Difference between revisions of "Aufgaben:Exercise 4.15: PDF and Covariance Matrix"

From LNTwww
 
(4 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID669__Sto_A_4_15.png |right|frame|Two correlation matrices]]
+
[[File:P_ID669__Sto_A_4_15.png |right|frame|Two covariance matrices]]
We consider here the three-dimensional random variable  $\mathbf{x}$, whose commonly represented covariance matrix  $\mathbf{K}_{\mathbf{x}}$  is given in the graph.  The random variable has the following properties:
+
We consider here the three-dimensional random variable   $\mathbf{x}$,  whose commonly represented covariance matrix   $\mathbf{K}_{\mathbf{x}}$   is given in the upper graph.  The random variable has the following properties:
  
 
* The three components are Gaussian distributed and it holds for the elements of the covariance matrix:
 
* The three components are Gaussian distributed and it holds for the elements of the covariance matrix:
Line 15: Line 15:
 
In the second part of the exercise, consider the random variable  $\mathbf{y}$  with the two components  $y_1$  and  $y_2$  whose covariance matrix  $\mathbf{K}_{\mathbf{y}}$  is determined by the given numerical values  $(1, \ 0.4, \ 0.25)$  .
 
In the second part of the exercise, consider the random variable  $\mathbf{y}$  with the two components  $y_1$  and  $y_2$  whose covariance matrix  $\mathbf{K}_{\mathbf{y}}$  is determined by the given numerical values  $(1, \ 0.4, \ 0.25)$  .
  
The probability density function of a zero mean Gaussian two-dimensional random variable  $\mathbf{y}$  is as specified on page  [[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables#Relationship_between_covariance_matrix_and_PDF|Relationship between covariance matrix and PDF]]  with  $N = 2$:
+
The probability density function  $\rm (PDF)$  of a zero mean Gaussian two-dimensional random variable  $\mathbf{y}$  is as specified on page  [[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables#Relationship_between_covariance_matrix_and_PDF|"Relationship between covariance matrix and PDF"]]  with  $N = 2$:
 
:$$\mathbf{f_y}(\mathbf{y})  =  \frac{1}{{2 \pi \cdot
 
:$$\mathbf{f_y}(\mathbf{y})  =  \frac{1}{{2 \pi \cdot
 
\sqrt{|\mathbf{K_y}|}}}\cdot {\rm e}^{-{1}/{2} \hspace{0.05cm}\cdot\hspace{0.05cm} \mathbf{y} ^{\rm T}\hspace{0.05cm}\cdot\hspace{0.05cm}\mathbf{K_y}^{-1} \hspace{0.05cm}\cdot\hspace{0.05cm} \mathbf{y}  }=  C \cdot  {\rm e}^{-\gamma_1 \hspace{0.05cm}\cdot\hspace{0.05cm} y_1^2 \hspace{0.1cm}+\hspace{0.1cm} \gamma_2 \hspace{0.05cm}\cdot\hspace{0.05cm} y_2^2 \hspace{0.1cm}+\hspace{0.1cm}\gamma_{12} \hspace{0.05cm}\cdot\hspace{0.05cm} y_1 \hspace{0.05cm}\cdot\hspace{0.05cm} y_2 }.$$
 
\sqrt{|\mathbf{K_y}|}}}\cdot {\rm e}^{-{1}/{2} \hspace{0.05cm}\cdot\hspace{0.05cm} \mathbf{y} ^{\rm T}\hspace{0.05cm}\cdot\hspace{0.05cm}\mathbf{K_y}^{-1} \hspace{0.05cm}\cdot\hspace{0.05cm} \mathbf{y}  }=  C \cdot  {\rm e}^{-\gamma_1 \hspace{0.05cm}\cdot\hspace{0.05cm} y_1^2 \hspace{0.1cm}+\hspace{0.1cm} \gamma_2 \hspace{0.05cm}\cdot\hspace{0.05cm} y_2^2 \hspace{0.1cm}+\hspace{0.1cm}\gamma_{12} \hspace{0.05cm}\cdot\hspace{0.05cm} y_1 \hspace{0.05cm}\cdot\hspace{0.05cm} y_2 }.$$
  
 
*In the subtasks  '''(5)'''  and  '''(6)'''  the prefactor  $C$  and the further PDF coefficients  $\gamma_1$,  $\gamma_2$  and  $\gamma_{12}$  are to be calculated according to this vector representation.  
 
*In the subtasks  '''(5)'''  and  '''(6)'''  the prefactor  $C$  and the further PDF coefficients  $\gamma_1$,  $\gamma_2$  and  $\gamma_{12}$  are to be calculated according to this vector representation.  
*In contrast, the corresponding equation in  conventional approach according to the chapter  [[Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables#Probability_density_function_and_cumulative_distribution_function|Two-dimensional Gaussian Random Variables]]  would be:
+
*In contrast,  the corresponding equation in  conventional approach according to the chapter  [[Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables#Probability_density_function_and_cumulative_distribution_function|"Two-dimensional Gaussian Random Variables"]]  would be:
 
:$$f_{y_1,\hspace{0.1cm}y_2}(y_1,y_2)=\frac{\rm 1}{\rm 2\pi \sigma_1
 
:$$f_{y_1,\hspace{0.1cm}y_2}(y_1,y_2)=\frac{\rm 1}{\rm 2\pi \sigma_1
 
\sigma_2 \sqrt{\rm 1-\rho^2}}\cdot\exp\Bigg[-\frac{\rm 1}{\rm 2
 
\sigma_2 \sqrt{\rm 1-\rho^2}}\cdot\exp\Bigg[-\frac{\rm 1}{\rm 2
Line 33: Line 33:
 
Hints:  
 
Hints:  
 
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables|Generalization to N-Dimensional Random Variables]].
 
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables|Generalization to N-Dimensional Random Variables]].
*Some basics on the application of vectors and matrices can be found on the pages  [[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables#Basics_of_matrix_operations:_Determinant_of_a_matrix|Determinant of a Matrix]]  and  [[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables#Basics_of_matrix_operations:_Inverse_of_a_matrix|Inverse of a Matrix]] .  
+
*Some basics on the application of vectors and matrices can be found in the sections  [[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables#Basics_of_matrix_operations:_Determinant_of_a_matrix|"Determinant of a Matrix"]]  and  [[Theory_of_Stochastic_Signals/Generalization_to_N-Dimensional_Random_Variables#Basics_of_matrix_operations:_Inverse_of_a_matrix|Inverse of a Matrix]] .  
*Reference is also made to the chapter  [[Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables|Two-Dimensional Gaussian Random Variables]].
+
*Reference is also made to the chapter  [[Theory_of_Stochastic_Signals/Two-Dimensional_Gaussian_Random_Variables|"Two-Dimensional Gaussian Random Variables"]].
 
   
 
   
  
Line 74: Line 74:
  
  
{Determine the coefficients in the argument of the exponential function.  Compare the result with the 2D–PDF–equation.
+
{Determine the coefficients in the argument of the exponential function.  Compare the result with the two-dimensional PDF equation.
 
|type="{}"}
 
|type="{}"}
 
$\gamma_1 \ = \ $ { 1.389 3% }
 
$\gamma_1 \ = \ $ { 1.389 3% }
Line 86: Line 86:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Only <u>the proposed solution 2</u> is correct:
+
'''(1)'''&nbsp; Only&nbsp; <u>the proposed solution 2</u>&nbsp; is correct:
*On the basis of the covariance matrix&nbsp; $\mathbf{K}_{\mathbf{x}}$&nbsp; it is not possible to make any statement about whether the underlying random variable&nbsp; $\mathbf{x}$&nbsp; is mean-free or mean-invariant, since any mean value&nbsp; $\mathbf{m}$&nbsp; is factored out.  
+
*On the basis of the covariance matrix&nbsp; $\mathbf{K}_{\mathbf{x}}$&nbsp; it is not possible to make any statement about whether the underlying random variable&nbsp; $\mathbf{x}$&nbsp; is zero mean or mean-invariant,&nbsp; since any mean value&nbsp; $\mathbf{m}$&nbsp; is factored out.  
*To make statements about the mean, the correlation matrix&nbsp; $\mathbf{R}_{\mathbf{x}}$&nbsp; would have to be known.  
+
*To make statements about the mean,&nbsp; the correlation matrix&nbsp; $\mathbf{R}_{\mathbf{x}}$&nbsp; would have to be known.  
 
*From&nbsp; $K_{22} = \sigma_2^2 = 0$&nbsp; it follows necessarily that all other elements in the second row&nbsp; $(K_{21}, K_{23})$&nbsp; and the second column&nbsp; $(K_{12}, K_{32})$&nbsp; are also zero.  
 
*From&nbsp; $K_{22} = \sigma_2^2 = 0$&nbsp; it follows necessarily that all other elements in the second row&nbsp; $(K_{21}, K_{23})$&nbsp; and the second column&nbsp; $(K_{12}, K_{32})$&nbsp; are also zero.  
*On the other hand, the third statement is false: &nbsp; The elements are symmetric about the main diagonal, so that always&nbsp; $K_{31} = K_{13}$&nbsp; must hold.  
+
*On the other hand,&nbsp; the third statement is false: &nbsp; The elements are symmetric about the main diagonal,&nbsp; so that always&nbsp; $K_{31} = K_{13}$&nbsp; must hold.  
  
  
Line 96: Line 96:
 
[[File:P_ID2915__Sto_A_4_15a.png|right|frame|Complete covariance matrix]]
 
[[File:P_ID2915__Sto_A_4_15a.png|right|frame|Complete covariance matrix]]
 
'''(2)'''&nbsp; From&nbsp; $K_{11} = 1$&nbsp; and&nbsp; $K_{33} = 0.25$&nbsp; follow directly&nbsp; $\sigma_1 = 1$&nbsp; and&nbsp; $\sigma_3 = 0.5$.  
 
'''(2)'''&nbsp; From&nbsp; $K_{11} = 1$&nbsp; and&nbsp; $K_{33} = 0.25$&nbsp; follow directly&nbsp; $\sigma_1 = 1$&nbsp; and&nbsp; $\sigma_3 = 0.5$.  
*Taken together with the correlation coefficient&nbsp; $\rho_{13} = 0.8$&nbsp; (see specification sheet), we thus obtain:
+
*Taken together with the correlation coefficient&nbsp; $\rho_{13} = 0.8$&nbsp; (see specification sheet),&nbsp; we thus obtain:
 
:$$K_{13} = K_{31} = \sigma_1 \cdot \sigma_2 \cdot \rho_{13}\hspace{0.15cm}\underline{= 0.4}.$$
 
:$$K_{13} = K_{31} = \sigma_1 \cdot \sigma_2 \cdot \rho_{13}\hspace{0.15cm}\underline{= 0.4}.$$
  
Line 121: Line 121:
 
'''(5)'''&nbsp; A comparison of&nbsp; $\mathbf{K_y}$&nbsp; and&nbsp; $\mathbf{K_x}$&nbsp; with constraint&nbsp; $K_{22} = 0$&nbsp; shows that&nbsp; $\mathbf{x}$&nbsp; and&nbsp; $\mathbf{y}$&nbsp; are identical random variables if one sets&nbsp; $y_1 = x_1$&nbsp; and&nbsp; $y_2 = x_3$&nbsp; .  
 
'''(5)'''&nbsp; A comparison of&nbsp; $\mathbf{K_y}$&nbsp; and&nbsp; $\mathbf{K_x}$&nbsp; with constraint&nbsp; $K_{22} = 0$&nbsp; shows that&nbsp; $\mathbf{x}$&nbsp; and&nbsp; $\mathbf{y}$&nbsp; are identical random variables if one sets&nbsp; $y_1 = x_1$&nbsp; and&nbsp; $y_2 = x_3$&nbsp; .  
 
*Thus, for the PDF parameters:
 
*Thus, for the PDF parameters:
:$$\sigma_1 =1, \hspace{0.3cm} \sigma_2 =0.5, \hspace{0.3cm} \rho =.
+
:$$\sigma_1 =1, \hspace{0.3cm} \sigma_2 =0.5, \hspace{0.3cm} \rho =0.8.$$
0.8.$$
 
  
 
*The prefactor according to the general PDF definition is thus:
 
*The prefactor according to the general PDF definition is thus:
Line 150: Line 149:
 
y_2\right).$$
 
y_2\right).$$
  
*By comparing coefficients, we get:
+
*By comparing coefficients,&nbsp; we get:
 
:$$\gamma_1 = \frac{25}{18} \approx 1.389; \hspace{0.3cm} \gamma_2 =
 
:$$\gamma_1 = \frac{25}{18} \approx 1.389; \hspace{0.3cm} \gamma_2 =
 
\frac{100}{18} \approx 5.556; \hspace{0.3cm} \gamma_{12} = -
 
\frac{100}{18} \approx 5.556; \hspace{0.3cm} \gamma_{12} = -
 
\frac{80}{18} \approx -4,444.$$
 
\frac{80}{18} \approx -4,444.$$
  
*According to the conventional procedure, the same numerical values result:
+
*According to the conventional procedure,&nbsp; the same numerical values result:
 
:$$\gamma_1 =\frac{\rm 1}{\rm 2\cdot \sigma_1^2 \cdot ({\rm
 
:$$\gamma_1 =\frac{\rm 1}{\rm 2\cdot \sigma_1^2 \cdot ({\rm
 
1-\rho^2})}=
 
1-\rho^2})}=

Latest revision as of 12:20, 28 March 2022

Two covariance matrices

We consider here the three-dimensional random variable   $\mathbf{x}$,  whose commonly represented covariance matrix   $\mathbf{K}_{\mathbf{x}}$   is given in the upper graph.  The random variable has the following properties:

  • The three components are Gaussian distributed and it holds for the elements of the covariance matrix:
$$K_{ij} = \sigma_i \cdot \sigma_j \cdot \rho_{ij}.$$
  • Let the elements on the main diagonal be known:
$$ K_{11} =1, \ K_{22} =0, \ K_{33} =0.25.$$
  • The correlation coefficient between the coefficients  $x_1$  and  $x_3$  is  $\rho_{13} = 0.8$.


In the second part of the exercise, consider the random variable  $\mathbf{y}$  with the two components  $y_1$  and  $y_2$  whose covariance matrix  $\mathbf{K}_{\mathbf{y}}$  is determined by the given numerical values  $(1, \ 0.4, \ 0.25)$  .

The probability density function  $\rm (PDF)$  of a zero mean Gaussian two-dimensional random variable  $\mathbf{y}$  is as specified on page  "Relationship between covariance matrix and PDF"  with  $N = 2$:

$$\mathbf{f_y}(\mathbf{y}) = \frac{1}{{2 \pi \cdot \sqrt{|\mathbf{K_y}|}}}\cdot {\rm e}^{-{1}/{2} \hspace{0.05cm}\cdot\hspace{0.05cm} \mathbf{y} ^{\rm T}\hspace{0.05cm}\cdot\hspace{0.05cm}\mathbf{K_y}^{-1} \hspace{0.05cm}\cdot\hspace{0.05cm} \mathbf{y} }= C \cdot {\rm e}^{-\gamma_1 \hspace{0.05cm}\cdot\hspace{0.05cm} y_1^2 \hspace{0.1cm}+\hspace{0.1cm} \gamma_2 \hspace{0.05cm}\cdot\hspace{0.05cm} y_2^2 \hspace{0.1cm}+\hspace{0.1cm}\gamma_{12} \hspace{0.05cm}\cdot\hspace{0.05cm} y_1 \hspace{0.05cm}\cdot\hspace{0.05cm} y_2 }.$$
  • In the subtasks  (5)  and  (6)  the prefactor  $C$  and the further PDF coefficients  $\gamma_1$,  $\gamma_2$  and  $\gamma_{12}$  are to be calculated according to this vector representation.
  • In contrast,  the corresponding equation in  conventional approach according to the chapter  "Two-dimensional Gaussian Random Variables"  would be:
$$f_{y_1,\hspace{0.1cm}y_2}(y_1,y_2)=\frac{\rm 1}{\rm 2\pi \sigma_1 \sigma_2 \sqrt{\rm 1-\rho^2}}\cdot\exp\Bigg[-\frac{\rm 1}{\rm 2 (1-\rho^{\rm 2})}\cdot(\frac { y_1^{\rm 2}}{\sigma_1^{\rm 2}}+\frac { y_2^{\rm 2}}{\sigma_2^{\rm 2}}-\rm 2\rho \frac{{\it y}_1{\it y}_2}{\sigma_1 \cdot \sigma_2}) \rm \Bigg].$$



Hints:



Questions

1

Which of the following statements are true?

The random variable  $\mathbf{x}$  is zero mean with certainty.
The matrix elements  $K_{12}$,  $K_{21}$,  $K_{23}$  and  $K_{32}$  are zero.
It holds that $K_{31} = -K_{13}$.

2

Calculate the matrix element of the last row and first column.

$K_\text{31} \ = \ $

3

Calculate the determinant  $|\mathbf{K}_{\mathbf{y}}|$.

$|\mathbf{K}_{\mathbf{y}}| \ = \ $

4

Calculate the inverse matrix  $\mathbf{I}_{\mathbf{y}} = \mathbf{K}_{\mathbf{y}}^{-1}$  with matrix elements. $I_{ij}$ :

$I_\text{11} \ = \ $

$I_\text{12} \ = \ $

$I_\text{21} \ = \ $

$I_\text{22} \ = \ $

5

Calculate the prefactor  $C$  of the two-dimensional probability density function.  Compare the result with the formula given in the theory section.

$C\ = \ $

6

Determine the coefficients in the argument of the exponential function.  Compare the result with the two-dimensional PDF equation.

$\gamma_1 \ = \ $

$\gamma_2 \ = \ $

$\gamma_{12}\ = \ $


Solution

(1)  Only  the proposed solution 2  is correct:

  • On the basis of the covariance matrix  $\mathbf{K}_{\mathbf{x}}$  it is not possible to make any statement about whether the underlying random variable  $\mathbf{x}$  is zero mean or mean-invariant,  since any mean value  $\mathbf{m}$  is factored out.
  • To make statements about the mean,  the correlation matrix  $\mathbf{R}_{\mathbf{x}}$  would have to be known.
  • From  $K_{22} = \sigma_2^2 = 0$  it follows necessarily that all other elements in the second row  $(K_{21}, K_{23})$  and the second column  $(K_{12}, K_{32})$  are also zero.
  • On the other hand,  the third statement is false:   The elements are symmetric about the main diagonal,  so that always  $K_{31} = K_{13}$  must hold.


Complete covariance matrix

(2)  From  $K_{11} = 1$  and  $K_{33} = 0.25$  follow directly  $\sigma_1 = 1$  and  $\sigma_3 = 0.5$.

  • Taken together with the correlation coefficient  $\rho_{13} = 0.8$  (see specification sheet),  we thus obtain:
$$K_{13} = K_{31} = \sigma_1 \cdot \sigma_2 \cdot \rho_{13}\hspace{0.15cm}\underline{= 0.4}.$$


(3)  The determinant of the matrix  $\mathbf{K_y}$  is:

$$|{\mathbf{K_y}}| = 1 \cdot 0.25 - 0.4 \cdot 0.4 \hspace{0.15cm}\underline{= 0.09}.$$


(4)  According to the statements on the pages "Determinant of a Matrix" and "Inverse of a Matrix" holds:

$${\mathbf{I_y}} = {\mathbf{K_y}}^{-1} = \frac{1}{|{\mathbf{K_y}}|}\cdot \left[ \begin{array}{cc} 0.25 & -0.4 \\ -0.4 & 1 \end{array} \right].$$
  • With  $|\mathbf{K_y}|= 0.09$  therefore holds further:
$$I_{11} = {25}/{9}\hspace{0.15cm}\underline{ = 2.777};\hspace{0.3cm} I_{12} = I_{21} = -40/9 \hspace{0.15cm}\underline{ = -4.447};\hspace{0.3cm}I_{22} = {100}/{9} \hspace{0.15cm}\underline{= 11.111}.$$


(5)  A comparison of  $\mathbf{K_y}$  and  $\mathbf{K_x}$  with constraint  $K_{22} = 0$  shows that  $\mathbf{x}$  and  $\mathbf{y}$  are identical random variables if one sets  $y_1 = x_1$  and  $y_2 = x_3$  .

  • Thus, for the PDF parameters:
$$\sigma_1 =1, \hspace{0.3cm} \sigma_2 =0.5, \hspace{0.3cm} \rho =0.8.$$
  • The prefactor according to the general PDF definition is thus:
$$C =\frac{\rm 1}{\rm 2\pi \cdot \sigma_1 \cdot \sigma_2 \cdot \sqrt{\rm 1-\rho^2}}= \frac{\rm 1}{\rm 2\pi \cdot 1 \cdot 0.5 \cdot 0.6}= \frac{1}{0.6 \cdot \pi} \hspace{0.15cm}\underline{\approx 0.531}.$$
  • With the determinant calculated in subtask  (3)  we get the same result:
$$C =\frac{\rm 1}{\rm 2\pi \sqrt{|{\mathbf{K_y}}|}}= \frac{\rm 1}{\rm 2\pi \sqrt{0.09}} = \frac{1}{0.6 \cdot \pi}.$$


(6)  The inverse matrix computed in subtask  (4)  can also be written as follows:

$${\mathbf{I_y}} = \frac{5}{9}\cdot \left[ \begin{array}{cc} 5 & -8 \\ -8 & 20 \end{array} \right].$$
  • So the argument  $A$  of the exponential function is:
$$A = \frac{5}{18}\cdot{\mathbf{y}}^{\rm T}\cdot \left[ \begin{array}{cc} 5 & -8 \\ -8 & 20 \end{array} \right]\cdot{\mathbf{y}} =\frac{5}{18}\left( 5 \cdot y_1^2 + 20 \cdot y_2^2 -16 \cdot y_1 \cdot y_2\right).$$
  • By comparing coefficients,  we get:
$$\gamma_1 = \frac{25}{18} \approx 1.389; \hspace{0.3cm} \gamma_2 = \frac{100}{18} \approx 5.556; \hspace{0.3cm} \gamma_{12} = - \frac{80}{18} \approx -4,444.$$
  • According to the conventional procedure,  the same numerical values result:
$$\gamma_1 =\frac{\rm 1}{\rm 2\cdot \sigma_1^2 \cdot ({\rm 1-\rho^2})}= \frac{\rm 1}{\rm 2 \cdot 1 \cdot 0.36} \hspace{0.15cm}\underline{ \approx 1.389},$$
$$\gamma_2 =\frac{\rm 1}{\rm 2 \cdot\sigma_2^2 \cdot ({\rm 1-\rho^2})}= \frac{\rm 1}{\rm 2 \cdot 0.25 \cdot 0.36} = 4 \cdot \gamma_1 \hspace{0.15cm}\underline{\approx 5.556},$$
$$\gamma_{12} =-\frac{\rho}{ \sigma_1 \cdot \sigma_2 \cdot ({\rm 1-\rho^2})}= -\frac{\rm 0.8}{\rm 1 \cdot 0.5 \cdot 0.36} \hspace{0.15cm}\underline{ \approx -4.444}.$$