Difference between revisions of "Aufgaben:Exercise 3.3: Noise at Channel Equalization"

From LNTwww
 
(6 intermediate revisions by 2 users not shown)
Line 4: Line 4:
  
 
[[File:P_ID1407__Dig_A_3_3.png |right|frame|Noise PSD before the decision]]
 
[[File:P_ID1407__Dig_A_3_3.png |right|frame|Noise PSD before the decision]]
We consider two different system variants, both of which use NRZ rectangular transmission pulses and are affected by AWGN noise.
+
We consider two different system variants,  both using NRZ rectangular transmission pulses and are affected by AWGN noise.
*In both cases, a Gaussian low-pass filter is used to limit noise power
+
*To limit the noise power,  in both cases a Gaussian low-pass filter
 
:$$H_{\rm G}(f) = {\rm exp}(- \pi \cdot
 
:$$H_{\rm G}(f) = {\rm exp}(- \pi \cdot
 
\frac{f^2}{(2f_{\rm G})^2})$$
 
\frac{f^2}{(2f_{\rm G})^2})$$
  
 
:with normalized cutoff frequency  $f_{\rm G} \cdot T = 0.35$  is used, so that both systems also have the same eye opening with  $\ddot{o}(T_{\rm D} = 0) = 0.478 \cdot s_0$.   
 
:with normalized cutoff frequency  $f_{\rm G} \cdot T = 0.35$  is used, so that both systems also have the same eye opening with  $\ddot{o}(T_{\rm D} = 0) = 0.478 \cdot s_0$.   
*The transmitted energy  $E_{\rm B} = s_0^2 \cdot T$  spent per bit is larger than the noise power density  $N_0$   ⇒   $10\cdot {\rm lg} \, E_{\rm B}/N_0 = 90 \, {\rm dB}$ by a factor of  $10^9$ .
+
*The transmission energy  $E_{\rm B} = s_0^2 \cdot T$  spent per bit is larger than the noise power density  $N_0$    by a factor of  $10^9$  ⇒   $10\cdot {\rm lg} \, E_{\rm B}/N_0 = 90 \, {\rm dB}$.
  
 
+
* The channel frequency response of system  $\rm A$  is frequency-independent:   $H_{\rm K}(f) = \alpha$.  Accordingly,   for the receiver filter  $H_{\rm E}(f) = H_{\rm G}(f)/\alpha$  must be assumed,  so that the following applies to the detection noise power:
The two systems differ as follows:
 
* The channel frequency response of system  $\rm A$  is frequency independent:   $H_{\rm K}(f) = \alpha$. Accordingly,  $H_{\rm E}(f) = H_{\rm G}(f)/\alpha$  must be assumed for the receiver filter, so that the following applies to the detection noise power:
 
 
:$$\sigma_d^2 = {N_0}/{2} \cdot \int_{-\infty}^{+\infty}
 
:$$\sigma_d^2 = {N_0}/{2} \cdot \int_{-\infty}^{+\infty}
 
|H_{\rm E}(f)|^2 \,{\rm d} f = \frac{N_0 \cdot f_{\rm G}}{\sqrt{2}
 
|H_{\rm E}(f)|^2 \,{\rm d} f = \frac{N_0 \cdot f_{\rm G}}{\sqrt{2}
 
\cdot \alpha^2} \hspace{0.05cm}.$$
 
\cdot \alpha^2} \hspace{0.05cm}.$$
* In contrast, system  $\rm B$  assumes a coaxial cable with characteristic attenuation (at half the bit rate)  $a_* = 80 \, {\rm dB}$  $($or  $9.2 \, {\rm Np})$  so that the magnitude frequency response is:
+
 
 +
* In contrast,  system  $\rm B$  assumes a coaxial cable with characteristic attenuation  $($at half the bit rate$)$  $a_* = 80 \, {\rm dB}$  $($or  $9.2 \, {\rm Np})$  so that the channel magnitude frequency response is:
 
:$$|H_{\rm K}(f)| = {\rm e}^{- 9.2 \hspace{0.05cm} \cdot
 
:$$|H_{\rm K}(f)| = {\rm e}^{- 9.2 \hspace{0.05cm} \cdot
 
\hspace{0.05cm}\sqrt{2 f T}}\hspace{0.05cm}.$$
 
\hspace{0.05cm}\sqrt{2 f T}}\hspace{0.05cm}.$$
* Thus, the equation for the noise power density before the decision $($with  $f_{\rm G} \cdot T = 0.35)$ is:
+
 
 +
* Thus,  the equation for the noise power density  $\rm (PSD)$  before the decision is  $($with  $f_{\rm G} \cdot T = 0.35)$:
 
:$${\it \Phi}_{d{\rm N}}(f) = {N_0}/{2} \cdot \frac{|H_{\rm G
 
:$${\it \Phi}_{d{\rm N}}(f) = {N_0}/{2} \cdot \frac{|H_{\rm G
 
}(f)|^2}{|H_{\rm K}(f)|^2} = {N_0}/{2} \cdot {\rm exp}\left
 
}(f)|^2}{|H_{\rm K}(f)|^2} = {N_0}/{2} \cdot {\rm exp}\left
Line 27: Line 27:
 
\right ] \hspace{0.05cm}.$$
 
\right ] \hspace{0.05cm}.$$
  
This function curve  $\rm B$  is shown in red in the above graph. The noise power density for system  $\rm A$  is drawn in blue.
+
*The noise PSD of system  $\rm B$  is shown in red in the above graph and the noise PSD of system  $\rm A$  is drawn in blue.
  
For the system  $\rm B$,  the worst-case error probability  
+
*For the system  $\rm B$,  the worst-case error probability  
 
:$$p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}}
 
:$$p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}}
   \right) \hspace{0.2cm}{\rm with} \hspace{0.2cm} \rho_{\rm U} = \frac{[\ddot{o}(T_{\rm D})/2]^2}{ \sigma_d^2}$$
+
   \right) \hspace{0.4cm}{\rm with} \hspace{0.4cm} \rho_{\rm U} = \frac{[\ddot{o}(T_{\rm D})/2]^2}{ \sigma_d^2}$$
  
was determined. The measurement resulted in  $p_{\rm U} = 4 \cdot 10^{\rm -8}$, which corresponds to the signal-to-noise ratio  $10 \cdot {\rm lg} \, \rho_{\rm U} = 14.8 \, {\rm dB}$.   
+
:was determined.  The measurement resulted in  $p_{\rm U} = 4 \cdot 10^{\rm -8}$,  which corresponds to the signal-to-noise ratio  $10 \cdot {\rm lg} \, \rho_{\rm U} = 14.8 \, {\rm dB}$.   
  
  
  
  
 +
Notes:
 +
*The exercise belongs to the chapter  [[Digital_Signal_Transmission/Consideration_of_Channel_Distortion_and_Equalization|"Consideration of Channel Distortion and Equalization"]].
  
 
+
* Use the  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]] interaction module for numerical evaluation of the Q–function.
''Notes:''
 
*The exercise belongs to the chapter  [[Digital_Signal_Transmission/Consideration_of_Channel_Distortion_and_Equalization|Consideration of Channel Distortion and Equalization]].
 
* Use the  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Complementary Gaussian Error Functions]] interaction module for numerical evaluation of the Q function.
 
 
   
 
   
  
Line 50: Line 49:
  
 
<quiz display=simple>
 
<quiz display=simple>
{What (normalized) noise rms value occurs in system &nbsp;$\rm B$?&nbsp;
+
{What&nbsp; (normalized)&nbsp; noise rms value occurs in system &nbsp;$\rm B$?&nbsp;
 
|type="{}"}
 
|type="{}"}
 
$\sigma_d/s_0 \ = \ $ { 0.044 3% }
 
$\sigma_d/s_0 \ = \ $ { 0.044 3% }
  
{What noise rms value occurs for system &nbsp;$\rm A$&nbsp; when it leads to exactly the same (worst-case) error probability as system &nbsp;$\rm B$?&nbsp;
+
{What noise rms value occurs for system &nbsp;$\rm A$&nbsp; when it leads to exactly the same&nbsp; "worst-case error probability"&nbsp; as system &nbsp;$\rm B$?&nbsp;
 
|type="{}"}
 
|type="{}"}
 
$\sigma_d/s_0 \ = \ $ { 0.044 3% }
 
$\sigma_d/s_0 \ = \ $ { 0.044 3% }
  
{By what attenuation factor &nbsp;$\alpha$&nbsp; is system &nbsp;$\rm A$&nbsp; equivalent to system &nbsp;$\rm B$&nbsp; in terms of (worst-case) error probability?
+
{By what attenuation factor &nbsp;$\alpha$&nbsp; is system &nbsp;$\rm A$&nbsp; equivalent to system &nbsp;$\rm B$&nbsp; in terms of worst-case error probability?
 
|type="{}"}
 
|type="{}"}
 
$20 \cdot {\rm lg} \ \alpha \ = \ $ { -70.967--66.833 } ${\ \rm dB}$
 
$20 \cdot {\rm lg} \ \alpha \ = \ $ { -70.967--66.833 } ${\ \rm dB}$
  
{What is the noise power density referenced to &nbsp;$N_0/2$&nbsp; &nbsp;$($at &nbsp;$f = 0)$&nbsp; before the decision for system &nbsp;$\rm A$&nbsp; and system &nbsp;$\rm B$?
+
{What is the noise power-spectral density&nbsp; $($at &nbsp;$f = 0)$&nbsp; normalized to &nbsp;$N_0/2$&nbsp; before the decision for system &nbsp;$\rm A$&nbsp; and system &nbsp;$\rm B$?
 
|type="{}"}
 
|type="{}"}
 
$\text{System A:}\hspace{0.4cm} {\it \Phi}_{d \rm N} (f = 0)/(N_0/2) \ = \ $ { 7.8 3% } $\ \cdot 10^6$
 
$\text{System A:}\hspace{0.4cm} {\it \Phi}_{d \rm N} (f = 0)/(N_0/2) \ = \ $ { 7.8 3% } $\ \cdot 10^6$
 
$\text{System B:}\hspace{0.42cm} {\it \Phi}_{d \rm N} (f = 0)/(N_0/2)  \ = \ $ { 1 3% } $\ \cdot 10^0$
 
$\text{System B:}\hspace{0.42cm} {\it \Phi}_{d \rm N} (f = 0)/(N_0/2)  \ = \ $ { 1 3% } $\ \cdot 10^0$
  
{For the rest of the exercise, we will only consider system &nbsp;$\rm B$. At what frequency &nbsp;$f_{\rm max}$&nbsp; does &nbsp;${\it \Phi}_{d \rm N}(f)$&nbsp; have its maximum?
+
{For the rest of the exercise,&nbsp; we will only consider system &nbsp;$\rm B$.&nbsp; At what frequency &nbsp;$f_{\rm max}$&nbsp; does &nbsp;${\it \Phi}_{d \rm N}(f)$&nbsp; have its maximum?
 
|type="{}"}
 
|type="{}"}
 
$f_{\rm max} \cdot T\ = \ ${ 0.63 3% }
 
$f_{\rm max} \cdot T\ = \ ${ 0.63 3% }
  
{By what factor is the noise power density at frequency &nbsp;$f_{\rm max}$&nbsp; greater than at &nbsp;$f = 0$?
+
{By what factor is the noise power-spectral density at frequency &nbsp;$f_{\rm max}$&nbsp; greater than at &nbsp;$f = 0$?
 
|type="{}"}
 
|type="{}"}
 
${\it \Phi}_{d \rm N}(f_{\rm max})/{\it \Phi}_{d \rm N}(0)\ = \ $ { 5.4 3% } $\ \cdot 10^6$
 
${\it \Phi}_{d \rm N}(f_{\rm max})/{\it \Phi}_{d \rm N}(0)\ = \ $ { 5.4 3% } $\ \cdot 10^6$
Line 78: Line 77:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; From $10 \cdot {\rm lg} \, \rho_{\rm U} = 14.8 \, {\rm dB}$ follows $\rho_{\rm U} = 10^{\rm 1.48} &asymp; 30.2$ and continue with the given equation:
+
'''(1)'''&nbsp; From&nbsp; $10 \cdot {\rm lg} \, \rho_{\rm U} = 14.8 \, {\rm dB}$&nbsp; follows&nbsp; $\rho_{\rm U} = 10^{\rm 1.48} &asymp; 30.2$&nbsp; and with the given equation:
 
:$$\sqrt{\rho_{\rm U}} = \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d}\hspace{0.3cm}\Rightarrow
 
:$$\sqrt{\rho_{\rm U}} = \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d}\hspace{0.3cm}\Rightarrow
 
\hspace{0.3cm} \sigma_d = \frac{0.478 \cdot s_0/2}{ \sqrt{30.2}}
 
\hspace{0.3cm} \sigma_d = \frac{0.478 \cdot s_0/2}{ \sqrt{30.2}}
Line 84: Line 83:
  
  
'''(2)'''&nbsp; With the same error probability $p_{\rm U}$ (and thus the same $\rho_{\rm U}$), $\sigma_d$ must have exactly the same value as calculated in subtask '''(1)''', since the eye opening also remains the same &nbsp; &#8658; &nbsp; $\sigma_d/s_0 \underline{= 0.044}.$
+
'''(2)'''&nbsp; With the same worst-case error probability&nbsp; $p_{\rm U}$&nbsp; (and thus the same&nbsp; $\rho_{\rm U}$),&nbsp; $\sigma_d$ must have exactly the same value as calculated in subtask&nbsp; '''(1)''',&nbsp; since the eye opening also remains the same &nbsp; &#8658; &nbsp; $\sigma_d/s_0 \underline{= 0.044}.$
  
  
Line 96: Line 95:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Expressed in ${\rm dB}$, one thus obtains
+
Expressed in&nbsp; ${\rm dB}$,&nbsp; one thus obtains
 
:$$20 \cdot {\rm lg}\hspace{0.1cm}\alpha = 10 \cdot {\rm lg}\hspace{0.1cm}\alpha^2 =
 
:$$20 \cdot {\rm lg}\hspace{0.1cm}\alpha = 10 \cdot {\rm lg}\hspace{0.1cm}\alpha^2 =
 
   -70\,{\rm dB}\hspace{0.1cm}+\hspace{0.1cm}10 \cdot {\rm lg}\hspace{0.1cm}1.28\hspace{0.15cm}\underline { =
 
   -70\,{\rm dB}\hspace{0.1cm}+\hspace{0.1cm}10 \cdot {\rm lg}\hspace{0.1cm}1.28\hspace{0.15cm}\underline { =
Line 102: Line 101:
  
  
'''(4)'''&nbsp; For system &nbsp;$\rm B$,&nbsp; because $H_{\rm E}(f = 0) = 1$, the normalized value is equal to $1$, that means, it is ${\it \Phi}_{d \rm N}(f = 0) = N_0/2$.  
+
'''(4)'''&nbsp; For system &nbsp;$\rm B$,&nbsp; because of&nbsp; $H_{\rm E}(f = 0) = 1$,&nbsp; the normalized value is equal&nbsp; to $1$,&nbsp; that means,&nbsp; it is&nbsp; ${\it \Phi}_{d \rm N}(f = 0) = N_0/2$.  
  
In contrast, for system &nbsp;$\rm A$,&nbsp; this value is larger by $1/\alpha^2$ due to the components of the frequency-independent cable attenuation $\alpha$:
+
In contrast,&nbsp; for system &nbsp;$\rm A$,&nbsp; this value is larger&nbsp; by the factor&nbsp; $1/\alpha^2$&nbsp; due to the components of the frequency-independent cable attenuation&nbsp; $\alpha$:
 
:$${\rm System}\hspace{0.15cm}{\rm A:}\hspace{0.1cm}\frac{{\it \Phi}_{d{\rm N}}(f = 0)}{N_0/2}  = \frac{1}{\alpha^2} \hspace{0.15cm}\underline {\approx 7.8 \cdot 10^{6}} \hspace{0.05cm}, \hspace{1.05cm}{\rm System\hspace{0.15cm}B}: \frac{{\it \Phi}_{d \rm N}(f = 0)}{N_0/2} \, \underline {= 1}.$$
 
:$${\rm System}\hspace{0.15cm}{\rm A:}\hspace{0.1cm}\frac{{\it \Phi}_{d{\rm N}}(f = 0)}{N_0/2}  = \frac{1}{\alpha^2} \hspace{0.15cm}\underline {\approx 7.8 \cdot 10^{6}} \hspace{0.05cm}, \hspace{1.05cm}{\rm System\hspace{0.15cm}B}: \frac{{\it \Phi}_{d \rm N}(f = 0)}{N_0/2} \, \underline {= 1}.$$
  
  
'''(5)'''&nbsp; ${\it \Phi}_{d \rm N}(f)$ is maximal if the exponent
+
'''(5)'''&nbsp; ${\it \Phi}_{d \rm N}(f)$&nbsp; is maximal if the exponent
 
:$$18.4 \cdot \sqrt{2  f  T} - 2\pi \cdot \frac{(f \cdot T)^2}{0.49}$$
 
:$$18.4 \cdot \sqrt{2  f  T} - 2\pi \cdot \frac{(f \cdot T)^2}{0.49}$$
  
has the maximum value. Thus, with $x = f \cdot T$, the optimization function is:
+
has the maximum value.&nbsp; Thus,&nbsp; with $x = f \cdot T$,&nbsp; the optimization function is:
 
:$$y(x) = 26.022 \cdot  \sqrt{x} - 12.823 \cdot x^2 \approx 26 \cdot
 
:$$y(x) = 26.022 \cdot  \sqrt{x} - 12.823 \cdot x^2 \approx 26 \cdot
 
\sqrt{x} - 13 \cdot x^2 \hspace{0.3cm}
 
\sqrt{x} - 13 \cdot x^2 \hspace{0.3cm}
Line 122: Line 121:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
This gives $f_{\rm max} \cdot T\hspace{0.15cm}\underline {\approx 0.63}$.
+
This gives&nbsp; $f_{\rm max} \cdot T\hspace{0.15cm}\underline {\approx 0.63}$.
  
  
'''(6)'''&nbsp; With $x_{\rm max} = 0.63$ we get the function value
+
'''(6)'''&nbsp; With&nbsp; $x_{\rm max} = 0.63$&nbsp; we get the function value
  
 
:$$y(x_{\rm max})  \approx 26 \cdot \sqrt{0.63} - 13 \cdot 0.63^2
 
:$$y(x_{\rm max})  \approx 26 \cdot \sqrt{0.63} - 13 \cdot 0.63^2
 
\hspace{0.15cm}\underline {\approx 15.477}.$$
 
\hspace{0.15cm}\underline {\approx 15.477}.$$
[[File:P_ID1408__Dig_A_3_3f.png|frame|right|Noise component $d_{\rm N}(t)$]]
+
[[File:EN_Dig_A_3_3f.png|frame|right|Noise component&nbsp; $d_{\rm N}(t)$&nbsp; of the detection signal]]
 
It follows:
 
It follows:
*The noise power density at the (normalized) frequency $f \cdot T \approx 0.63$ is larger than at the frequency $e^{\rm 15.5} \underline{\approx 5.4 \cdot 10^6}$ by a factor of $f = 0$.  
+
*The noise PSD at the&nbsp; (normalized)&nbsp; frequency&nbsp; $f \cdot T \approx 0.63$&nbsp; is larger than at the frequency&nbsp; $f = 0$&nbsp;  by a factor of&nbsp; $e^{\rm 15.5} \ \underline{\approx 5.4 \cdot 10^6}$.  
  
*Thus, periodic components with period $T_0 \approx 1.6 \cdot T$ predominate in the noise component $d_{\rm N}(t)$.  
+
*Thus,&nbsp; periodic components with period&nbsp; $T_0 \approx 1.6 \cdot T$&nbsp; predominate in the noise component&nbsp; $d_{\rm N}(t)$.
 +
 
*The graph shows a simulation and confirms this result.
 
*The graph shows a simulation and confirms this result.
  
Line 140: Line 140:
  
  
[[Category:Digital Signal Transmission: Exercises|^3.3 Kanalverzerrungen und Entzerrung^]]
+
[[Category:Digital Signal Transmission: Exercises|^3.3 Channel Distortion and Equalization^]]

Latest revision as of 13:17, 17 June 2022

Noise PSD before the decision

We consider two different system variants,  both using NRZ rectangular transmission pulses and are affected by AWGN noise.

  • To limit the noise power,  in both cases a Gaussian low-pass filter
$$H_{\rm G}(f) = {\rm exp}(- \pi \cdot \frac{f^2}{(2f_{\rm G})^2})$$
with normalized cutoff frequency  $f_{\rm G} \cdot T = 0.35$  is used, so that both systems also have the same eye opening with  $\ddot{o}(T_{\rm D} = 0) = 0.478 \cdot s_0$. 
  • The transmission energy  $E_{\rm B} = s_0^2 \cdot T$  spent per bit is larger than the noise power density  $N_0$   by a factor of  $10^9$  ⇒   $10\cdot {\rm lg} \, E_{\rm B}/N_0 = 90 \, {\rm dB}$.
  • The channel frequency response of system  $\rm A$  is frequency-independent:   $H_{\rm K}(f) = \alpha$.  Accordingly,  for the receiver filter  $H_{\rm E}(f) = H_{\rm G}(f)/\alpha$  must be assumed,  so that the following applies to the detection noise power:
$$\sigma_d^2 = {N_0}/{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \,{\rm d} f = \frac{N_0 \cdot f_{\rm G}}{\sqrt{2} \cdot \alpha^2} \hspace{0.05cm}.$$
  • In contrast,  system  $\rm B$  assumes a coaxial cable with characteristic attenuation  $($at half the bit rate$)$  $a_* = 80 \, {\rm dB}$  $($or  $9.2 \, {\rm Np})$  so that the channel magnitude frequency response is:
$$|H_{\rm K}(f)| = {\rm e}^{- 9.2 \hspace{0.05cm} \cdot \hspace{0.05cm}\sqrt{2 f T}}\hspace{0.05cm}.$$
  • Thus,  the equation for the noise power density  $\rm (PSD)$  before the decision is  $($with  $f_{\rm G} \cdot T = 0.35)$:
$${\it \Phi}_{d{\rm N}}(f) = {N_0}/{2} \cdot \frac{|H_{\rm G }(f)|^2}{|H_{\rm K}(f)|^2} = {N_0}/{2} \cdot {\rm exp}\left [18.4 \cdot \sqrt{2 f T} - 2\pi \cdot \frac{(f \cdot T)^2}{(2 \cdot 0.35)^2} \right ] \hspace{0.05cm}.$$
  • The noise PSD of system  $\rm B$  is shown in red in the above graph and the noise PSD of system  $\rm A$  is drawn in blue.
  • For the system  $\rm B$,  the worst-case error probability
$$p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}} \right) \hspace{0.4cm}{\rm with} \hspace{0.4cm} \rho_{\rm U} = \frac{[\ddot{o}(T_{\rm D})/2]^2}{ \sigma_d^2}$$
was determined.  The measurement resulted in  $p_{\rm U} = 4 \cdot 10^{\rm -8}$,  which corresponds to the signal-to-noise ratio  $10 \cdot {\rm lg} \, \rho_{\rm U} = 14.8 \, {\rm dB}$. 



Notes:



Questions

1

What  (normalized)  noise rms value occurs in system  $\rm B$? 

$\sigma_d/s_0 \ = \ $

2

What noise rms value occurs for system  $\rm A$  when it leads to exactly the same  "worst-case error probability"  as system  $\rm B$? 

$\sigma_d/s_0 \ = \ $

3

By what attenuation factor  $\alpha$  is system  $\rm A$  equivalent to system  $\rm B$  in terms of worst-case error probability?

$20 \cdot {\rm lg} \ \alpha \ = \ $

${\ \rm dB}$

4

What is the noise power-spectral density  $($at  $f = 0)$  normalized to  $N_0/2$  before the decision for system  $\rm A$  and system  $\rm B$?

$\text{System A:}\hspace{0.4cm} {\it \Phi}_{d \rm N} (f = 0)/(N_0/2) \ = \ $

$\ \cdot 10^6$
$\text{System B:}\hspace{0.42cm} {\it \Phi}_{d \rm N} (f = 0)/(N_0/2) \ = \ $

$\ \cdot 10^0$

5

For the rest of the exercise,  we will only consider system  $\rm B$.  At what frequency  $f_{\rm max}$  does  ${\it \Phi}_{d \rm N}(f)$  have its maximum?

$f_{\rm max} \cdot T\ = \ $

6

By what factor is the noise power-spectral density at frequency  $f_{\rm max}$  greater than at  $f = 0$?

${\it \Phi}_{d \rm N}(f_{\rm max})/{\it \Phi}_{d \rm N}(0)\ = \ $

$\ \cdot 10^6$


Solution

(1)  From  $10 \cdot {\rm lg} \, \rho_{\rm U} = 14.8 \, {\rm dB}$  follows  $\rho_{\rm U} = 10^{\rm 1.48} ≈ 30.2$  and with the given equation:

$$\sqrt{\rho_{\rm U}} = \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \sigma_d = \frac{0.478 \cdot s_0/2}{ \sqrt{30.2}} \hspace{0.15cm}\underline { \approx 0.044 \cdot s_0 }\hspace{0.05cm}.$$


(2)  With the same worst-case error probability  $p_{\rm U}$  (and thus the same  $\rho_{\rm U}$),  $\sigma_d$ must have exactly the same value as calculated in subtask  (1),  since the eye opening also remains the same   ⇒   $\sigma_d/s_0 \underline{= 0.044}.$


(3)  According to the specification section:

$$\alpha^2 = \frac{N_0 \cdot f_{\rm G}}{\sqrt{2} \cdot \sigma_d^2} = \frac{10^{-9} \cdot s_0^2 \cdot T \cdot f_{\rm G}}{\sqrt{2} \cdot \sigma_d^2} = 10^{-9} \cdot \frac{ f_{\rm G} \cdot T}{\sqrt{2} \cdot (\sigma_d/s_0)^2}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \alpha^2 = 10^{-9} \cdot \frac{ 0.35}{\sqrt{2} \cdot 0.044^2} \approx 1.28 \cdot 10^{-7} \hspace{0.05cm}.$$

Expressed in  ${\rm dB}$,  one thus obtains

$$20 \cdot {\rm lg}\hspace{0.1cm}\alpha = 10 \cdot {\rm lg}\hspace{0.1cm}\alpha^2 = -70\,{\rm dB}\hspace{0.1cm}+\hspace{0.1cm}10 \cdot {\rm lg}\hspace{0.1cm}1.28\hspace{0.15cm}\underline { = -68.9\,{\rm dB}} \hspace{0.05cm}.$$


(4)  For system  $\rm B$,  because of  $H_{\rm E}(f = 0) = 1$,  the normalized value is equal  to $1$,  that means,  it is  ${\it \Phi}_{d \rm N}(f = 0) = N_0/2$.

In contrast,  for system  $\rm A$,  this value is larger  by the factor  $1/\alpha^2$  due to the components of the frequency-independent cable attenuation  $\alpha$:

$${\rm System}\hspace{0.15cm}{\rm A:}\hspace{0.1cm}\frac{{\it \Phi}_{d{\rm N}}(f = 0)}{N_0/2} = \frac{1}{\alpha^2} \hspace{0.15cm}\underline {\approx 7.8 \cdot 10^{6}} \hspace{0.05cm}, \hspace{1.05cm}{\rm System\hspace{0.15cm}B}: \frac{{\it \Phi}_{d \rm N}(f = 0)}{N_0/2} \, \underline {= 1}.$$


(5)  ${\it \Phi}_{d \rm N}(f)$  is maximal if the exponent

$$18.4 \cdot \sqrt{2 f T} - 2\pi \cdot \frac{(f \cdot T)^2}{0.49}$$

has the maximum value.  Thus,  with $x = f \cdot T$,  the optimization function is:

$$y(x) = 26.022 \cdot \sqrt{x} - 12.823 \cdot x^2 \approx 26 \cdot \sqrt{x} - 13 \cdot x^2 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{{\rm d}y}{{\rm d}x} = \frac{26} {2\cdot \sqrt{x}} - 13 \cdot 2 \cdot x = 0$$
$$\Rightarrow \hspace{0.3cm} \frac{1} { \sqrt{x}} = 2 \cdot x \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\frac{1} { x} = 4 \cdot x^2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} x^3 = 0.25 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} x \approx 0.63 \hspace{0.05cm}.$$

This gives  $f_{\rm max} \cdot T\hspace{0.15cm}\underline {\approx 0.63}$.


(6)  With  $x_{\rm max} = 0.63$  we get the function value

$$y(x_{\rm max}) \approx 26 \cdot \sqrt{0.63} - 13 \cdot 0.63^2 \hspace{0.15cm}\underline {\approx 15.477}.$$
Noise component  $d_{\rm N}(t)$  of the detection signal

It follows:

  • The noise PSD at the  (normalized)  frequency  $f \cdot T \approx 0.63$  is larger than at the frequency  $f = 0$  by a factor of  $e^{\rm 15.5} \ \underline{\approx 5.4 \cdot 10^6}$.
  • Thus,  periodic components with period  $T_0 \approx 1.6 \cdot T$  predominate in the noise component  $d_{\rm N}(t)$.
  • The graph shows a simulation and confirms this result.