[\hspace{0.03cm} 1 \hspace{0.03cm}\big]$  is the random variable  $x_{90}$.
  • At the end of loop pass  $z= 83$  in  ${\rm H}\big[\hspace{0.03cm} 6 \hspace{0.03cm}\big]$:  The content  $x_{84}$  is replaced by  $x_{95}$ .