Difference between revisions of "Aufgaben:Exercise 3.2: Spectrum with Angle Modulation"

From LNTwww
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Phasenmodulation (PM)
+
{{quiz-Header|Buchseite=Modulation_Methods/Phase_Modulation_(PM)
 
}}
 
}}
  
Line 7: Line 7:
 
* Source signal:
 
* Source signal:
 
:q(t)=2Vsin(2π3kHzt),
 
:q(t)=2Vsin(2π3kHzt),
* Transmit signal:
+
* Transmitted signal:
 
:s(t)=1Vcos[2π100kHzt+KMq(t)],
 
:s(t)=1Vcos[2π100kHzt+KMq(t)],
 
* Received signal (ideal channel):
 
* Received signal (ideal channel):
Line 77: Line 77:
  
  
'''(2)'''  An angle modulationn  (PM, FM)  always results in nonlinear distortion when the channel is bandlimited.  
+
'''(2)'''  An angle modulation  (PM, FM)  always results in nonlinear distortion when the channel is bandlimited.  
 
*In contrast, double-sideband amplitude modulation&nbsp; (DSB-AM)&nbsp; here enables distortion-free transmission with&nbsp; BK=6 kHz&nbsp;; ⇒ &nbsp; <u>Answer 1</u>.
 
*In contrast, double-sideband amplitude modulation&nbsp; (DSB-AM)&nbsp; here enables distortion-free transmission with&nbsp; BK=6 kHz&nbsp;; ⇒ &nbsp; <u>Answer 1</u>.
  
Line 100: Line 100:
 
:STP(f=0)=0.765Vδ(f).
 
:STP(f=0)=0.765Vδ(f).
 
*This is therefore infinite due to the Dirac function, and only the weight of the Dirac function is finite.
 
*This is therefore infinite due to the Dirac function, and only the weight of the Dirac function is finite.
*The same applies for all discrete spectral line.
+
*The same applies for all discrete spectral lines.
  
  
  
'''(5)'''&nbsp; S+(f)&nbsp; ergibt sich aus&nbsp; STP(f)&nbsp; durch Verschiebung um&nbsp; fT&nbsp; nach rechts.&nbsp; Deshalb ist
+
'''(5)'''&nbsp; S+(f)&nbsp; is obtained from &nbsp; STP(f)&nbsp; by shifting &nbsp; fT&nbsp;to the right.&nbsp; Therefore
 
:S+(f=97kHz)=STP(f=3kHz)=0.440V_.
 
:S+(f=97kHz)=STP(f=3kHz)=0.440V_.
*Das tatsächliche Spektrum unterscheidet sich von&nbsp; S+(f)&nbsp; bei positiven Frequenzen um den Faktor&nbsp; 1/2:
+
*The actual spectrum differs from&nbsp; S+(f)&nbsp; by a factor of &nbsp; 1/2 at positive frequencies:
 
:S(f=97kHz)=1/2S+(f=97kHz)=0.220V_.
 
:S(f=97kHz)=1/2S+(f=97kHz)=0.220V_.
*Allgemein kann geschrieben werden:
+
*In general, we can write:
 
:S(f)=AT2+n=Jn(η)δ(f±(fT+nfN)).
 
:S(f)=AT2+n=Jn(η)δ(f±(fT+nfN)).
  
  
  
'''(6)'''&nbsp; Unter der vorgeschlagenen Vernachlässigung können alle Bessellinien&nbsp; J|n|>3&nbsp; außer Acht gelassen werden.
+
'''(6)'''&nbsp; Under the suggested conditions, all the Bessel lines&nbsp; J|n|>3&nbsp; can be disregarded.
* Damit erhält man&nbsp; BK=2·3·fN=18 kHz_.
+
* This gives&nbsp; BK=2·3·fN=18 kHz_.
  
  
  
'''(7)'''&nbsp; Die Zahlenwerte in der Tabelle auf der Angabenseite zeigen, dass nun folgende Kanalbandbreiten erforderlich wären:
+
'''(7)'''&nbsp; The numerical values in the table given on the exercise page show that the following channel bandwidths would now be required:  
 
*für η=2: &nbsp; &nbsp;  BK=24 kHz_,
 
*für η=2: &nbsp; &nbsp;  BK=24 kHz_,
 
*für η=3: &nbsp; &nbsp;  BK=36 kHz_.
 
*für η=3: &nbsp; &nbsp;  BK=36 kHz_.

Latest revision as of 17:21, 23 January 2023

Table of Bessel functions

The following equations are assumed here:

  • Source signal:
q(t)=2Vsin(2π3kHzt),
  • Transmitted signal:
s(t)=1Vcos[2π100kHzt+KMq(t)],
  • Received signal (ideal channel):
r(t)=s(t)=1Vcos[2π100kHzt+ϕ(t)],
  • ideal demodulator:
v(t)=1KMϕ(t).

The graphs shows the   n–th order Bessel functions of the first kind   Jn(η)  in table form.





Hints:


Questions

1

Which modulation method is used here?

Amplitude modulation.
Phase modulation.
Frequency modulation.

2

Which modulation method would you choose if the channel bandwidth was only  BK=10 kHz ?

Amplitude modulation.
Phase modulation.
Frequency modulation.

3

How should one choose the modulator constant KM  for a phase deviation of  η=1 ?

KM = 

 1/V

4

Calculate the spectrum  STP(f)  of the equivalent low-pass signal  sTP(t).  What are the weights of the spectral lines at  f=0  and  f=3 kHz?

STP(f=0) = 

 V
STP(f=3 kHz) = 

 V

5

Calculate the spectra of the analytical signal s+(t)  and the physical signal  s(t).  What are the weights of the spectral lines at  f=97 kHz?

S+(f=97 kHz) = 

 V
S(f=97 kHz)= 

 V

6

What is the required channel bandwidth  BK  for  η=1, if one ignores pulse weights smaller (in magnitude) than 0.01 ?

η=1:   BK = 

 kHz

7

What would be the channel bandwidths for  η=2  and  η=3 ?

η=2:   BK = 

 kHz
η=3:   BK = 

 kHz


Solution

(1)  The phase  ϕ(t)  is proportional to the source signal  q(t)   ⇒   this is a phase modulation   ⇒   Answer 2.


(2)  An angle modulation  (PM, FM)  always results in nonlinear distortion when the channel is bandlimited.

  • In contrast, double-sideband amplitude modulation  (DSB-AM)  here enables distortion-free transmission with  BK=6 kHz ; ⇒   Answer 1.


(3)  The modulation index (or phase deviation) is equal to  η=KM·AN for phase modulation.

  • Thus, the modulator constant must be set to  KM=1/AN=0.51/V_  to give   η=1 .


(4)  A so-called Bessel spectrum is present:

STP(f)=AT+n=Jn(η)δ(fnfN).
  • This is a discrete spectrum with components at   f=n·fN, where  n  is an integer.
  • The weights of the Dirac functions are given by the Bessel functions.  When  AT=1 V , one obtains:
PM spectrum in the equivalent low-pass range
STP(f=0)=ATJ0(η=1)=0.765V_,
STP(f=fN)=ATJ1(η=1)=0.440V,
STP(f=2fN)=ATJ2(η=1)=0.115V.
  • Due to the symmetry   Jn(η)=(1)nJn(η) , the spectral line at   f=3 kHz is obtained as:
STP(f=fN)=STP(f=+fN)=0.440V_.

Note:  For the spectral value at  f=0  we should actually write:

STP(f=0)=0.765Vδ(f).
  • This is therefore infinite due to the Dirac function, and only the weight of the Dirac function is finite.
  • The same applies for all discrete spectral lines.


(5)  S+(f)  is obtained from   STP(f)  by shifting   fT to the right.  Therefore

S+(f=97kHz)=STP(f=3kHz)=0.440V_.
  • The actual spectrum differs from  S+(f)  by a factor of   1/2 at positive frequencies:
S(f=97kHz)=1/2S+(f=97kHz)=0.220V_.
  • In general, we can write:
S(f)=AT2+n=Jn(η)δ(f±(fT+nfN)).


(6)  Under the suggested conditions, all the Bessel lines  J|n|>3  can be disregarded.

  • This gives  BK=2·3·fN=18 kHz_.


(7)  The numerical values in the table given on the exercise page show that the following channel bandwidths would now be required:

  • für η=2:     BK=24 kHz_,
  • für η=3:     BK=36 kHz_.