Difference between revisions of "Aufgaben:Exercise 3.10Z: Amplitude and Angle Modulation in Comparison"

From LNTwww
m
m
 
(2 intermediate revisions by the same user not shown)
Line 37: Line 37:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die logarithmierte Leistungskenngröße &nbsp;$ξ$.
+
{Calculate the logarithmized power parameter &nbsp;$ξ$.
 
|type="{}"}
 
|type="{}"}
 
$10 · \lg \ ξ \ = \ $ { 50 3% } $\ \rm dB$  
 
$10 · \lg \ ξ \ = \ $ { 50 3% } $\ \rm dB$  
  
{Welcher Sinkenstörabstand ergibt sich beim AM–System?
+
{What is the sink-to-noise ratio for the AM system?
 
|type="{}"}
 
|type="{}"}
 
$10 · \lg ρ_v \ = \ $ { 50 3% } $\ \rm dB$  
 
$10 · \lg ρ_v \ = \ $ { 50 3% } $\ \rm dB$  
  
{Welche spezielle Form der AM könnte hier vorliegen?
+
{What special kind of AM might be present here?
 
|type="[]"}
 
|type="[]"}
+ Es könnte eine ZSB–AM sein.
+
+ It could be a DSB-AM.
+ Es könnte eine ESB–AM  sein.
+
+ It could be a SSB-AM.
+ Es könnte eine AM ohne Träger sein.
+
+ It could be an AM without a carrier.
- Es könnte eine AM mit zugesetztem Träger sein.
+
- It could be an AM with an added carrier.
  
{Wie groß ist im Fall der ZSB–AM die erforderliche Kanalbandbreite &nbsp;$B_{\rm K}$?
+
{In the case of the DSB-AM, what is the required channel bandwidth &nbsp;$B_{\rm K}$?
 
|type="{}"}
 
|type="{}"}
 
$B_{\rm K} \ = \ $ { 20 3% } $\ \rm kHz$  
 
$B_{\rm K} \ = \ $ { 20 3% } $\ \rm kHz$  
  
{Wie groß ist der Sinkenstörabstand beim WM-System?
+
{What is the sink-to-noise ratio for the WM system?
 
|type="{}"}
 
|type="{}"}
 
$10 · \lg ρ_v \ = \ $ { 60 3% } $\ \rm dB$  
 
$10 · \lg ρ_v \ = \ $ { 60 3% } $\ \rm dB$  
  
{Welche Bandbreite ist beim vorgegebenen PM–System mindestens erforderlich, wenn &nbsp;$K < 1\%$&nbsp; gelten soll?
+
{What is the minimum bandwidth required for the given PM system if &nbsp;$K < 1\%$&nbsp; is to apply?  
 
|type="{}"}
 
|type="{}"}
 
$B_{\rm K} \ = \ $ { 130 3% } $\ \rm kHz$  
 
$B_{\rm K} \ = \ $ { 130 3% } $\ \rm kHz$  
  
{Wie groß ist für &nbsp;$K < 1\%$&nbsp; die erforderliche Bandbreite, wenn das WM–System eine Frequenzmodulation realisiert?
+
{For&nbsp;$K < 1\%$&nbsp;, die erforderliche Bandbreite, what is the required bandwidth if the WM system implements frequency modulation??
 
|type="{}"}
 
|type="{}"}
 
$B_{\rm K} \ = \ $ { 91.6 3% } $\ \rm kHz$   
 
$B_{\rm K} \ = \ $ { 91.6 3% } $\ \rm kHz$   
  
{Wie groß muss bei sonst gleichen Parametern die Sendeleistung &nbsp;$P_{\rm S}$&nbsp; mindestens sein, damit das WM–System nicht schlechter als das AM–System ist?
+
{All other parameters being equal, what is the minimum transmit power &nbsp;$P_{\rm S}$&nbsp; required for the WM system to be no worse than the AM system?
 
|type="{}"}
 
|type="{}"}
 
$P_{\rm S,\hspace{0.05cm}min} \ = \ $ { 30 3% } $\ \rm W$  
 
$P_{\rm S,\hspace{0.05cm}min} \ = \ $ { 30 3% } $\ \rm W$  
Line 75: Line 75:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Aus&nbsp; $20 · \lg α_{\rm K} = -120  \ \rm dB$&nbsp; erhält man&nbsp; $α_{\rm K}  = 10^{–6}$.&nbsp; Damit ergibt sich mit&nbsp; $B_{\rm NF} = f_{\rm N}$:
+
'''(1)'''&nbsp; From&nbsp; $20 · \lg α_{\rm K} = -120  \ \rm dB$&nbsp; we get&nbsp; $α_{\rm K}  = 10^{–6}$.&nbsp; Thus, with &nbsp; $B_{\rm NF} = f_{\rm N}$, one obtains:
 
:$$ \xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}= \frac{10^{-12} \cdot 10^{5}\;{\rm W}}{10^{-16}\;{\rm W/Hz} \cdot 10^{4}\;{\rm Hz}}= 10^5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\xi \hspace{0.15cm}\underline {= 50\,{\rm dB}}\hspace{0.05cm}.$$
 
:$$ \xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}= \frac{10^{-12} \cdot 10^{5}\;{\rm W}}{10^{-16}\;{\rm W/Hz} \cdot 10^{4}\;{\rm Hz}}= 10^5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\xi \hspace{0.15cm}\underline {= 50\,{\rm dB}}\hspace{0.05cm}.$$
  
  
  
'''(2)'''&nbsp; Aus der Grafik ist zu entnehmen, dass beim AM–System&nbsp; $ρ_v = ξ$&nbsp; gilt.&nbsp; Damit ergibt sich für den Sinken-Störabstand:
+
'''(2)'''&nbsp; From the graph, it can be seen that &nbsp; $ρ_v = ξ$&nbsp; holds for the AM system. Thus, the sinking signal-to-noise ratio is:
 
:$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }\hspace{0.15cm}\underline {= 50\,{\rm dB}}\hspace{0.05cm}.$$
 
:$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }\hspace{0.15cm}\underline {= 50\,{\rm dB}}\hspace{0.05cm}.$$
  
  
  
'''(3)'''&nbsp; Richtig sind die <u>ersten drei Lösungsvorschläge</u>:
+
'''(3)'''&nbsp; The <u>first three answers</u> are correct:
*Es handelt sich um eine ZSB–AM oder eine ESB–AM, jeweils ohne Träger.
+
*It is a DSB-AM or a SSB-AM without a carrier.
*Dagegen scheiden die ZSB–AM und die ESB–AM mit Träger aus.&nbsp; In diesen Fällen würde stets&nbsp; $ρ_v < \xi$&nbsp; sein.
+
*DSB–AM and SSB–AM with a carrier can be ruled out.&nbsp; In these instances, it would always be the case that &nbsp; $ρ_v < \xi$&nbsp;.
  
  
  
'''(4)'''&nbsp; Bei der ZSB–AM muss &nbsp;$B_{\rm K} ≥ 2 · f_{\rm N}\hspace{0.15cm}\underline { = 20 \ \rm kHz}$&nbsp; gelten.
+
'''(4)'''&nbsp; For DSB–AM, &nbsp;$B_{\rm K} ≥ 2 · f_{\rm N}\hspace{0.15cm}\underline { = 20 \ \rm kHz}$&nbsp; must hold.
  
  
  
'''(5)'''&nbsp; Aus der angegebenen Grafik erkennt man, dass ab etwa &nbsp;$20 \ \rm dB$&nbsp; gilt:
+
'''(5)'''&nbsp;From the given graph, it can be seen that from about &nbsp;$20 \ \rm dB$&nbsp; onwards:
 
:$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }= 10 \cdot {\rm lg} \hspace{0.15cm}\xi + 10\,{\rm dB}. \hspace{0.3cm}{\rm Mit}\hspace{0.15cm}10 \cdot {\rm lg} \hspace{0.15cm}\xi = 50\,{\rm dB}\hspace{0.05cm}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }\hspace{0.15cm}\underline {= 60\,{\rm dB}}.$$
 
:$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }= 10 \cdot {\rm lg} \hspace{0.15cm}\xi + 10\,{\rm dB}. \hspace{0.3cm}{\rm Mit}\hspace{0.15cm}10 \cdot {\rm lg} \hspace{0.15cm}\xi = 50\,{\rm dB}\hspace{0.05cm}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }\hspace{0.15cm}\underline {= 60\,{\rm dB}}.$$
  
  
  
'''(6)'''&nbsp; Bei Phasenmodulation gilt:
+
'''(6)'''&nbsp; In the case of phase modulation:
 
:$$ \rho_{v }= \frac{\eta^2}{2} \cdot \xi \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta^2 = \frac{2 \cdot \rho_{v }}{\xi} = 20\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta \approx 4.47 \hspace{0.05cm}.$$
 
:$$ \rho_{v }= \frac{\eta^2}{2} \cdot \xi \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta^2 = \frac{2 \cdot \rho_{v }}{\xi} = 20\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta \approx 4.47 \hspace{0.05cm}.$$
*Damit muss für die Kanalbandbreite unter der Voraussetzung&nbsp; $K < 1\%$&nbsp; gelten:
+
*Thus, the channel bandwidth needed for 𝐾<1% must be:
 
:$$B_{\rm K} \ge 2 \cdot f_{\rm N} \cdot (\eta +2) = 20\,{\rm kHz}\cdot 6.47 \hspace{0.15cm}\underline { \approx 130\,{\rm kHz}}\hspace{0.05cm}.$$
 
:$$B_{\rm K} \ge 2 \cdot f_{\rm N} \cdot (\eta +2) = 20\,{\rm kHz}\cdot 6.47 \hspace{0.15cm}\underline { \approx 130\,{\rm kHz}}\hspace{0.05cm}.$$
  
  
  
'''(7)'''&nbsp; Hier genügt ein kleinerer Modulationsindex und damit auch eine kleinere Bandbreite:
+
'''(7)'''&nbsp;Here, a smaller modulation index is sufficient, and thus a smaller bandwidth:
 
:$${3}/{2}\cdot \eta^2 = 10\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta \approx 2.58 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}B_{\rm K} = 20\,{\rm kHz}\cdot 4.58 \hspace{0.15cm}\underline {\approx 91.6\,{\rm kHz}}\hspace{0.05cm}.$$
 
:$${3}/{2}\cdot \eta^2 = 10\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta \approx 2.58 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}B_{\rm K} = 20\,{\rm kHz}\cdot 4.58 \hspace{0.15cm}\underline {\approx 91.6\,{\rm kHz}}\hspace{0.05cm}.$$
  
  
  
'''(8)'''&nbsp; In der Grafik erkennt man den so genannten FM–Knick.  
+
'''(8)'''&nbsp; In the graph, one can see the so-called FM threshold effect.  
*Für&nbsp; $10 · \lg \hspace{0.08cm} ξ = 15 \ \rm dB$&nbsp; erhält man für das WM–System genau das gleiche Sinken–SNR wie für das AM–System.  
+
*For&nbsp; $10 · \lg \hspace{0.08cm} ξ = 15 \ \rm dB$&nbsp; one obtains exactly the same sink SNR for the WM system as for the AM system.
*Die Sendeleistung kann also um&nbsp; $35 \ \rm dB$&nbsp; kleiner sein als&nbsp; $100 \ \rm kW$:
+
*Thus, the transmit power can be &nbsp; $35 \ \rm dB$&nbsp; less than s&nbsp; $100 \ \rm kW$:
 
:$$ 10 \cdot {\rm lg} \hspace{0.15cm}\frac{P_{\rm S,\hspace{0.05cm}min}}{100\,{\rm kW}}= -35\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \frac{P_{\rm S,\hspace{0.05cm}min}}{100\,{\rm kW}}\approx 0.0003\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm S,\hspace{0.05cm}min} \hspace{0.15cm}\underline {\approx 30\,{\rm W}}\hspace{0.05cm}.$$
 
:$$ 10 \cdot {\rm lg} \hspace{0.15cm}\frac{P_{\rm S,\hspace{0.05cm}min}}{100\,{\rm kW}}= -35\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \frac{P_{\rm S,\hspace{0.05cm}min}}{100\,{\rm kW}}\approx 0.0003\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm S,\hspace{0.05cm}min} \hspace{0.15cm}\underline {\approx 30\,{\rm W}}\hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 18:28, 17 March 2022

Characteristic curves illustrating the noise behavior for  $\rm AM$  and  $\rm WM$

Consider the transmission of a cosine signal with amplitude modulation   $\rm (AM)$  and angle modulation $\rm (WM)$. The following boundary conditions apply::

  • Message frequency  $f_{\rm N} = 10 \ \rm kHz$,
  • Transmission power  $P_{\rm S} = 100 \ \rm kW$,
  • Channel transmission factor  $20 · \lg α_{\rm K} = -120 \ \rm dB$,
  • noise power density  $N_0 = 10^{–16} \ \rm W/Hz$.


These system parameters are conveniently combined to form the performance parameter: $$ \xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}$$ The graph shows the resulting sink-to-noise ratio  $10 · \lg ρ_v$  as a function of the logarithmized performance parameter   $ξ$.





Hints:

  • The following relationships hold:
$$\rho_{v } = \left\{ \begin{array}{c} \xi \\ {\eta^2}/2 \cdot\xi \\ 3{\eta^2}/2 \cdot\xi \\ \end{array} \right.\quad \begin{array}{*{10}c} {\rm{for}} \\ {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}l} {\rm DSB/SSB-AM \hspace{0.15cm}without \hspace{0.15cm}carrier} \hspace{0.05cm}, \\ {\rm PM \hspace{0.15cm}with \hspace{0.15cm}modulation\hspace{0.15cm}depth \hspace{0.15cm} \eta } \hspace{0.05cm}, \\ {\rm FM \hspace{0.15cm}with \hspace{0.15cm}modulation\hspace{0.15cm}depth \hspace{0.15cm} \eta }\hspace{0.05cm}. \\ \end{array}$$
  • The bandwidths  $B_{\rm K}$  for angle modulation shall be selected according to the "Carson rule" to guarantee a distortion factor of  $K < 1\%$ :
$$ B_{\rm K} = 2 \cdot f_{\rm N} \cdot (\eta +2) \hspace{0.05cm}.$$



Questions

1

Calculate the logarithmized power parameter  $ξ$.

$10 · \lg \ ξ \ = \ $

$\ \rm dB$

2

What is the sink-to-noise ratio for the AM system?

$10 · \lg ρ_v \ = \ $

$\ \rm dB$

3

What special kind of AM might be present here?

It could be a DSB-AM.
It could be a SSB-AM.
It could be an AM without a carrier.
It could be an AM with an added carrier.

4

In the case of the DSB-AM, what is the required channel bandwidth  $B_{\rm K}$?

$B_{\rm K} \ = \ $

$\ \rm kHz$

5

What is the sink-to-noise ratio for the WM system?

$10 · \lg ρ_v \ = \ $

$\ \rm dB$

6

What is the minimum bandwidth required for the given PM system if  $K < 1\%$  is to apply?

$B_{\rm K} \ = \ $

$\ \rm kHz$

7

For $K < 1\%$ , die erforderliche Bandbreite, what is the required bandwidth if the WM system implements frequency modulation??

$B_{\rm K} \ = \ $

$\ \rm kHz$

8

All other parameters being equal, what is the minimum transmit power  $P_{\rm S}$  required for the WM system to be no worse than the AM system?

$P_{\rm S,\hspace{0.05cm}min} \ = \ $

$\ \rm W$


Solution

(1)  From  $20 · \lg α_{\rm K} = -120 \ \rm dB$  we get  $α_{\rm K} = 10^{–6}$.  Thus, with   $B_{\rm NF} = f_{\rm N}$, one obtains:

$$ \xi = \frac{\alpha_{\rm K}^2 \cdot P_{\rm S}}{N_0 \cdot B_{\rm NF}}= \frac{10^{-12} \cdot 10^{5}\;{\rm W}}{10^{-16}\;{\rm W/Hz} \cdot 10^{4}\;{\rm Hz}}= 10^5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\xi \hspace{0.15cm}\underline {= 50\,{\rm dB}}\hspace{0.05cm}.$$


(2)  From the graph, it can be seen that   $ρ_v = ξ$  holds for the AM system. Thus, the sinking signal-to-noise ratio is:

$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }\hspace{0.15cm}\underline {= 50\,{\rm dB}}\hspace{0.05cm}.$$


(3)  The first three answers are correct:

  • It is a DSB-AM or a SSB-AM without a carrier.
  • DSB–AM and SSB–AM with a carrier can be ruled out.  In these instances, it would always be the case that   $ρ_v < \xi$ .


(4)  For DSB–AM,  $B_{\rm K} ≥ 2 · f_{\rm N}\hspace{0.15cm}\underline { = 20 \ \rm kHz}$  must hold.


(5) From the given graph, it can be seen that from about  $20 \ \rm dB$  onwards:

$$10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }= 10 \cdot {\rm lg} \hspace{0.15cm}\xi + 10\,{\rm dB}. \hspace{0.3cm}{\rm Mit}\hspace{0.15cm}10 \cdot {\rm lg} \hspace{0.15cm}\xi = 50\,{\rm dB}\hspace{0.05cm}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{v }\hspace{0.15cm}\underline {= 60\,{\rm dB}}.$$


(6)  In the case of phase modulation:

$$ \rho_{v }= \frac{\eta^2}{2} \cdot \xi \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta^2 = \frac{2 \cdot \rho_{v }}{\xi} = 20\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta \approx 4.47 \hspace{0.05cm}.$$
  • Thus, the channel bandwidth needed for 𝐾<1% must be:
$$B_{\rm K} \ge 2 \cdot f_{\rm N} \cdot (\eta +2) = 20\,{\rm kHz}\cdot 6.47 \hspace{0.15cm}\underline { \approx 130\,{\rm kHz}}\hspace{0.05cm}.$$


(7) Here, a smaller modulation index is sufficient, and thus a smaller bandwidth:

$${3}/{2}\cdot \eta^2 = 10\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \eta \approx 2.58 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}B_{\rm K} = 20\,{\rm kHz}\cdot 4.58 \hspace{0.15cm}\underline {\approx 91.6\,{\rm kHz}}\hspace{0.05cm}.$$


(8)  In the graph, one can see the so-called FM threshold effect.

  • For  $10 · \lg \hspace{0.08cm} ξ = 15 \ \rm dB$  one obtains exactly the same sink SNR for the WM system as for the AM system.
  • Thus, the transmit power can be   $35 \ \rm dB$  less than s  $100 \ \rm kW$:
$$ 10 \cdot {\rm lg} \hspace{0.15cm}\frac{P_{\rm S,\hspace{0.05cm}min}}{100\,{\rm kW}}= -35\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \frac{P_{\rm S,\hspace{0.05cm}min}}{100\,{\rm kW}}\approx 0.0003\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm S,\hspace{0.05cm}min} \hspace{0.15cm}\underline {\approx 30\,{\rm W}}\hspace{0.05cm}.$$