Difference between revisions of "Aufgaben:Exercise 3.3Z: Optimization of a Coaxial Cable System"

From LNTwww
 
(3 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1409__Dig_Z_3_3.png|right|frame|Normalized system parameters for different cut-off frequencies]]
+
[[File:P_ID1409__Dig_Z_3_3.png|right|frame|Normalized system parameters for different cutoff frequencies]]
 
We consider a redundancy-free binary transmission system with the following specifications:
 
We consider a redundancy-free binary transmission system with the following specifications:
 
* The transmission pulses are NRZ rectangular and have energy  $E_{\rm B} = s_0^2 \cdot T$.
 
* The transmission pulses are NRZ rectangular and have energy  $E_{\rm B} = s_0^2 \cdot T$.
Line 18: Line 18:
 
   \right) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}}\right)$$
 
   \right) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}}\right)$$
  
*This quantity represents an upper bound for the mean error probability  $p_{\rm S}$:     $p_{\rm S} \le p_{\rm U}$.
+
*This quantity represents an upper bound for the mean error probability    $p_{\rm S} \le p_{\rm U}$.
 
   
 
   
 
*For  $f_{\rm G} \cdot T ≥ 0.4$,  a lower bound can also be given:    $p_{\rm S} \ge p_{\rm U}/4$.
 
*For  $f_{\rm G} \cdot T ≥ 0.4$,  a lower bound can also be given:    $p_{\rm S} \ge p_{\rm U}/4$.
Line 27: Line 27:
 
*The exercise belongs to the chapter  [[Digital_Signal_Transmission/Consideration_of_Channel_Distortion_and_Equalization|"Consideration of Channel Distortion and Equalization"]].
 
*The exercise belongs to the chapter  [[Digital_Signal_Transmission/Consideration_of_Channel_Distortion_and_Equalization|"Consideration of Channel Distortion and Equalization"]].
  
* Use the interaction module  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]]  for numerical evaluation of the Q-function..
+
* Use the interaction module  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]]  for numerical evaluation of the Q-function.
 
   
 
   
  
Line 55: Line 55:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  For the optimization it is sufficient to maximize the quotient $\ddot{o}(T_{\rm D})/\sigma_d$:  
+
'''(1)'''  For the optimization it is sufficient to maximize the quotient  $\ddot{o}(T_{\rm D})/\sigma_d$:  
*This is maximized from the values given in the table for the cutoff frequency  $f_{\rm G, opt} \cdot T \underline {= 0.4}$  with $0.735/0.197 \approx 3.73$.  
+
*This is maximized from the values given in the table for the cutoff frequency  $f_{\rm G, opt} \cdot T \underline {= 0.4}$  with  $0.735/0.197 \approx 3.73$.  
*As a comparison:   For  $f_{\rm G} \cdot T = 0.3$  the result is $0.192/0.094 \approx 2.04$ due to the smaller eye opening and for  $f_{\rm G} \cdot T = 0.5$  the quotient is also smaller than for the optimum: $1.159/0.379 \approx 3.05$.
+
*As a comparison:   For  $f_{\rm G} \cdot T = 0.3$  the result is  $0.192/0.094 \approx 2.04$  due to the smaller eye opening.
 +
*For  $f_{\rm G} \cdot T = 0.5$  the quotient is also smaller than for the optimum:  $1.159/0.379 \approx 3.05$.
 
*An even larger cutoff frequency leads to a very large noise rms value without simultaneously increasing the vertical eye opening in the same way.
 
*An even larger cutoff frequency leads to a very large noise rms value without simultaneously increasing the vertical eye opening in the same way.
  
  
  
'''(2)'''  Using the result from '''(1)''', we further obtain:
+
'''(2)'''  Using the result from  '''(1)''',  we further obtain:
 
:$$\rho_{\rm U} = \left ( {3.73}/{2} \right )^2 \approx 3.48 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$$\rho_{\rm U} = \left ( {3.73}/{2} \right )^2 \approx 3.48 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  10 \cdot {\rm
 
  10 \cdot {\rm
Line 69: Line 70:
  
  
'''(3)'''   
+
'''(3)'''  With the given  $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 40 \ \rm dB$,  i.e. $E_{\rm B}/N_0 = 10^4$,  the worst-case signal-to-noise ratio has been found to be  $10 \cdot {\rm lg} \, \rho_{\rm U} \approx 5.41 \, {\rm dB}$.  
*With the given $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 40 \ \rm dB$, i.e. $E_{\rm B}/N_0 = 10^4$, the worst-case signal-to-noise ratio has been found to be $10 \cdot {\rm lg} \, \rho_{\rm U} \approx 5.41 \, {\rm dB}$.  
+
*However,  for the worst-case error probability  $p_{\rm U} = 10^{\rm -6}$   ⇒    $10 \cdot {\rm lg} \, \rho_{\rm U} > 13.55 \, {\rm dB}$  must be obtained.
*However, for the worst-case error probability $p_{\rm U} = 10^{\rm -6}$, $10 \cdot {\rm lg} \, \rho_{\rm U} > 13.55 \, {\rm dB}$ must be obtained.
+
*This is achieved by increasing the quotient  $E_{\rm B}/N_0$  accordingly:
*This is achieved by increasing the quotient $E_{\rm B}/N_0$ accordingly:
 
 
:$$10 \cdot {\rm
 
:$$10 \cdot {\rm
 
lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} = 40\,{\rm dB}
 
lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} = 40\,{\rm dB}
Line 84: Line 84:
  
 
'''(4)'''   
 
'''(4)'''   
*The upper bound for $p_{\rm S}$ is equal to the worst-case error probability $p_{\rm U} = \underline {10^{\rm -6}}$.  
+
*The upper bound  for $p_{\rm S}$  is equal to the worst-case error probability  $p_{\rm U} = \underline {10^{\rm -6}}$.
*The lower bound is $\underline {0.25 \cdot 10^{\rm -6}}$, which is smaller by a factor of 4.
+
 +
*The lower bound is  $\underline {0.25 \cdot 10^{\rm -6}}$,  which is smaller by a factor of  $4$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
[[Category:Digital Signal Transmission: Exercises|^3.3 Channel Distortion and Equalization^]]
 
[[Category:Digital Signal Transmission: Exercises|^3.3 Channel Distortion and Equalization^]]

Latest revision as of 14:06, 28 June 2022

Normalized system parameters for different cutoff frequencies

We consider a redundancy-free binary transmission system with the following specifications:

  • The transmission pulses are NRZ rectangular and have energy  $E_{\rm B} = s_0^2 \cdot T$.
  • The channel is a coaxial cable with characteristic cable attenuation  $a_* = 40 \, {\rm dB}$.
  • AWGN noise with (one-sided) noise power density  $N_0 = 0.0001 \cdot E_{\rm B}$  is present.
  • The receiver frequency response  $H_{\rm E}(f)$  includes an ideal channel equalizer  $H_{\rm K}^{\rm -1}(f)$  and a Gaussian low-pass filter  $H_{\rm G}(f)$  with cutoff frequency  $f_{\rm G}$  for noise power limitation.


The table shows the eye opening   $\ddot{o}(T_{\rm D})$   as well as the detection noise rms value   $\sigma_{\rm d}$   – each normalized to the transmitted amplitude  $s_0$  – for different cutoff frequencies  $f_{\rm G}$.  The cutoff frequency is to be chosen such that the worst-case error probability is as small as possible,  with the following definition:

$$p_{\rm U} = {\rm Q} \left( \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d} \right) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}}\right)$$
  • This quantity represents an upper bound for the mean error probability   $p_{\rm S} \le p_{\rm U}$.
  • For  $f_{\rm G} \cdot T ≥ 0.4$,  a lower bound can also be given:   $p_{\rm S} \ge p_{\rm U}/4$.


Notes:



Questions

1

Within the given grid,  determine the optimal cutoff frequency with respect to the  "worst-case error probability"  criterion.

$f_\text{G, opt} \cdot T \ = \ $

2

What values does this give for the  "worst-case signal-to-noise ratio"  and the worst-case error probability?

$f_\text{G} = \text{G, opt:}\hspace{0.4cm} 10 \cdot {\rm lg} \, \rho_{\rm U} \ = \ $

${\ \rm dB}$
$\hspace{4.07cm}p_{\rm U} \ = \ $

$\ \rm \%$

3

To what value would we need to reduce the noise power density  $N_0$  (with respect to signal energy)  so that  $p_{\rm U}$  is not greater than  $10^{\rm -6}$?

$N_0/E_{\rm B} \ = \ $

$\ \cdot 10^{\rm -5}$

4

For the assumptions made in  (3),  give a lower and an upper bound for the  "average error probability"   $p_{\rm S}$. 

$p_\text{ S, min}\hspace{0.02cm} \ = \ $

$\ \cdot 10^{\rm -6}$
$p_\text{ S, max} \ = \ $

$\ \cdot 10^{\rm -6}$


Solution

(1)  For the optimization it is sufficient to maximize the quotient  $\ddot{o}(T_{\rm D})/\sigma_d$:

  • This is maximized from the values given in the table for the cutoff frequency  $f_{\rm G, opt} \cdot T \underline {= 0.4}$  with  $0.735/0.197 \approx 3.73$.
  • As a comparison:   For  $f_{\rm G} \cdot T = 0.3$  the result is  $0.192/0.094 \approx 2.04$  due to the smaller eye opening.
  • For  $f_{\rm G} \cdot T = 0.5$  the quotient is also smaller than for the optimum:  $1.159/0.379 \approx 3.05$.
  • An even larger cutoff frequency leads to a very large noise rms value without simultaneously increasing the vertical eye opening in the same way.


(2)  Using the result from  (1),  we further obtain:

$$\rho_{\rm U} = \left ( {3.73}/{2} \right )^2 \approx 3.48 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} \hspace{0.15cm}\underline { = 5.41\,{\rm dB}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q}\left ( {3.73}/{2} \right) \hspace{0.15cm}\underline {\approx 0.031} \hspace{0.05cm}.$$


(3)  With the given  $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 40 \ \rm dB$,  i.e. $E_{\rm B}/N_0 = 10^4$,  the worst-case signal-to-noise ratio has been found to be  $10 \cdot {\rm lg} \, \rho_{\rm U} \approx 5.41 \, {\rm dB}$.

  • However,  for the worst-case error probability  $p_{\rm U} = 10^{\rm -6}$   ⇒   $10 \cdot {\rm lg} \, \rho_{\rm U} > 13.55 \, {\rm dB}$  must be obtained.
  • This is achieved by increasing the quotient  $E_{\rm B}/N_0$  accordingly:
$$10 \cdot {\rm lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} = 40\,{\rm dB} \hspace{0.1cm}+\hspace{0.1cm}13.55\,{\rm dB} \hspace{0.1cm}-\hspace{0.1cm}5.41\,{\rm dB}= 48.14\,{\rm dB}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {E_{\rm B}}/{N_0} = 10^{4.814}\approx 65163 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {N_0}/{E_{\rm B}}\hspace{0.15cm}\underline { = 1.53 \cdot 10^{-5}} \hspace{0.05cm}.$$


(4) 

  • The upper bound  for $p_{\rm S}$  is equal to the worst-case error probability  $p_{\rm U} = \underline {10^{\rm -6}}$.
  • The lower bound is  $\underline {0.25 \cdot 10^{\rm -6}}$,  which is smaller by a factor of  $4$.